docgid.ru

Дифференцировка в лимфоцитов схема. Дифференцировка Т и В-лимфоцитов. Развитие Т- и В-лимфоцитов

Введение

Принципиальная схема механизма иммунной памяти у В-лимфоцитов

B-лимфоцимты (B-клетки, от bursa fabricii птиц, где впервые были обнаружены) -- функциональный тип лимфоцитов, играющих важную роль в обеспечении гуморального иммунитета.

У эмбрионов человека и других млекопитающих B-лимфоциты образуются в печени и костном мозге из стволовых клеток, а у взрослых млекопитающих -- в красном костном мозге.

При контакте с антигеном или стимуляции со стороны T-клеток некоторые B-лимфоциты трансформируются в плазматические клетки, способные к продукции антител. Другие активированные B-лимфоциты превращаются в B-клетки памяти.

Дифференцировка В-лимфоцитов

иммунный лимфоцит антиген гуморальный

Лимфоциты происходят от плюрипотентных стволовых клеток, дающих также начало всем клеткам крови. Дифференцировка стволовых клеток крови по эритроидному, миелоидному либо лимфоидному пути зависит от микроокружения (в случае птиц дифференцировка стволовых клеток в В-лимфоциты происходит в фабрициевой сумке, у млекопитающих в костном мозге, где также происходит дифференцировка по миелоидному и эритроидному пути). Дифференцировка В-лимфоцитов условно делится на две стадии -- антигеннезависимую (в которую происходит перестройка генов иммуноглобулинов и их экспрессия) и антигензависимую (при которой происходит активация, пролиферация и дифференцировка в плазматические клетки). Все начинается в костном мозге где идет регуляция созревания В рецепторов, там каждая В клетка моноспецифична, идет уничтожение аутореактивных В клеток. Рассмотрим этот процесс более подробно.

  • · Пре-В-Клетки-предшественники не синтезируют тяжёлых и лёгких цепей, содержат зародышевые H и L гены, но содержат антигенный маркер, общий с зрелыми пре-В-клетками.
  • · Ранние пре-В-клетки -- D-J перестройки в Н генах.
  • · Поздние пре-В-клетки -- V-DJ перестройки в Н генах.
  • · Большие пре-В-клетки Н-гены VDJ-перестроены; в цитоплазме имеются тяжёлые цепи класса м.
  • · Малые пре-В-клетки -- V-J перестройки в L генах; в цитоплазме имеются тяжёлые цепи класса м.
  • · Малые незрелые В-клетки -- L гены VJ-перестроены; синтезируют Н и L- цепи; на мембране расположены иммуноглобулины.
  • · Зрелые В-клетки- начало синтеза IgD.

Созревание В клеток в полостях губчатой кости происходит по мере их перемещения в радиальном направлении к центру(от эндоса к центральному венозному синусу). Многие пре В-клетки погибают во время дифференцировки и поглощаются костномозговыми макрофагами. Дальнейшее созревание происходит в строме венозного синуса, В клетки очень зависят от стромы и наличие цитокинов (интерликин 7). При этом идет взаимодействие В клеток со стромой и перестройка генов иммуноглобулинов. После этого идет клональная селекция лимфоцитов. В этом этапе идет удаление аутореактивных клеток.

Селекция В лимфоцитов

  • + селекция происходит при взаимодействии В - клеток и клеток стромы - остаются В-клетки с продуктивной перестройкой генов иммуноглобулинов (Ig), остальные - уничтожаются апоптозом.
  • - селекция - уничтожение аутореактивных В-лимфоцитов может происходить и в костном мозге, и в селезенке - в органе, в который мигрирует большинство новообразованных В - клеток в период внутриутробного развития.
  • 5 источников разнообразия V-областей Н- и L -цепей молекул Ig
  • 1. Многочисленность гаметных генов. Имеется большое число отдельных гаметных неперестроенных генов (V1- Vn), каждый из которых кодирует V -домен отдельной специфичности.
  • 2. Соматический мутагенез. В онтогенезе В - клеток в результате мутаций гаметного V - гена в разных В - клеточных клонах возникают различные V - гены.
  • 3. Соматическая рекомбинация. В онтогенезе В-клеток происходит рекомбинация ряда генных сегментов (J1 - Jn), соединяющихся с основной частью V - гена. В результате синтезируется белок, отдельные элементы которого кодируются разными генными сегментами.
  • 4. Генная конверсия. Отрезки ДНК, принадлежащие ряду псевдо - V - генов, могут копироваться в функциональном V - гене, меняя его исходную нуклеотидную последовательность.
  • 5. Вставка добавочных нуклеотидов. При рекомбинации перед присоединением вырезанных V и J -сегментов ДНК возможно встраивание между ними добавочных нуклеотидов, кодирующих дополнительные аминокислотные остатки V-областей.

Реаранжировка генов, кодирующих легкие цепи молекулы Ig.

После завершения перестройки (реаранжировки) генов, кодирующих тяжелые цепи молекулы Ig, начинается перестройка генов легких цепей. Всего существует 2 типа легких цепей - либо каппа, либо лямбда. После этого на поверхности незрелого В лимфоцита появляется В - клеточный рецептор, состоящий из двух тяжелых цепей(H) и двух легких (L).

В-клетки клетки поступают из костного мозга во вторичные лимфоидные органы в первичные фолликулы селезенки. В селезенке происходит ряд этапов функционального «дозревания» В лимфоцитов, включая экспрессию МНС II класса на их поверхностной мембране. Далее В лимфоциты мигрируют в лимфатические узлы - для встречи с комплементарным их рецептору антигеном. До встречи с антигеном В лимфоцит называется «наивным». Далее идет антиген-презентирование, пролиферация и дифференцировка в плазматические клетки и В-клетки памяти. Специфичность рецептора сохраняется в процессе пролиферации и дифференцировки. После того, как В лимфоцит встретится со «своим» антигеном в лимфоузле, он превратится в плазматическую клетку, синтезирующую антитела. Плазматическая клетка -конечный этап дифференцировки В -лимфоцита.

Р13-киназа

В-клеточная активация

Рис. 3-20. В-клеточный рецепторный комплекс.

В эмбриогенезе человека первые В-лимфоциты появляются в печени и затем в костном мозге. После рождения В-клеточный иммунопоэз проис­ходит в основном в костном мозге, где В2-лимфоциты проходят несколько последовательных стадий: лимфоидная клетка-предшественник -> ранняя про-В-клетка -> поздняя про-В-клетка большая пре-В-клетка -> малая

пре-В-клетка -» незрелая В-клетка зрелая В-клетка.

Подсчитано, что в итоге 1012 В-лимфоцитов и происходящих из них плазматических клеток у человека синтезируют около 102() молекул имму­ноглобулинов (антител) в свободной и мембанной форме и большинство из них находится в сыворотке.

В становлении В-клеток в костном мозге главную роль играет форми­рование полноценного ВСК. В процессе развития, дифференцировки и функционирования судьба В-клетки определяется количеством и каче­ством сигналов, получаемых через ВСК. Так же, как в тимусе, в отношении Т-лимфоцитов в костном мозге после стадии общего лимфоидного пред­шественника запускается процесс перегруппировки генов иммуноглобу­линов.

Стадии

дифферен

"-"-"-^^ЦИрОВКИ

П роцессы

Стволовая Про-В-клетка Пре-В-клетка Незре­лая 13- клетка Зрелая Активирован­ная В-клетка В-клетка Плазма­

тическая

ранняя ПОЗДНЯЯ большая малая
Перестройка генов тяжелых цепей
Перестройка генов легких цепей Ч-Л V^
ПАСИ.2/ТйТ
Суррогатная легкая цепь
Иммуноглобулин ц-цепь 1дМ |дм |дм, |дм 1д6/1дА/1дЕ Секреторные
■да, |дР
СО 34
с-кИ
С043
С045П
В 220
МНС класс II |.| 1
С019
С020 * ■" 7- ’ г)
СР40 ................... -Ь™; . л_________________________

Легкие и тяжелые цепи иммуноглобулинов кодируются генами, рас­положенными па разных хромосомах (см. рис. 3-23). Гены, кодирующие тяжелую цепь, находятся на хромосоме 14 и включают большую группу У-генов (с V-, В- и ]-сегментами) и С-гены (кодируют константые домены молекулы иммуноглобулина). Гены, кодирующие легкую цепь к, картиро­ваны на хромосоме 2, гены легкой цепи X картированы на хромосоме 22. Перестройка генов иммуноглобулинов происходит аналогично перестройке генов ТСК (рис. 3-22).

В стадии ранней про-В-клетки экспрессируются гены, активирующие рекомбинацию (КАС1 и КАС2), и происходит перегруппировка генов тяже­лых цепей ВСК. Эта стадия характеризуется синтезом ц-цепей и их перво­начальным появлением в цитоплазме клетки (цитоплазматическая ц-цепь), а затем на ее мембране (мембранная |х-цепь) в форме пре-В-клеточного рецептора, состоящего из полноценной р-цепи и суррогатной легкой цепи, лишенной У-региона. Суррогатная цепь состоит из двух полипепитдов, обо­значаемых как А5 (С0179Ь) и У-пре-В (С0179а). Подобного рода пре-ТСК формируется при развитии Т-лимфоцитов.

У человека выявлена мутация гена СБ179Ь, приводящая к нарушению развития В-клеток и развитию синдрома агаммаглобулинемии. При отсут­ствии Х5-цепи нарушается дифференцировка про-В-клеток до стадии пре- В-лимфоцитов. По мере созревания В-клеток экспрессия генов СБ179а и СВ179Ь заканчивается.


(У)п 3 С


Рис. 3-22. Схема перегруппировки генов тяжелой и легких цепей В-клеточного рецептора [СМаре! Н„ 2006].

Важную роль в развитии и функционировании ВСК играют субъединицы 1§а (СБ79а) и 1§(3 (С079Ь). Обе субъединицы появляются на поверхности клетки до экспрессии тяжелой р-цепи.

1§а и 1§р, помимо внеклеточного и трансмембранного домена, имеют цитоплазматический домен с консерва­тивным мотивом 1ТАМ. Эти субъединицы связаны между собой дисуль- фидной связью (между цистеинами, расположенными во внеклеточных доменах) в гетеродимеры. Два таких гетеродимера осуществляют транс- дукцию сигнала.

Известны иммунодефициты, в патогенезе которых важную роль играет дефект генов, кодирующих данные субъединицы. Нулевая мутация 1§а приводит к полной блокаде дифференцировки В-лимфоцитов со стадии про-В-клеток до стадии пре-В-лимфоцитов. Важно, что последователь­ность экспрессии и сборки ВСК определяет различные стадии развития В-клеток. В отсутствие экспрессии пре-ВСК невозможен переход про-В- клеток в пре-В-клетки. Такие клетки подвергаются апоптозу. Появление пре-В-рецептора на мембране клетки сопровождается инактивацией генов ВАС и интенсивной клеточной пролиферацией.

При переходе про-В-клеток в пре-В-клетки 1§а-1§р-гетеродимер уча­ствует в запуске аллельного исключения, клонального расширения и пере­группировки генов легкой цепи. В стадии пре-В-клетки вновь экспресси­руются гены КАС1 и КАС2Ч что необходимо для перестройки генов легкой цепи и окончательного формирования ВСК.

После перестройки генов легкой цепи на В-клетке экспрессируется полноценный ВСК, содержащий легкую (к- или Х-) цепь, р-цепь и 1§а-1^р- гетеродимер. Эту стадию развития называют незрелым Б-лимфоцитом. 1§М+ В-клетки наиболее чувствительны к развитию толерантности.

В последней стадии развития В-лимфоцита появляется дополнительная экспрессия 1§Б. Перед экспрессией 1§Ю происходит выбраковка ауто­агрессивных клонов В-лимфоцитов, взаимодействующих с высоким аффиннитетом с аутоантигенами. Этот механизм называется делецией аутоагрессивных клонов. Зрелые В-лимфоциты с полноценным анти- генраспознающим ВСК покидают костный мозг и мигрируют в перифери­ческие органы иммунной системы, где распознают родственный антиген и вступают в стадию В-клеточного иммуногенеза, заканчивающегося син­тезом антител. Как таковые В-лимфоциты (подавляющее большинство) не вырабатывают антител, но они служат предшественниками плазматических клеток, выполняющих эту функцию.

Кроме ВСК, в процессе дифференцировки В-клетки экспрессируются другие молекулы, необходимые для полноценного распознавания антигена и взаимодействия с другими клетками (см. рис. 3-22).

Зрелые В-лимфоциты мигрируют в периферические лимфоидные органы (лимфатические узлы, селезенку), где формируют первичные фолликулы. В этих структурах В-лимфоциты взаимодействуют с ФДК, представляющими длительное время на своей поверхности через Рс-рецепторы комплексы «антиген-антитело», обычно содержащие также компоненты комплемента. В-лимфоциты непосредственно контактируют с ФДК и распознают анти­ген через специфический ВСК. ВСК с антигенной молекулой перемещается внутрь В-лимфоцита, подвергается процессингу, и антигенная детерминан­та, встроенная в молекулу НЬА класса II, транспортируется на клеточную мембрану. Для дальнейшей дифференцировки В-клеток необходимо взаи­модействие с Т-хелперами.

В пролиферирующих центробластах происходит дополнительный про­цесс формирования разнообразия антител в результате соматической гипермутации в уже перестроенных У-генах иммуноглобулинов. Суть соматической гипермутации заключается в возникновении точечных мута­ций в У-областях генов иммуноглобулинов. В гипермутации участвует фермент - индуцированная активацией цитидиндезаминаза, (АГО; англ. Ас1:1уа&оп-1пс1исес1 суШте Веат1пазё) - заменяющая основание цитидин на урацил в молекуле ДНК. Этот фермент экспрессируется при взаимодей­ствии СЮ40 и СЭ40Ь. При дефиците АГО нарушено переключение класса иммуноглобулинов с развитием тяжелого иммунодефицита (см. табл. 3-3, раздел 11.2). Затем центробласты мигрируют в светлую зону гермина­тивного центра, где они взаимодействуют с ФДК. Лучше выживают те В-лимфоциты, чей ВСК связывается с презентируемым ФДК антигеном с большей аффинностью. Таким образом происходит антигензависимая позитивная селекция В-лимфоцитов.

Взаимодействие В-клеток с Т-хелперами индуцирует Т-зависимое пере­ключение изотипа иммуноглобулинов (рис. 3-23). Переключение изотипов антител в наивных 1§М+1§Э~ В-клетках происходит за счет рекомбинации,

Герминативный центр

при которой УЩ-гены соединяются с другим Сн-геном. Затем проис­ходит делеция ДНК между точками рекомбинации внутри повторяющихся последовательностей, известных как $мИск (5)-регионы и вырезаемых как циркулярные ДНК. В результате этих перестроек происходит переключение выработки с 1§М-антител на 1§С-, 1§Е- или 1§А-антитела той же специфич­ности.

При мутации гена, кодирующего лиганд СБ40, переключения изотипов иммуноглобулинов в В-лимфоцитах не происходит и развивается иммуно­дефицит с повышением уровня 1§М (гипер-1§М-синдром) и отсутствием других классов иммуноглобулинов. Такие больные чувствительны к пио- генным инфекциям и требуют введения иммуноглобулинов других классов (см. раздел 11.2). Цитокины участвуют во всех этапах дифференцировки В-лимфоцитов, в том числе в переключении изотипов иммуноглобулинов (рис. 3-24).

Конечная стадия дифференцировки В-лимфоцита - плазматическая клетка. На мембране плазматической клетки не экспрессируются иммуно­глобулиновые рецепторы, НЬА класса II и другие молекулы, характерные для В-лимфоцитов. Плазмоциты активно синтезируют и секретируют

Плазматические клетки

. 1д02а
ИФН-у
1дА
Процессы дифференцировки, происходящие в тимусе, изучены достаточно подробно и представляют следующую последовательность событий:

Тимоциты дифференцируются из общей клетки-предшественника, которая ещё вне тимуса экспрессирует такие мембранные маркёры как CD7, CD2, CD34 и цитоплазматическую форму CD3.
Коммитированная к дифференцировке в Т-лимфоцит клетка-предшественник мигрирует из костного мозга в субкапсулярную зону коры тимуса, где примерно в течение 1 нед происходит медленная пролиферация клеток. На тимоцитах появляются новые мембранные молекулы CD44 и CD25.
Затем клетки перемещаются несколько вглубь коры тимуса, молекулы CD44 и CD25 исчезают с их мембраны. В этой стадии начинается перестройка В-, y- b-цепей TCR. Если гены y- и b-цепей успевают продуктивно (т.е. без сдвига рамки считывания) перестроиться раньше, чем гены B-цепи, то лимфоцит дифференцируется далее как Туb. В противном случае происходит экспрессия B-цепи на мембране в комплексе с рТа (инвариантной суррогатной цепью, заменяющей на этом этапе настоящую а-цепь) и CD3.
Это служит сигналом к прекращению перестройки генов у- и 8-цепей. Клетки начинают пролиферировать и экспрессировать одновременно CD4 и CD8 (дважды позитивные тимоциты). При этом накапливается масса клеток с уже готовой B-цепью, но с ещё не перестроенными генами а-цепи, что вносит свой вклад в разнообразие а-B-гетеродимеров.
На следующем этапе клетки перестают делиться и начинают перестраивать Va-гены, причём несколько раз в течение 3-4 сут. Перестройка генов a-цепи приводит к необратимой делеции b-локуса, расположенного между сегментами генов а-цепи.
Происходит экспрессия TCR с каждым новым вариантом а-цепи, и отбор (селекция) тимоцитов по силе связывания с комплексом «пептид-МНС» на мембранах эпителиальных клеток тимуса.
♦ Позитивная селекция: погибают тимоциты, не связавшие ни одного из доступных комплексов «пептид-МНС». В результате позитивной селекции в тимусе погибает около 90% тимоцитов.
♦ Негативная селекция уничтожает клоны тимоцитов, связывающих комплексы «пептид-МНС» со слишком высокой аффинностью.
Негативная селекция элиминирует от 10 до 70% клеток, прошедших позитивную селекцию.
♦ Тимоциты, связавшие какой-либо из комплексов «пептид-МНС» с правильной (т.е. средней по силе) аффинностью, получают сигнал на выживание и продолжают дифференцировку.
На короткое время с мембраны тимоцитов исчезают обе корецепторные молекулы, а затем экспрессируется одна из них. тимоциты, распознавшие пептид в комплексе с MHC-I, экспрессируют корецептор CD8, а с MHC-II - корецептор CD4. Соответственно, на периферию выходят (в соотношении около 2:1) Т-лимфоциты двух типов: CD8+ (или Т8) и CD4+ (или Т4), функции которых в предстоящих иммунных ответах различны.
♦ CD8+ Т-лимфоциты выполняют функции цитотоксических Т-лимфоцитов (ЦТЛ), или «перфорин-гранзимовых киллеров». Своим «клеточным телом» они непосредственно убивают клетки, на мембране которых они распознали Аг.- CD4+ Т-лимфоциты. Функциональная специализация иммунных CD4+ Т-лимфоцитов более разнообразна. Из них могут развиться перфорин-гранзимовые цитотоксические Т-лимфоциты - CD4+ ЦТЛ (в частности, такие Т-лимфоциты обнаружены в значительных количествах в коже больных с синдромом Лайелла).
По-видимому, существенная часть CD4+ Т-лимфоцитов в процессе развития иммунного ответа становится Т-хелперами - «профессиональными» продуцентами цитокинов, «нанимающими» для разрушения повреждённых патогеном тканей другие клетки-исполнители, - Иммунное отклонение. Изменение терминальной дифференцировки иммунных CD4+ Т-лимфоцитов в сторону преобладания той или иной субпопуляции в процессе развития иммунного ответа называют иммунным отклонением.

Субпопуляции Т-хелперов
С конца 80-х годов XX века было принято выделять две субпопуляции Т-хелперов (в зависимости от того, какой набор цитокинов они продуцируют) - Thl и Th2. В несколько преобразованном варианте эта концепция (несмотря на значительную её условность) «прижилась» среди иммунологов и врачей, и её продолжают использовать, выделяя следующие виды Т4-лимфоцитов:

ThO - Т4-лимфоциты на ранних стадиях развития иммунногоответа, они продуцируют только ИЛ-2 (митоген для всех лимфоцитов);
Thl - дифференцированная субпопуляция иммунных Т4-лимфоци тов, специализирующаяся на продукции ИФНу (менеджер осуществляемого активированными макрофагами иммунного воспаления в виде гиперчувствительности замедленного типа - ГЗТ);
Th2 - дифференцированная субпопуляция иммунных Т4-лимфоцитов, специализирующаяся на продукции ИЛ-4 и его "дублёра" ИЛ-13 (менеджер иммунного ответа с преобладанием продукци IgE и зависящих от него вариантов иммунного воспаления);
Th3 - иммунные Т4-лимфоциты на более поздних стадиях развития иммунного ответа, переключившиеся на продукцию трансформирующего фактора роста (ТФРр) - ингибитора пролиферации лимфоцитов;
Т.
- Т4-регуляторы, продуценты иммуносупрессорных цитокинов - ИЛ-10 (ингибитора активности макрофагов и Thl) и ТФРВ. Возможно также, что на мембране Тг экспрессированы индукторы апоптоза активированных и отработавших лимфоцитов - FasL (Fas-лиганд) и др.

В последующем стало известно, что каждый зрелый иммунный Т4-лимфоцит в каждый момент времени продуцирует только один цитокин (лишь в редких случаях, возможно, два), поэтому в настоящее время большинство авторов предлагают говорить не о разных субпопуляциях иммунных Т4-лимфоцитов, а о разных типах иммунного ответа.

Типы иммунного ответа. Иммунный ответ типа I
Свойства. Доминируют ИФНу и активированные макрофаги. Со стороны Т-лимфоцитов такому ответу способствуют не только CD4+ Thl, но и другие продуценты ИФНу - СD8+-лимфоциты и NK.
Биологические эффекты ИФНу, направлены на уничтожение клеток, инфицированных изнутри: - прямой противовирусный эффект на уровне ферментов нуклеиновых кислот (2"-5"-олигоаденилатсинтетаза и др.); о сильная стимуляция макрофагов, соответственно повышенный синтез токсичных продуктов макрофагов; - стимуляция NK. - ИФНу поддерживает переключение синтеза иммуноглобулинов в В-лимфоцитах на IgG, что активирует фагоциты (нейтрофилы и макрофаги), т.е. Т-лимфоциты - продуценты ИФН - обеспечивают макрофагальный ицитотоксический характер иммунного воспаления повреждённых патогеном тканей.
Патогистология. Иммунное воспаление типа I - это очаги ГЗТ, гранулемы и им подобные изменения в тканях.

Иммунный ответ типа II
Характеристика. Иммунный ответ типа II - ответ, управляемый другими цитокинами (например ИЛ-4). Продуценты ИЛ-4: CD4+ Th2, «нулевые» (CD4-/CD8-) Т-лимфоциты, тучные клетки.
♦ ТИ2-лимфоциты поддерживают переключение синтеза изотипов иммуноглобулинов в В-лимфоцитах на IgE, IgG4 и IgA. Клетки-партнёры для этих изотипов - тучные клетки, базофилы и эозинофилы. При их активации развиваются воспалительные процессы с выраженным вазоактивным компонентом и экссудацией или характерное эозинофильное воспаление.
♦ За исключением патологических случаев IgE-зависимых аллергических реакций, иммунный ответ типа II принято рассматривать как противовоспалительный.

Примеры иммунного воспаления. Патологические процессы с превалированием иммунного воспаления типа I (Thl) или II (Th2) перечислены ниже.
♦ Thl (I) (макрофагальное воспаление - ГЗТ, гранулемы): тиреоидит Хасимото; офтальмопатия; сахарный диабет типа I; рассеянный склероз; ревматоидный артрит; гастрит (Helicobacter pylori)-, боррелиоз Лайма; хронический гепатит С; острое отторжение аллотрансплантата; острая болезнь «трансплантат против хозяина»; саркоидоз; апластическая анемия; привычные аборты.
Th2 (II) (ТЬ2-зависящее воспаление - экссудативное, эозинофильное и др.): корь, синдром Оменна, атопические заболевания; хроническая болезнь «трансплантат против хозяина»; аллергический кератоконъюнктивит.

Лимфоциты Туб и тимуснезависимые антигены
99% Т-лимфоцитов, проходящих лимфопоэз в тимусе, - это Та(3; менее 1% - Туб. Последние в большинстве своём дифференцируются экстратимически, в первую очередь в слизистых оболочках ЖКТ. Среди всех Т-лимфоцитов организма их доля оценивается от 10 до 50%. В эмбриогенезе Туб появляются раньше, чем Тар.

Ту8 не экспрессируют CD4. Молекула CD8 экспрессирована на части Туб, но не в виде ap-гетеродимера, как на CD8+ Тар, а в виде гомодимера из двух а-цепей. Функции Туб: продуценты цитокинов и/или цитотоксические Т-лимфоциты.
Антигенраспознающие свойства: TCRyб в большей степени напоминают Ig, чем TCRap , т.е. способны связывать нативные Аг независимо от классических молекул МНС - для Туб не обязателен или вовсе не нужен предварительный процессинг Аг в АПК.
Разнообразие TCRyб больше, чем TCRap и Ig, т.е. в целом Туб способны распознавать широкий спектр Аг (в основном это фосфолипидные Аг микобактерий, углеводы, белки теплового шока).
Тимуснезависимые Аг. Вещества подобной химической природы не могут быть процессированы до комплексов с молекулами MHC-I/II из-за своих химических свойств и, следовательно, не могут быть представлены для распознавания и распознаны Tap-лимфоцитами. Такие вещества называют тимуснезависимыми Аг и делят на два класса.
♦ Тимуснезависимые Аг 1-го класса (ТН-1) индуцируют поликлональную активацию В-лимфоцитов и продукцию поликлонапъных иммуноглобулинов. Эти вещества ещё называют В-клеточными митогенами. Участие Т-лимфоцитов при этом вообще не требуется.

Иммунный ответ В-лимфоцитов без участия Т-лимфоцитов характеризуется рядом свойств: AT только класса М (нет переключения классов), нет иммунологической памяти, нет «созревания» аффинности. Но у подобного ответа есть и преимущество: он развивается уже в первые 2 суток после проникновения Аг и начинает защищать организм в ранние сроки инфекции, пока тимусзависимого ответа ещё нет.
♦ Тимуснезависимые Аг 2-го класса (ТН-2): полисахариды бактериальных стенок, содержащие много повторяющихся структур. ТН-2 (в отличие от ТН-1) способны активировать только зрелые В-лимфоциты. В незрелых В-лимфоцитах повторяющиеся антигенные эпитопы индуцируют анергию или апоптоз. Именно по ТН-2 «специализируются» преимущественно В,-лимфоциты (CD5+).

Вероятно, именно в случае Аг ТН-2 имеет место взаимодействие В-лимфоцитов с Туб-лимфоцитами или/и Т-лимфоцитами ТСRaР/СD4VCD8 (дважды негативными). Обе эти разновидности Т-лимфоцитов связывают (распознают) полисахаридные Аг в комплексе с MHC-I-подобной молекулой CD1.

Предшественники Т-лимфоцитов (пТ), образовавшиеся в костном мозге, мигрируют в тимус и заселяют его корковую зону .

Важную роль в этом процессе играют хемокины, выделяемые эпителиальными клетками тимуса и привлекающие пТ в этот орган. Для проникновения в тимус пТ должны преодолеть гемато-тимический барьер. Преодоление этого барьера основано на взаимном распознавании мембранных молекул пТ (протеогликан CD44, остатки гиалуроновой кислоты, β-интегрин и др.), молекул межклеточного матрикса, таких как фибронектин, и мембранных молекул барьерных клеток.

В субкапсулярной зоне коры тимуса из пТ образуются незрелые Т-лимфоциты , они проходят через несколько стадий дифференцировки прежде чем приобретут иммунокомпетентность и покинут тимус.

В коре тимуса интенсивно идет процесс размножения лимфоцитов. В среднем у человека за сутки образуется около 5х10 8 тимоцитов, тогда как покидают тимус за это же время лишь примерно 8х10 6 клеток. Таким образом, из тимуса выходит лишь около 3% вновь образованных клеток. Биологический смысл этого явления стал понятен сравнительно недавно. Он обусловлен селекцией клонов Т-лимфоцитов, способных взаимодействовать с собственными антигенами гистосовместимости.

Этапы внутритимусной дифференцировки от пТ до более зрелых Т-лимфоцитов, покидающих тимус, характеризуются изменением экспрессии фенотипических Т-клеточных маркеров. Основными из них являются поверхностные CD-антигены (дифференцировочные антигены).

Разные CD-антигены характерны как для определенных стадий дифференцировки, так и для функционально различных субпопуляций лимфоцитов.

CD-антигены представляют собой молекулы сложных белков, гликопротеидов, встроенные в плазматическую мембрану лимфоцитов. Так, для Т-хелперов фенотипическим маркером является белок CD4, для цитотоксических Т-лимфоцитов – CD8. Оба этих белка выполняют функцию корецепторов и участвуют в процессе распознавания антигенов.

Белок CD2 , который появляется на самых ранних этапах образования кортикальных тимоцитов, является общим маркером Т-лимфоцитов и выполняет функцию рецептора для эритроцитов барана. На выявлении этого рецептора основан ранее широко применявшийся тест спонтанного розеткообразования с эритроцитами барана, позволяющий определить количество Т-лимфоцитов (Е-РОК).

Другим общим Т-лимфоцитарным маркером является белок CD3 , он играет важную роль в передаче сигнала в цитоплазму Т-лимфоцитов при контакте антигенраспознающих рецепторов Т-лимфоцитов с антигенными детерминантами.

В процессе дифференцировки Т-лимфоцитов параллельно с появлением новых CD-антигенов может происходить утрата некоторых старых. Таким образом, CD-антигены могут служить примером стадиоспецифических антигенов. Поэтому по CD-маркерам можно определять как количество Т-лимфоцитов и их субпопуляций, так и степень зрелости этих клеток.

Другим важным маркером дифференцировки Т-лимфоцитов является антигенраспознающий рецептор (ТКР) , также формирующийся на ранних стадиях дифференцировки тимоцитов в корковой зоне тимуса.

Фенотипические изменения поверхностных маркеров Т-лимфоцитов в процессе дифференцировки отражают индуцированные целым комплексом стимулов дифференцировочные изменения в клетках: перестройку и активацию определенных генов, синтетические процессы в клетках, приобретение ими определенных функциональных свойств.

К стимулам, под влиянием которых индуцируется дифференцировка Т-лимфоцитов, относятся, прежде всего, межклеточные взаимодействия тимоцитов с эпителиальными клетками тимуса, макрофагами и дендритными клетками с участием формирующихся ТКР и корецепторов, а также молекул адгезии.

Очень важную роль в этом процессе играют и гуморальные воздействия : гормоны тимуса и целый комплекс цитокинов, таких как ИЛ-7, ИЛ-3, ИЛ-1 и другие.

Предшественники Т-лимфоцитов, мигрировавшие в тимус из костного мозга, представляют собой лимфобласты, имеющие определенный набор поверхностных молекул, в частности, CD44, но лишенные маркеров дифференцировки – СD2, СД3, CD4 и СD8. Они заселяют верхнюю часть коры тимуса – субкапсулярную зону.

Взаимодействие пТ с эпителиальными клетками стромы субкапсулярной зоны приводит к экспрессии первого специфического маркера Т-клеток – белка CD2 . Тимоциты, имеющие этот маркер (CD2 +), находясь в тесном контакте с эпителиальными клетками-няньками (nurse cells), активно размножаются и начинают экспрессировать также белки CD3, CD4, CD8 и β-цепь ТКР. Их фенотип записывается следующим образом: CD2 + 3 + 4 ± 8 ± βТКР ± . Эти клетки перемещаются в более глубокие слои коры тимуса. Важную роль на этой стадии дифференцировки играют гормоны тимуса, в первую очередь тимопоэтин, а также цитокины ИЛ-3 и ИЛ-7.

В корковой зоне в результате перестройки и активации генов, кодирующих ТКР, начинается экспрессия обеих цепей ТКР. Параллельно налаживается полноценная экспрессия CD4 и CD8.

В коре тимоциты находятся в непосредственном контакте с кортикальными эпителиальными клетками, которые обладают разветвленными цитоплазматическими выростами, окружающими тимоциты. На эпителиальных клетках хорошо экспрессированы молекулы МНС I и II класса.

Эти межклеточные контакты индуцируют основные селекционные процессы, происходящие в коре тимуса . Полноценная экспрессия ТКР на поверхности кортикальных тимоцитов приводит к образованию огромного количества самых разнообразных по специфичности клонов CD4 + 8 + ТКР + Т-лимфоцитов.

Те клоны, рецепторы которых не комплементарны собственным белкам МНС (а их большинство), погибают в результате апоптоза (запрограммированная гибель клеток). Выживают только клоны, рецепторы которых комплементарны собственным белкам МНС . Эти Т-лимфоциты получают необходимые дифференцировочные сигналы, тем самым они избегают апоптоза и подвергаются дальнейшей дифференцировке. Таким образом происходит отбор клонов Т-лимфоцитов, способных работать в собственном организме (МНС-рестрикция).

Этот процесс называется положительной селекцией . После завершения положительной селекции выживает менее 5% кортикальных тимоцитов, они перемещаются в мезенхиму тимуса через кортико-медуллярную зону.

Каждая из этих клеток способна реагировать либо с белками МНС I класса, либо с белками МНС II класса. В процессе положительной селекции тимоциты, специфичные к белкам МНC I класса, сохраняют корецептор CD8 и перестают экспрессировать CD4. Эти клетки приобретают, таким образом, фенотип цитотоксических Т-лимфоцитов: CD2 + 3 + 8 + (CD8 +).

Тимоциты, специфичные к белкам МНС II класса, сохраняют корецептор CD4 и утрачивают CD8. Они приобретают фенотип Т-хелперов: CD2 + 3 + 4 + (CD4 +) . Так происходит формирование двух основных функционально различных субпопуляций Т-лимфоцитов.

В кортико-медуллярной зоне и в мезенхиме тимуса сохранившиеся в результате положительной селекции клоны Т-лимфоцитов под влиянием ряда цитокинов и тимических гормонов (в первую очередь тимозина), а также межклеточных взаимодействий проходят дальнейшие этапы созревания и подвергаются так называемой отрицательной селекции .

В норме иммунная система организма толерантна (терпима) к собственным антигенам (аутоантигенам). По современным представлениям толерантность к собственным антигенам как раз и является в значительной степени следствием процесса отрицательной селекции в тимусе.

На основании экспериментальных данных большинство исследователей пришли к выводу, что в кортико-медуллярной зоне и в мезенхиме тимуса образовавшиеся CD4 + и CD8 + Т-лимфоциты, еще недостаточно зрелые, вступают в контакт с макрофагами и дендритными клетками, которые «представляют» на своей поверхности собственные антигены организма (после фагоцитоза и пиноцитоза продуктов распада собственных клеток тимуса и попавших в тимус с кровотоком небольших аутологичных белковых молекул) в иммуногенной форме, то есть в комплексе с белками МНС I и II классов. Однако при взаимодействии Т-лимфоцитов с помощью ТКР с этими антигенами Т-клетки получают только один, специфический сигнал, в то время как для того, чтобы избежать апоптоза, они должны получить еще второй, костимулирующий сигнал. Кроме того, необходима экспрессия на поверхности тимоцитов белков Bcl-2 или Bcl-XL, которые являются продуктами соответствующих онкогенов и защищают клетки от апоптоза. Так как экспрессия этих белков и костимулирующих молекул на незрелых тимоцитах отсутствует или крайне незначительна, то имеющие высокоаффинные ксобственным антигенам ТКР клоны Т-лимфоцитов при контакте с этими антигенами, представленными в комплексе с белками МНС на поверхности АПК, подвергаются апоптозу и погибают.

Таким образом, Т-лимфоциты подвергаются апоптозу на всех этапах созревания в тимусе в результате отсутствия необходимых сигналов в виде межклеточных контактов (посредством взаимодействия с костимулирующими молекулами) или гуморальных ростовых факторов.

На этапах клональной селекции апоптоз играет важнейшую роль в устранении ненужных, не поддержанных положительной селекцией (МНС рестрикция) и аутореактивных (отрицательная селекция) клонов. В результате погибает значительное количество клонов Т-лимфоцитов, имеющих ТКР-рецепторы, высокоаффинные к собственным антигенам. Сохраняются и выходят в кровоток те клоны, ТКР-рецепторы которых обладают низкой аффинностью к собственным антигенам. В настоящее время мнение, что клональная делеция (отрицательная селекция) является ведущим механизмом формирования центральной естественной иммунологической толерантности, является общепринятым.

В конце 1990-х - начале 2000-х годов была открыта новая субпопуляция CD4 + Т-лимфоцитов, которые дифференцируются в тимусе в процессе отрицательной селекции в качестве альтернативы клональной делеции аутореактивных CD4 + Т-лимфоцитов с достаточно высокой степенью аффинности ТКР к собственным антигенам. У этих клеток при контакте с антигенами, представленными на поверхности АПК, повышается уровень фактора транскрипции FoxP3 (который регулирует транскрипцию генов, ответственных за дифференцировку Т-лимфоцитов и синтез ими цитокинов), возрастает экспрессия белка CD25 (рецептора к ИЛ-2), и они дифференцируются в регуляторные Т-лимфоциты (Трег. лимфоциты) с фенотипом CD4 + 25 + FoxP3 + . Эти клетки обладают супрессорной активностью по отношению к зрелым эффекторным Т-лимфоцитам той же специфичности, работающим на периферии (Тх1, CD8 + цитотоксическим Т-лимфоцитам).

Большинство Трег. лимфоцитов являются аутореактивными клетками, они подавляют аутоиммунные процессы, в которых участвуют эффекторные Т-лимфоциты, имеющие ТКР той же специфичности. Благодаря этому Трег. лимфоциты играют важную роль в механизмах периферической толерантности . Это доказывают результаты экспериментальных исследований на животных, которые продемонстрировали, что Т-лимфоциты с фенотипом CD4 + 25 + FoxP3 + подавляют развитие аутоиммунных заболеваний, таких как экспериментальный аллергический энцефаломиелит, экспериментальный аутоиммунный колит, эксперментальный аутоиммунный диабет.

Необходимо заметить, однако, что, по-видимому, не все аутоантигены организма попадают в тимус и участвуют в процессе отрицательной селекции. Так, в частности, не попадают в тимус многие органоспецифические антигены. Поэтому определенное количество аутореактивных клонов избегает гибели в тимусе и поступает на периферию. Работа этих клонов в норме блокируется периферическими механизмами толерантности.

Выжившие после отрицательной селекции клоны CD4+ и CD8+ Т-лимфоцитов покидают тимус и мигрируют в периферические лимфоидные органы, где заселяют тимусзависимые зоны и подвергаются при встрече с соответствующими антигенами антигензависимой дифференцировке.

Выжившие в результате положительной и отрицательной селекции в тимусе CD4+ и CD8+ Т-лимфоциты, а также CD4 + 25 + FoxP3 Трег. лимфоциты, мигрирующие из тимуса, не являются еще функционально зрелыми клетками. Они представляют собой продукт антигеннезависимой дифференцировки в тимусе. Эти клетки, еще не встречавшиеся с антигенами, принято называть «наивными», или «непримированными », лимфоцитами, они являются предшественниками зрелых эффекторных Т-лимфоцитов.

Схема антигеннезависимой дифференцировки Т-лимфоцитов представлена на рис. 28.


После нескольких циклов пролиферации лимфоцитов обычно происходит их дифференцировка. Существует представление, что дифференцировка (по крайней мере в случае лимфоцитов, реагирующих на антигены) осуществляется как этап реализации генетической программы клетки и не нуждается в действии специальных факторов, а лишь провоцируется процессами активации и деления клеток. В результате после периода делений в фазу покоя переходит уже качественно иная клетка.

В целом дифференцировка рассматривается как процесс, альтернативный пролиферации. В его основе лежит стабильная и избирательная активация групп генов (в отличие от временной их экспрессии при активации). При этом, как правило, происходят сужение спектра работающих генов и его ограничение генами «домашнего хозяйства» и генами, детерминирующими выполнение специализированных функций, свойственных клеткам этого типа (например, секреции иммуноглобулинов плазматическими клетками). Детали этого процесса и его метаболические основы изучены недостаточно.

Из известных путей передачи сигналов к процессу дифференцировки имеет отношение цАМФ-зависимый путь. Рецепторы для ряда внешних агентов (например, адренергических) связаны с белком О, но после связывания рецепторов этот белок утрачивает сродство к ним и вступает во взаимосвязь с аденилатциклазой, активируя ее. Аденилат-циклаза катализирует образование из АТФ циклического аденозинмо-.нофосфата (цАМФ), который активирует цАМФ-зависимую протеин-киназу. Последняя находится в антагонистических функциональных отношениях с протеинкиназой С, что в значительной степени объясняет альтернативный характер процессов пролиферации и дифференцировки Клеток. цАМФ-зависимая протеинкиназа фосфорилирует ряд белков, как мембранных (что проявляется в изменении макромолекулярной структуры клеточной мембраны), так и ядерных. Среди последних - транскрипционные факторы, которые осуществляют реорганизацию активности генов. Следует, однако, подчеркнуть, что цАМФ-зависимый;путь приводит скорее к временным и обратимым изменениям фенотипа:И функциональной активности клеток (т.е. к их модификации), чем к Истинной дифференцировке.

В отличие от дифференцировки лимфоцитов при их созревании, результатом которой является формирование клеток, готовых к распознаванию антигена и ответу на него, в результате дифференцировки При иммунном ответе формируются эффекторные клетки и клетки памяти.


По отношению к клеткам иммунной системы все органы делятся на 2 группы:

А. Центральные (первичные) - тимус, красный костный мозг. Первичные, так как здесь происходит первый антиген независимый этап дифференицировки лимфоцитов.

Б. Периферические: лимфоузлы, селезенка, диффузная ткань слизистых оболочек. Здесь происходит вторичный этап - антиген зависимая дифференцировка лимфоцитов.

Кожу относят и к центральным и к периферическим органам.
В центральных органах развитие лимфоцитов не зависит от контакта с антигеном. На этом этапе клетки приобретают специальные рецепторы - маркеры и становятся иммунокомпетентными (способными различать разные классы чужеродных структур). Эта способность заложена в геноме, не требует присутствия антигена. Теоретически формируется способность клеток реагировать в будущем на чужеродные структуры. Один лимфоцит - один антиген.
В периферических органах образуются эффекторные лимфоциты, способные не только различать, но и уничтожать чужеродные структуры (Т-киллеры, плазмоциты, Т и В клетки памяти). Образование этих клеток зависит от потребностей организма.


Загрузка...