docgid.ru

Для получения изображения в компьютерной томографии используется. Кт принцип работы. Компьютерная томография внутренних органов

Правильно поставленный диагноз – наполовину вылеченная болезнь. Лекари древности определяли заболевания необычными методами: по глазам, ногтям, цвету кожи и другим признакам. Да и сегодня опытный врач многое скажет о пациенте, впервые его увидев. Многое, но не все. Возможности современной медицины значительно выросли, появились новые методы диагностики, позволяющие заглянуть внутрь человеческого организма и визуально оценить степень поражения того или иного органа. Компьютерная томография − один из таких методов.

Что это такое?

Как только были открыты рентгеновские лучи, люди научились получать изображения органов человека. Нельзя сказать, что эти снимки идеальны. Рентгенография не позволяет разглядеть небольшие очаги нарушений, так как происходит накладывание тканей одна на другую. Метод линейной томографии, с помощью которого получают изображение определенного слоя органа, также далек от совершенства.

И только с изобретением метода КТ начался прорыв в диагностике. За это открытие ученые Кормак и Хаунсфилд были удостоены Нобелевской премии. В арсенале медицинских работников появилась возможность увидеть множество срезов органа в разных местах. Точность и скорость исследования повысилась благодаря внедрению спиральной технологии. А современная многосрезовая методика позволяет сделать до 64 изображений различных слоев органа (уже есть сведения о появлении 320-срезового томографа).

Как проходит?

Установка КТ довольно массивная. Представляет собой кольцо, которое может вращаться с испусканием рентгеновских лучей. Человека, лежащего на специальном столе, помещают внутрь кольца. Сканер, вращаясь вокруг него, слой за слоем изучает исследуемый орган. При спиральной томографии стол с пациентом также движется. В этом есть что-то из мира космической фантастики, не так ли?

Все изображения можно распечатать. Процедура КТ проходит с контрастированием. Контрастное вещество (йодсодержащее) используется для лучшей визуализации изображения. Дело в том, что рентгеновские лучи определенных характеристик почти не видят мягкие ткани. Контрастное вещество вводят в вену, а в отдельных случаях пациент его просто выпивает.

С помощью метода компьютерной томографии исследуются практически все органы человеческого тела: сердце, сосуды, почки, легкие, головной и спинной мозг, мочевой пузырь, брюшная полость, кости. Что-то забыли упомнить? И это тоже исследуется!

Почему КТ?

  • Компьютерная томография сосудов, используя рентгеновское излучение, позволяет увидеть артерии и вены в любой части человеческого тела.
  • Получают изображение патологического участка сосуда, находящегося в самом неудобном для других методов исследования месте.
  • Возможно предоставление подробного трехмерного изображения всего сосудистого бассейна.
  • Есть возможность увидеть не только сосуды, но и прилегающие ткани, что является существенным плюсом в диагностике.
  • КТ сосудов сердца и других органов безопасна для большинства пациентов.
  • Процедура КТ отличается небольшой инвазивностью.

Кому противопоказана процедура КТ?

  1. Аллергическим больным.
  2. Пациентам с тяжелой почечной недостаточностью.
  3. Людям, у которых есть патология щитовидной железы. Дело в том, что йод, содержащийся в контрастном веществе, усиливает выработку тиреоидных гормонов, а это может привести к осложнениям.
  4. Запрещена КТ беременным женщинам. Во-первых, контрастное вещество может оказать токсическое действие на плод. Во-вторых, влияние рентгеновских лучей также небезопасно для ребенка.

Видео: процесс проведения компьютерной томографии

КТ сосудов

Причина заболевания органов может заключаться в заболевании сосудов. Ведь по ним движется кровь, обеспечивающая кислородом клетки всего организма. Закупорка тромбами, атеросклеротическими бляшками, – все это приводит к нарушению кровотока и, как следствие, повреждению соответствующего органа. С помощью метода компьютерной томографии можно исследовать сосуды любой части тела. К примеру, изучить состояние коронарных вен и артерий можно с помощью КТ коронарных сосудов. А КТ сосудов головы и шеи исследует мозговое кровообращение.

Томография сосудов показана, если у пациента наблюдаются:

  • Признаки хронических и острых нарушений и (в том числе головы): боли, отеки, онемение и другие;
  • Эмболии, ;
  • Ангиопатии разного происхождения;
  • Патологии в развитии сосудов;
  • и другие.

Большинство пациентов могут пройти исследование без вреда для здоровья. Но все-таки некоторым процедура не показана. В основном людям, для которых может стать опасным контрастное вещество (в частности, йод) или рентгеновское излучение.

КТ головного мозга

Если обычная рентгенография предоставляет обзорный снимок мозга, то КТ «фотографирует» мозг послойно. Расстояние между слоями около 1 мм. В результате доктор получает необходимое количество изображений, позволяющих заглянуть в любую точку органа. С помощью КТ головного мозга можно рассмотреть его структуру, увидеть , оценить состояние венозных и артериальных сосудов.

Чтобы изображение слоев мозга было более четким, как и в случае с периферическими сосудами, вводится контрастное вещество. Что касается противопоказаний, они такие же, как и при томографии сосудов. Единственное отличие: беременным иногда все-таки проводят исследование, но предварительно область матки прикрывают фартуком из свинца. Детям томографию сосудов головного мозга проводят по очень серьезным показаниям. Если женщина кормит грудью, то перерыв в кормлении должен быть не менее 48 часов. За это время контрастное вещество выведется из организма полностью.

Исследование назначают, если у человека наблюдаются:

  • Обмороки;
  • Потеря памяти;
  • Невнятная речь;
  • Судороги;
  • Ухудшение зрения;
  • Признаки, указывающие на повреждение мозга;
  • Подозрение на опухоли или метастазы;
  • Предоперационное определение локализации и размеров образований;
  • Черепно-мозговые травмы;
  • Инсульт (оба вида – и );
  • Подозрение на ;
  • Менингит;

Подготовка к исследованию также минимальная. Рекомендуется в течение 6 часов перед процедурой не есть. Из напитков разрешается только чистая вода.

Важно! При выполнении компьютерной томографии голова пациента должна находиться в абсолютно неподвижном состоянии. Малейшее движение сильно искажает показания.

Что «расскажет» КТ о мозге?

С помощью компьютерной томографии можно обнаружить:

  1. Кровоизлияния;
  2. Опухоли;
  3. Гематомы любой локализации;
  4. Отек и степень его выраженности;
  5. Смещение структур мозга;
  6. Кисты;
  7. Воспалительные заболевания;
  8. Присутствие гнойных выделений между оболочками.

КТ таза и брюшной полости

Процедура помогает диагностировать причину болевых ощущений в брюшной полости, тазе, определить патологии внутренних органов.

Основные показания:

  • Камни в почках и мочевом пузыре;
  • Панкреатит;
  • Пиелонефрит;
  • Язвенный колит;
  • Тромбозы сосудов брюшной полости ( , ).
  • Цирроз печени;
  • Аппендицит;
  • Абсцессы;
  • Опухоли внутренних органов, ;
  • , стенозы.

КТ брюшной полости нужна для:

  1. Оценки состояния внутренних органов после травмы;
  2. Правильного управления радиотерапией при опухолях и мониторинге состояния после химиотерапии;
  3. Оценки послеоперационных последствий при трансплантации органов и желудочном шунтировании;
  4. Руководства малоинвазивными методами лечения опухолевидных заболеваний.

Подготовка к процедуре

  • Одежда должна быть удобной. В некоторых клиниках предлагают на время обследования халат.
  • Так как металлические предметы способны исказить данные исследования, рекомендуется их устранить. Это могут быть ювелирные украшения, заколки, зубные протезы, слуховой аппарат, очки, пирсинг, бюстгальтер с металлическими косточками. Необходимо сообщить специалисту об имеющемся кардиостимуляторе. При выполнении некоторых условий это может не препятствовать обследованию.
  • Рекомендуется несколько часов не есть перед исследованием.
  • Необходимо предупредить врача об аллергических реакциях и принимаемых лекарственных препаратах.
  • Заболевания почек, диабет, проблемы со щитовидной железой также увеличивают возможность возникновения побочных эффектов.
  • Еще очень важно предупредить доктора о беременности или о подозрении на беременность. Почти для всех видов КТ беременность является абсолютным противопоказанием.

Томография сердца

Сердце сравнивают с мотором. Из-за неустанной работоспособности или в связи с его важностью для организма. Нарушения в работе сердца приводят к перебоям в кровоснабжении всех органов и тканей. Поэтому диагностика заболеваний «мотора» особенно важна.

Что можно определить?

  • Причину ;
  • Состояние сосудистых стенок;
  • Проблемы с клапанами;
  • Опухоли сердца ( и др.);
  • Кальцификацию коронарных артерий;
  • Причины болей;
  • Начало изменений миокарда и коронарных сосудов.

Что особенного в проведении КТ сердца?

Фотографы знают, что получить качественный снимок движущегося объекта практически невозможно. Поэтому всегда просят «замереть». А ведь сердце не остановишь. В связи с этим придумали гениальную методику: камера, которая снимает срезы сердца, перемещается синхронно с движением органа . Важно, чтобы пульс пациента не был ускоренным. Но как бы больной не успокаивал себя, волнение все равно присутствует во время любой процедуры, даже такой безболезненной. Поэтому томография сердца и сосудов предполагает прием бета-адреноблокаторов для снятия . Иногда лекарства вводят непосредственно в сосуд перед процедурой. Чтобы получить максимально правдивые результаты, пациента просят задержать дыхание.

Томография грудной клетки

С помощью КТ грудной клетки определяют на ранних стадиях ряд легочных патологий. Обычно КТ легких проводится после рентгенографического исследования.

Возможности КТ при исследовании легких

  • Выявляются ранняя пневмония, рак, туберкулез, эмфизема, ;
  • Измеряется дыхательный объем;
  • Можно провести анализ плотности легких;
  • Возможна диагностика профессиональных заболеваний, связанных с поступлением в легкие кремния, кварца, асбеста;
  • Выявляются заболевания внутригрудных лимфатических узлов, трахей, бронхов.

При томографии легких также применяются контрастные вещества. Особой подготовки исследование не требует.

Видео: компьютерная томография в сюжете “1 канала”

Так что же − КТ или МРТ?

Многие пациенты теряются: какому методу исследования отдать предпочтение? Сравним две наиболее популярные методики: КТ и .
МРТ и КТ отличаются технологически. Компьютерная томография основана на использовании рентгеновского излучения. Поэтому для нее характерен тот же недостаток, что и для других рентгеновских методик – лучевая нагрузка. Хотя в томографах нового поколения ее удалось максимально снизить, КТ все-таки противопоказана определенной категории пациентов. Да и большой участок (например, весь позвоночник) обследовать невозможно из-за передозировки излучения.

В основе МРТ – магнитные волны. Этот метод более безопасный. Его рекомендуют даже детям и беременным.

«Видят» методы тоже по-разному. МРТ прекрасно справляется с диагностикой патологий головного и спинного мозга, но слабо различает полые органы : мочевой пузырь, легкие, желчный пузырь. С помощью этого метода можно исследовать почки, суставы, селезенку, печень. МРТ неплохо «берет» связки, мышцы, глазное яблоко.

Компьютерная томография применяется для диагностики заболеваний внутренних органов. С ее помощью на 100% можно выявить нарушение мозгового кровообращения, раннюю стадию инсульта. Высокая информативность у исследования поджелудочной железы. Хорошо распознаются опухоли, внутренние кровотечения. Любой рентген прекрасно видит кости. Поэтому метод незаменим при костных травмах.

аппарат для проведения МРТ внешне очень похож на установку для рентгеновской КТ, но имеет более длинный “тоннель” и совершенно другой принцип действия

Процедура МРТ более комфортна для пациентов, при ее проведении даже не нужно раздеваться. Аппараты нового поколения (открытого типа) не вызывают приступы клаустрофобии для отдельных категорий больных.

На результаты исследования МРТ влияет металл, находящийся в любом месте организма: зубные протезы, брекеты, кардиостимулятор, штифты, скобы, электронные приспособления во внутреннем ухе, импланты. Все эти «штучки» могут стать абсолютным противопоказанием для проведения исследования.

Средняя стоимость КТ одного участка в Москве 2 500 – 3 500 рублей, а МРТ – от 4 500 до 5 000 в той же валюте. Цена зависит от оборудования клиники. Более дорогая процедура, скорее всего, проводится на аппарате большей мощности. Пациентам, имеющим полис ОМС, можно пройти эти исследования бесплатно, но очередь такая, что при некоторых заболеваниях ее можно просто не дождаться.

Важно! Какими бы не были отличия КТ от МРТ и цены на процедуры, врач индивидуально для каждого пациента подбирает наиболее подходящий метод исследования.

Видео: сравнение КТ и МРТ

На ваш вопрос ответит один из ведущих .

В данный момент на вопросы отвечает: А. Олеся Валерьевна, к.м.н., преподаватель медицинского вуза

Компьютерная томография

Компьютерный томограф

Компью́терная томогра́фия - метод неразрушающего послойного исследования внутренней структуры объекта, был предложен в 1972 году Годфри Хаунсфилдом и Алланом Кормаком , удостоенными за эту разработку Нобелевской премии . Метод основан на измерении и сложной компьютерной обработке разности ослабления рентгеновского излучения различными по плотности тканями.

Компьютерная томография (КТ) - в широком смысле, синоним термина томография (так как все современные томографические методы реализуются с помощью компьютерной техники); в узком смысле (в котором употребляется значительно чаще), синоним термина рентгеновская компьютерная томография , так как именно этот метод положил начало современной томографии.

Рентгеновская компьютерная томография - томографический метод исследования внутренних органов человека с использованием рентгеновского излучения.

Появление компьютерных томографов

Первые математические алгоритмы для КТ были разработаны в 1917 году австрийским математиком И. Радоном (см. преобразование Радона). Физической основой метода является экспоненциальный закон ослабления излучения , который справедлив для чисто поглощающих сред. В рентгеновском диапазоне излучения экспоненциальный закон выполняется с высокой степенью точности, поэтому разработанные математические алгоритмы были впервые применены именно для рентгеновской компьютерной томографии.

Предпосылки метода в истории медицины

Изображения, полученные методом рентгеновской компьютерной томографии, имеют свои аналоги в истории изучения анатомии . В частности, Николай Иванович Пирогов разработал новый метод изучения взаиморасположения органов оперирующими хирургами, получивший название топографической анатомии . Сутью метода было изучение замороженных трупов, послойно разрезанных в различных анатомических плоскостях («анатомическая томография»). Пироговым был издан атлас под названием «Топографическая анатомия, иллюстрированная разрезами, проведёнными через замороженное тело человека в трёх направлениях». Фактически, изображения в атласе предвосхищали появление подобных изображений, полученных лучевыми томографическими методами исследования. Разумеется, современные способы получения послойных изображений имеют несравнимые преимущества: нетравматичность, позволяющая проводить прижизненную диагностику заболеваний; возможность аппаратной реконструкции однократно полученных «сырых» КТ-данных в различных анатомических плоскостях (проекциях), а также трёхмерной реконструкции; возможность не только оценивать размеры и взаиморасположение органов, но и детально изучать их структурные особенности и даже некоторые физиологические характеристики, основываясь на показателях рентгеновской плотности и их изменении при внутривенном контрастном усилении.

С математической точки зрения построение изображения сводится к решению системы линейных уравнений . Так, например, для получения томограммы размером 200×200 пикселей система включает 40000 уравнений. Для решения подобных систем разработаны специализированные методы, ориентированные на параллельные вычисления .

Поколения компьютерных томографов: от первого до четвёртого

Прогресс КТ томографов напрямую связан с увеличением количества детекторов, то есть с увеличением числа одновременно собираемых проекций.

Аппарат 1-го поколения появился в 1973 г. КТ аппараты первого поколения были пошаговыми. Была одна трубка, направленная на один детектор. Сканирование производилось шаг за шагом, делая по одному обороту на слой. Один слой изображения обрабатывался около 4 минут.

Во 2-м поколении КТ аппаратов использовался веерный тип конструкции. На кольце вращения напротив рентгеновской трубки устанавливалось несколько детекторов. Время обработки изображения составило 20 секунд.

3-е поколение компьютерных томографов ввело понятие спиральной компьютерной томографии. Трубка и детекторы за один шаг стола синхронно осуществляли полное вращение по часовой стрелке, что значительно уменьшило время исследования. Увеличилось и количество детекторов. Время обработки и реконструкций заметно уменьшилось.

4-е поколение имеет 1088 люминесцентных датчиков, расположенных по всему кольцу гентри . Вращается лишь рентгеновская трубка. Благодаря этому методу время вращения сократилось до 0,7 секунд. Но существенного отличия в качестве изображений с КТ аппаратами 3-го поколения не имеет.

Спиральная компьютерная томография

Спиральная КТ используется в клинической практике с 1988 года , когда компания Siemens Medical Solutions представила первый спиральный компьютерный томограф. Спиральное сканирование заключается в одновременном выполнении двух действий: непрерывного вращения источника - рентгеновской трубки , генерирующей излучение, вокруг тела пациента , и непрерывного поступательного движения стола с пациентом вдоль продольной оси сканирования z через апертуру гентри. В этом случае траектория движения рентгеновской трубки, относительно оси z - направления движения стола с телом пациента, примет форму спирали.

В отличие от последовательной КТ скорость движения стола с телом пациента может принимать произвольные значения, определяемые целями исследования. Чем выше скорость движения стола, тем больше протяженность области сканирования. Важно то, что длина пути стола за один оборот рентгеновской трубки может быть в 1,5–2 раза больше толщины томографического слоя без ухудшения пространственного разрешения изображения.

Технология спирального сканирования позволила значительно сократить время, затрачиваемое на КТ-исследование и существенно уменьшить лучевую нагрузку на пациента.

Многослойная компьютерная томография (МСКТ)

Многослойная («мультиспиральная») компьютерная томография с внутривенным контрастным усилением и трёхмерной реконструкцией изображения.

Многослойная («мультиспиральная», «мультисрезовая» компьютерная томография - МСКТ) была впервые представлена компанией Elscint Co. в 1992 году . Принципиальное отличие мсКТ томографов от спиральных томографов предыдущих поколений в том, что по окружности гентри расположены не один, а два и более ряда детекторов. Для того, чтобы рентгеновское излучение могло одновременно приниматься детекторами, расположенными на разных рядах, была разработана новая - объёмная геометрическая форма пучка. В 1992 году появились первые двухсрезовые (двухспиральные) МСКТ томографы с двумя рядами детекторов, а в 1998 году - четырёхсрезовые (четырёхспиральные), с четырьмя рядами детекторов соответственно. Кроме вышеотмеченных особенностей, было увеличено количество оборотов рентгеновской трубки с одного до двух в секунду. Таким образом, четырёхспиральные мсКТ томографы пятого поколения на сегодняшний день в восемь раз быстрее, чем обычные спиральные КТ томографы четвертого поколения. В -2005 годах были представлены 32-, 64- и 128-срезовые МСКТ томографы, в том числе - с двумя рентгеновскими трубками. Сегодня же в некоторых клиниках уже имеются 320-срезовые компьютерные томографы. Эти томографы, впервые представленные в 2007 году компанией Toshiba, являются новым витком эволюции рентгеновской компьютерной томографии. Они позволяют не только получать изображения, но и дают возможность наблюдать почти что «в реальном» времени физиологические процессы, происходящие в головном мозге и в сердце ! Особенностью подобной системы является возможность сканирования целого органа (сердце, суставы, головной мозг и т.д.) за один оборот рентгеновской трубки, что значительно сокращает время обследования, а также возможность сканировать сердце даже у пациентов, страдающих аритмиями. Несколько 320-срезовых сканеров уже установлены и функционируют в России.

Преимущества МСКТ перед обычной спиральной КТ

  • улучшение временного разрешения
  • улучшение пространственного разрешения вдоль продольной оси z
  • увеличение скорости сканирования
  • улучшение контрастного разрешения
  • увеличение отношения сигнал/шум
  • эффективное использование рентгеновской трубки
  • большая зона анатомического покрытия
  • уменьшение лучевой нагрузки на пациента

Все эти факторы значительно повышают скорость и информативность исследований.

Основным недостатком метода остается высокая лучевая нагрузка на пациента, несмотря на то, что за время существования КТ её удалось значительно снизить.

  • Улучшение временного разрешения достигается за счёт уменьшения времени исследования и количества артефактов из-за непроизвольного движения внутренних органов и пульсации крупных сосудов .
  • Улучшение пространственного разрешения вдоль продольной оси z, связано с использованием тонких (1–1,5 мм) срезов и очень тонких, субмиллиметровых (0,5 мм) срезов. Чтобы реализовать эту возможность, разработаны два типа расположения массива детекторов в МСК томографах:
    • матричные детекторы (matrix detectors), имеющие одинаковую ширину вдоль продольной оси z;
    • адаптивные детекторы (adaptive detectors), имеющие неодинаковую ширину вдоль продольной оси z.
Преимущество матричного массива детекторов заключается в том, что количество детекторов в ряду можно легко увеличить для получения большего количества срезов за один оборот рентгеновской трубки. Так как в адаптивном массиве детекторов меньше количество самих элементов, то меньше и число зазоров между ними, что дает снижение лучевой нагрузки на пациента и уменьшение электронного шума. Поэтому три из четырёх мировых производителей МСК томографов выбрали именно этот тип.

Все вышеотмеченные нововведения не только повышают пространственное разрешение, но благодаря специально разработанным алгоритмам реконструкции позволяют значительно уменьшить количество и размеры артефактов (посторонних элементов) КТ-изображений. Основным преимуществом МСКТ по сравнению с односрезовой СКТ является возможность получения изотропного изображения при сканировании с субмиллиметровой толщиной среза (0,5 мм). Изотропное изображение возможно получить, если грани вокселя матрицы изображения равны, то есть воксель принимает форму куба . В этом случае пространственное разрешение в поперечной плоскости x-y и вдоль продольной оси z становится одинаковым.

  • Увеличение скорости сканирования достигается уменьшением времени оборота рентгеновской трубки, по сравнению с обычной спиральной КТ, в два раза - до 0,45–0,50 с.
  • Улучшение контрастного разрешения достигается вследствие увеличения дозы и скорости введения контрастных средств при проведении ангиографии или стандартных КТ-исследований, требующих контрастного усиления. Различие между артериальной и венозной фазой введения контрастного средства прослеживается более чётко.
  • Увеличение отношения сигнал/шум достигнуто благодаря конструктивным особенностям исполнения новых детекторов и используемых при этом материалов; улучшения качества исполнения электронных компонентов и плат ; увеличению тока накала рентгеновской трубки до 400 мА при стандартных исследованиях или исследованиях тучных пациентов.
  • Эффективное использование рентгеновской трубки достигается за счёт меньшего времени работы трубки при стандартном исследовании. Конструкция рентгеновских трубок претерпела изменения для обеспечения лучшей устойчивости при больших центробежных силах, возникающих при вращении за время, равное или менее 0,5 с. Использование генераторов большей мощности (до 100 кВт), конструктивные особенности исполнения рентгеновских трубок, лучшее охлаждение анода и повышение его теплоёмкости до 8 000 000 единиц также позволяют продлить срок службы трубок.
  • Зона анатомического покрытия увеличена благодаря одновременной реконструкции нескольких срезов полученных за время одного оборота рентгеновской трубки. Для МСКТ установки зона анатомического покрытия зависит от количества каналов данных, шага спирали, толщины томографического слоя, времени сканирования и времени вращения рентгеновской трубки. Зона анатомического покрытия может быть в несколько раз больше за одно и то же время сканирования по сравнению с обычным спиральным компьютерным томографом.
  • Лучевая нагрузка при многослойном спиральном КТ-исследовании при сопоставимых объёмах диагностической информации меньше на 30 % по сравнению с обычным спиральным КТ-исследованием. Для этого улучшается фильтрация спектра рентгеновского излучения и производится оптимизация массива детекторов. Разработаны алгоритмы , позволяющие в реальном масштабе времени автоматически уменьшать ток и напряжение на рентгеновской трубке в зависимости от исследуемого органа , размеров и возраста каждого пациента.

Компьютерная томография с двумя источниками излучения

DSCT - Dual Source Computed Tomography. Русскоязычной аббревиатуры в настоящее время нет.

Контрастное усиление

Для улучшения дифференцировки органов друг от друга, а также нормальных и патологических структур, используются различные методики контрастного усиления (чаще всего, с применением йодсодержащих контрастных препаратов).

Двумя основными разновидностями введения контрастного препарата являются пероральное (пациент с определенным режимом выпивает раствор препарата) и внутривенное (производится медицинским персоналом). Главной целью первого метода является контрастирование полых органов желудочно-кишечного тракта; второй метод позволяет оценить характер накопления контрастного препарата тканями и органами через кровеносную систему. Методики внутривенного контрастного усиления во многих случаях позволяют уточнить характер выявленных патологических изменений (в том числе достаточно точно указать наличие опухолей, вплоть до предположения их гистологической структуры) на фоне окружающих их мягких тканей, а также визуализировать изменения, не выявляемые при обычном («нативном») исследовании.

В свою очередь, внутривенное контрастирование можно проводить двумя способами: «ручное» внутривенное контрастирование и болюсное контрастирование .

При первом способе контраст вводится вручную рентгенлаборантом или процедурной медсестрой, время и скорость введения не регулируются, исследование начинается после введения контрастного вещества. Этот способ применяется на «медленных» аппаратах первых поколений, при МСКТ «ручное» введение контрастного препарата уже не соответствует значительно возросшим возможностям метода.

При болюсном контрастном усилении контрастный препарат вводится внутривенно шприцем-инжектором с установленными скоростью и временем подачи вещества. Цель болюсного контрастного усиления - разграничение фаз контрастирования. Время сканирования различается на разных аппаратах, при разных скоростях введения контрастного препарата и у разных пациентов; в среднем при скорости введения препарата 4–5 мл/сек сканирование начинается примерно через 20–30 секунд после начала введения инжектором контраста, при этом визуализируется наполнение артерий (артериальная фаза контрастирования). Через 40–60 секунд аппарат повторно сканирует эту же зону для выделения портально-венозной фазы, в которую визуализируется контрастирование вен. Также выделяют отсроченную фазу (180 секунд после начала введения), при которой наблюдается выведение контрастного препарата через мочевыделительную систему.

КТ-ангиография

КТ-ангиография позволяет получить послойную серию изображений кровеносных сосудов; на основе полученных данных посредством компьютерной постобработки с 3D-реконструкцией строится трёхмерная модель кровеносной системы.

Спиральная КТ-ангиография - одно из последних достижений рентгеновской компьютерной томографии. Исследование проводится в амбулаторных условиях. В локтевую вену вводится йодсодержащий контрастный препарат в объеме ~100 мл. В момент введения контрастного вещества делают серию сканирований исследуемого участка.

КТ-перфузия

Метод, позволяющий оценить прохождение крови через ткани организма, в частности.

Таким образом, информативность КТ в разы выше и достигает показателя 98%. Суть метода КТ сводится к созданию послойных изображений. Это достигается за счет последовательного пронизывания лучами органа с интервалом 1-2 мм. Лучи проходят через исследуемую область в трех направлениях и улавливаются высокочувствительными датчиками. Полученная информация передается на подключенный компьютер, который быстро обрабатывает данные, одновременно создавая электронное изображение. Итоговая информативность томографии достигает 98%. Снимки распечатывают на пленке или записывают на электронный носитель.

Принцип работы КТ основан на уникальных свойствах рентгена, который по-разному поглощается разными тканями организма. Больше всего принимает на себя облучение костные ткани, поэтому на снимках они видны особенно отчетливо - как яркие белые структуры. А вот ткани, близкие по плотности к воздуху, лучи проходят беспрепятственно и они на снимках изображаются черным цветом. Поэтому для их изучения необходимо контрастное вещество, которое поглощает лучи и позволяет увидеть структурные особенности органа на снимках и даже построить их изображение.

Принцип действия КТ основан также и на работе компьютерных программ, которые, улавливая информацию с встроенных в аппарат датчиков, анализируют ее и создают изображение. Некоторые программы позволяют создавать объемную картинку, с помощью которой все структурные особенности органа видны особенно отчетливо. КТ работает довольно быстро и всего за несколько минут позволяет получить информацию об анатомических особенностях того или иного органа.

Стоимость КТ обследования хоть и доступна подавляющему большинству граждан, все-таки может сказаться на семейном бюджете. Особенно это заметно, если нужно провести в течение года несколько исследований или требуется диагностика заболеваний у всех членов семьи. Поэтому возникает вопрос: можно ли сделать КТ недорого? Отвечаем: можно! Способов сэкономить.

Обследование с помощью КТ проводится на основании генологического исследования, влияние которого на организм человека изучено не до конца. Ясно одно - облучение сказывается на состоянии здоровья не самым благоприятным образом. Поэтому вопрос, вредна ли компьютерная томография, вполне закономерен. Он волнует каждого, кому было назначено это исследование.

Компьютерная томография - принцип работы

Компьютерная томография – метод, который позволяет провести эффективную диагностику при помощи сканирования исследуемого участка и получить послойные изображения той или иной части тела. Каков принципы действия КТ?

Устройство аппарата и принцип действия метода компьютерной томографии

Что представляет собой специальный сканер? Этот аппарат напоминает куб или тоннель цилиндрической формы. В число основных частей прибора входят:

  • лучевая трубка, скрытая в корпусе КТ;
  • подвижный стол, который проходит через раму гентри;

Поскольку от аппарата исходит излучение, комната, в которой находится томограф защищается специальным экраном. Еще один вариант защиты пациентов и специалистов от негативного воздействия рентгеновского излучения – включение кабинета с медицинским оборудованием в структуру помещений отделения.

Как осуществляется управление сканером

Врач, располагающийся в специальной комнате, следит за ходом процедуры, и совершает необходимые манипуляции. Рядом с ним находятся:

  • компьютерный блок КТ;
  • мониторы, на которые выводится изображение;
  • специальные устройства. предназначенные для слежения за состоянием обследуемого.

Особенность процедуры

Возможности современной медицины позволяют предотвратить развитие серьезных болезней и обнаружить новообразования на ранних стадиях развития опухолевого процесса. Все это стало реальностью благодаря созданию установок, воздействующих на организм пациента при помощи излучения. Результатом процедуры становится детальный снимок, обеспечивающий безошибочную современную диагностику.

Для того чтобы разобраться в специфике обследования нужно определить, что такое КТ. Это метод, в основе которого лежит рентгеновское излучение. Специальный прибор осуществляет съемку тела больного под разными углами, а полученные срезы позже обрабатываются компьютерной программой и преобразуются в единое изображение. Проходя через тело исследуемого, X-лучи задерживаются в тканях,от степени поглощения которых зависит четкость и детализация проекции.

Принципы работы КТ (компьютерной томографии) просты: вокруг больного вращается рентгеновская трубка – специальное устройство, выпускающее рентгеновское излучение. Позже установка фиксирует сведения, попадающие на чувствительную матрицу, а компьютерная программа производит обработку полученной информации и позволяет увидеть четкую картинку.

Отличия компьютерной томографии от рентгенографии

  • КТ дает возможность рассмотреть мелкие новообразования, в то время как рентгеновская установка не обладает подобной детализацией из-за наложения одного слоя на другой - явления известного как суперпозиция тканей.
  • Компьютерная томография позволяет получить изображение в поперечной плоскости: это необходимо для точного представления о соотношении органов.

Как работает КТ

Пациента кладут на специальный стол, который не стоит неподвижно, а перемещается по направлению к раме гентри. В ее устройстве заключается одно из важнейших отличий компьютерной томографии от магнитно-резонансной: отверстие не узкое, а широкое, что не вызывает у обследуемых боязни закрытых пространств. Часто перед процедурой требуется введение контрастного вещества.

Как врач получает снимки? По мере того как установка производит сканирование обследуемого участка, рентгеновские лучи проходят через различные плоскости организма: плотность тканей становится той информацией, которая передается компьютеру в виде коэффициента – цифрового значения, обрабатываемого программой. После преобразования данных в оттенки серого, изображение выводится на монитор: специалист видит серию картинок, которые представляют собой поперечные срезы исследуемого органа или части тела.

Зачем может понадобиться КТ?

Её назначают, когда необходимо тщательно исследовать области тела или конечности.

Осмотр ГК поможет выявить ранние и запущенные стадии легочных заболеваний. Кроме того, определит наличие проблем в тканях, сосудах или пищеводе. Продиагностировать наличие очагов воспаления, инфекций, метастаз. Покажет, если легочная эмболия и аневризма аорты.

Если исследовать эту область с помощью КТ, то можно понять, если ли болезни желудка и печени. Узнать все о том, какого характера образовавшаяся киста или опухоль. Выявить образование абсцесса, деформаций аорты брюшины. Определить размеры лимфоузлов, найти кровотечения внутренних органов.

Исследовать такие органы как: почки, мочеточники и мочевой пузырь, можно, используя одну из разновидностей КТ, называющуюся урограммой.

С её помощью можно обнаружить наличие камней в почках или любых других элементов мочевыводящей системы.

В самых сложных случаях доктора прибегают к еще одному методу, который именуется пиелограммой. Суть его состоит в том, что пациенты вводится особое контрастное вещество, после этого можно обнаружить не только отложения солей, но и различные виды опухолевых образований, как злокачественные, так и доброкачественные.

Компьютерная томография хорошо справляется с выявлением панкреатитов различной степени запущенности. Кроме того, с помощью такого исследования можно определить наличие и характер опухоли этого органа.

Желчный пузырь и желчные протоки

Можно продиагностировать проходимость протоков желчного пузыря. Кроме этого, исследование позволяет определить наличие камней. Однако для этого чаще всего используют УЗИ, которое отлично справляется с поставленной задачей.

КТ хорошо показывает наличие опухолевых образований и позволяет определить состояние и структуру надпочечника.

С помощью такой диагностики можно рассмотреть повреждения тканей данного органа и оценить его размеры.

Если вовремя произвести диагностику этого отдела организма, то можно предотвратить серьёзные изменения фаллопиевой трубы или предстательных желез у пациентов различных полов.

КТ поможет найти различные заболевания в суставах и частях костной ткани. С легкостью справиться с диагностированием опухолей или деформаций в элементах колен, костей, бедер, щиколоток или стоп.

Некоторым современным КТ достаточно 1 вращения для получения точного и детального изображения исследуемого органа. Подобные устройства называются мультиспиральными. Высокие технологии, применяемые разработчиками медицинского оборудования, позволили улучшить качество проводимой процедуры:

  • снизить шумы, издаваемые установкой во время вращения;
  • сократить время исследования;
  • уменьшить толщину срезов и повысить диагностические возможности КТ.

Последние модели компьютерных томографов позволяют рассмотреть отдельные участки и области человеческого тела за несколько секунд, что особенно удобно при обследовании пожилых пациентов в критическом состоянии или больных, страдающих клаустрофобией.

Возросшая эффективность подобной процедуры позволяет уменьшить долю рентгеновского излучения. Подобная безопасность КТ-сканирования делает эту технологию незаменимой при исследовании детей – снижение лучевой нагрузки дает возможность полностью исключить риск развития онкологических заболеваний.

Увеличить информативность обследования на компьютерном томографе помогает введение пациенту контрастного вещества. В результате проводимая процедура приобретает сходство с ангиографией.

Что чувствует пациент во время процедуры

На самом деле, человек не испытывает никаких неприятных ощущений или боли.

В некоторых случаях ему может быть неудобно из-за того, что он лежит на жесткой поверхности или из-за открытого в кабинете окна.

Впечатлительные пациенты нервничают, когда оказываются внутри аппарата. В этом случае им предлагают успокоительное средство, которое поможет им расслабиться и не придавать значения нахождению в замкнутом пространстве.

Во время введения контрастного вещества, если это необходимо, медсестра делает все возможное, чтобы причинить наименьшее количество боли, делая инъекцию в руку.

Следует сказать немного о специфике самого вещества. Иногда после его введения люди чувствуют небольшой жар или пощипывание в месте укола. Это нормально. Однако, если вас начало тошнить или появились резкие головные боли, об этом следует немедленно сообщить доктору.

Опасна ли КТ

Если до того, как прийти на томографию, вы знали о наличии какого-либо заболевания, то не беспокойтесь о том, что данная процедура провоцирует какие-то осложнения.

Однако, стоит учесть следующие моменты:

У некоторые пациентов наблюдаются аллергические реакции на состав контрастного вещества.

Если вы больны сахарным диабетом любого типа или употребляете метморфин, то контраст может ухудшить ваше состояние. Таким больным необходимо получить консультацию лечащего врача еще перед проведением диагностики.

В некоторых случаях можно говорить о возникновении онкологических заболеваний, которые могут быть спровоцированными злоупотребления разных видов КТ. В зоне риска дети и старики.Если проводить исследование не чаще нескольких раз в месяц, то об опасности можно не волноваться.Вы можете пообщаться с врачом и узнать какую именно дозу облучения вы или ваш ребенок получите после каждой процедуры и насколько это безопасно.

Может ли что-то повлиять на действие КТ

На результаты и проведение обследования могут повлиять следующие нюансы:

Любой срок беременности у женщин. Данная диагностика не рекомендуется все будущим мамам, особенно на первых триместрах.

Применение таких веществ, как висмут и барий до проведения КТ. Часто, когда медики назначают ирригоскопию, которая подразумевает применение данных составов, возникает необходимость переноса КТ. Ведь и виснут и барий проявятся на конечном снимке, что затруднит постановку правильного диагноза.

Совершение каких либо телодвижений во время нахождения в аппарате. Очень важно во время КТ оставаться неподвижным.

Различные металлические элементы в теле пациента. Части имплантов или другие фрагменты снижают качество готового изображения, делая область вокруг них размытой.

Принципы и методы работы компьютерной томографии

Бывает, что результаты КТ не сответствуют данным, полученным в результате магнитного исследования или ультразвукового. На самом деле, это вовсе не значить, что какое-то из обследований проведено неверно. Томография позволяет сканировать определенный орган совершенно с другого ракурса, что наоборот, делает диагностику более развернутой.

Если вы отправляете на процедуру ребенка, то обязательно приготовьте его морально ко всему, с чем ему придется столкнуться. Научите его задерживать дыхание, расскажите об ощущениях, настройте его правильно. Часто дети не могут спокойно лежать длительное время, поэтому врачи делают им инъекции успокоительного. Расскажите ему об этом, чтобы вид иглы не напугал его ещё больше.

Обязательно получите консультацию педиатра. Он сможет определить, насколько уровень облучения навредит состоянию маленького пациента.

Часто результатами КТ можно заменить результаты ПЭТ. Особенно, если дело касается диагностирования онкологии.

Чтобы определить, есть ли у пациента ишемия или атеросклероз, врачи используют одну из разновидностей данного исследования. ЭПТ занимает меньше времени, но прекрасно подходит для диагностики состояния сердца или сосудов.Сейчас эта технология уступает мультидекторной разновидности томографии, которая является более инновационной и точной.

В данную процедуру может входить комплекс мер, назначенный на оценку уровня усвоения кальция коронарными артериями. Это способствует определению рисков возникновения болезней сердца и сосудов.

Иногда намного эффективнее может быть использование МРТ-технологий. Следует допускать использование разных методов для диагностирования различных заболеваний.

Не все специалисты едины во мнении, что если исследовать с помощью КТ все тело пациента, то можно выявить ишемическую болезнь. Обязательно проконсультируйтесь со своим доктором, если вам назначена процедура именно для этой цели.

Где применяется компьютерная томография

С открытием КТ врачам по всему мира стала доступна диагностика множества серьезных заболеваний: первоначально метод использовался в нейрохирургии и неврологии. Еще одна сфера применения – выявление патологий легких, надпочечников, желчного пузыря, печени и других органов брюшной полости.Точное и детализованное изображение позволяет провести полноценное исследование костей, спинного мозга и позвоночного столба.

Читать ещё статьи

Хотите узнать больше или заказать

Укажите ваше имя, номер телефона и дополнительную информацию по желанию,

и мы свяжемся с вами и проконсультируем по всем вопросам.

Компьютерная томография и МРТ в чем разница, показания и возможности

Современная диагностическая медицинская наука имеет небывалые возможности для выявления тех или иных заболеваний. Одними из самых эффективных методов считаются магнитно-резонансная и компьютерная томография. Как правило, выбор способа остается за врачом.

Многие пациенты интересуются: компьютерная томография и мрт – в чем разница? Давайте разберемся какие отличия имеют две схожие процедуры.

Принципы работы аппаратов КТ и МРТ

Магнитно-резонансная томография (МРТ) и компьютерная томография (КТ) преследуют одну и ту же важную цель – изучить и «отсканировать» внутренние органы и системы человека. На выходе получаем детальные изображения организма «изнутри».

Основой и предшественником к таким методикам выступил обыкновенный рентген. Рентгенография – первый огромный шаг к исследованиям и диагностике. Однако, этот метод не давал полной картины происходящего, поскольку картинка была двухмерной и изображение разных участков накладывались один на другой. Несовершенство рентгена послужило толчком к разработке более информативного оборудования.

Так какая разница между мрт и компьютерной томографией? Два аппарата имеют разные принципы действия и различные физические явления, положенные в основу их работы.

Метод КТ базируется на рентгеновском излучении, которым воздействуют на необходимую область. В отличие от традиционного рентгена, томограф оказывает влияние с разных сторон, а лучи проходят через ткани с разной плотностью. Информация обрабатывается компьютером, после чего получают послойное трехмерное изображение нужного органа, как бы в «срезе».

Для МРТ применяется ядерно-магнитный резонанс. На организм действуют мощным магнитным полем. После этого аппарат отображает электромагнитные импульсы, образующиеся в теле человека. Томограф перерабатывает их в объемное изображение и выводит его на экран монитора.

В отличие от КТ, магнитно-резонансная томография не оказывает лучевого воздействия и может применяться чаще. Длительность процедур разная. МРТ может занять больше времени – доминут. Поэтому, при выборе методики учитываются не только показания, но и наличие клаустрофобии.

Различия в технических возможностях методик

Существенная разница между мрт и компьютерной томографией заключается в их технических возможностях и областях исследования. КТ дает отличное изображение физического состояния объекта, тогда как МРТ отображает химическое строение тканей. Эти методы не всегда взаимозаменяемы.

КТ отлично показывает плотность тканей и их изменения. Наилучшим образом с помощью этого метода исследуются костные структуры. Ни один другой способ диагностики не дает в этой области такого точного результата. С его помощью можно обнаружить малейшие переломы, трещины и опухоли в костях, которые не видно на обычном рентгене.

Также с помощью КТ отлично сканируются легкие. Метод информативен при обследовании головного мозга (в частности на наличие травм, инсультов), органов малого таза и брюшной полости.

При обследовании костей МРТ окажется бесполезен. Его специализация – мягкие ткани. Процедура даст информацию о травмах связок, повреждениях суставов и сухожилий. Метод применяют для обнаружения позвоночных грыж, структурных поражений головного мозга, патологий спинного мозга, мышц, хрящей.

Для обследования легких процедура будет бесполезна.

Необходимым условием для получения точного результата выступает спокойствие и неподвижность обследуемого человека. При введении контрастного препарата процедура может занять целый час. Пациентам с неуравновешенной психикой или детям зачастую вводят успокоительное или снотворное.

В каких случаях показана та или иная процедура

Какой способ диагностики выбрать, решается индивидуально в каждой частной ситуации. Делать это должен специалист. Пациент может ознакомиться и принять к сведению информацию о показаниях. Методики являются информативными в случае правильного их выбора.

  • диагностика степени повреждений при травмах, авариях
  • опухолевые патологии костной ткани
  • внутренние кровоизлияния вследствие травм, инсультов
  • диагностика состояния щитовидной железы
  • изменения в сосудах (атеросклеротические бляшки, аневризмы)
  • различные заболевания легких
  • обследование головного мозга (травмы, наличие гематом, опухолей)
  • болезни опороно-двигательного аппарата (остеопороз, сколиоз, дистрофические изменения)
  • повреждения костей лица (зубов, челюсти)
  • опухолевые заболевания легких, туберкулез
  • патологии органов брюшной полости
  • диагностика отитов и синуситов

КТ используют для оценки состояния пациента после хирургического вмешательства, исключения патологий в области живота.

Магнитно-резонансная томография показана в таких ситуациях:

  • патологические процессы и опухолевые образования в жировых тканях, мышцах, животе
  • воспаление тканей мозга
  • определение стадий опухолевых заболеваний
  • исследование внутричерепных нервов
  • выявление болезней позвоночника
  • мозговые опухоли
  • пациентам с рассеянным склерозом
  • патологии гипофиза
  • изучение состояния спинного мозга, суставов и связок
  • определение состояния межпозвоночных дисков
  • нарушения кровообращения спинного мозга

МРТ диагностика используется для уточнения диагноза после проведения УЗИ. Метод показан людям, имеющим непереносимость контрастного вещества, которое в некоторых случаях необходимо для процедуры КТ.

Эти два метода нередко применяют после предварительного обследования другими способами. Особенно, когда есть сомнения в диагнозе или при малой информативности прочих методик.

Особенности подготовки к проведению обследований

Особая подготовка к процедуре нужна лишь при исследовании определенных областей организма. В остальных случаях (если иного не оговорил доктор) ничего предварительно делать не нужно.

При исследовании некоторых внутренних органов (к примеру, кишечника) потребуется заблаговременное введение контрастного вещества. Исследование брюшной области нередко проводится натощак.

При повышенной возбудимости либо психоэмоциональных расстройствах перед обследованием показан прием седативных препаратов.

Также дополнительной подготовки потребует проведение исследование брюшной зоны и с помощью МРТ. Для этого за несколько дней до процедуры пациенту следует исключить из рациона пищу, которая приводит к метеоризму. А именно: бобовые культуры, свежие овощи и фрукты, цельнозерновой хлеб. Желателен прием энтеросорбентов.

При изучении органов малого таза нужно следить, чтобы перед процедурой мочевой пузырь был наполнен. Для этого достаточно выпить около 0.5 л воды за полчаса до мероприятия.

При прохождении обследования пациент может слышать всевозможные щелчки. Этого не стоит бояться. Звуки связаны с работой оборудования.

Следует учитывать, что если общее время КТ составляетминут, то для проведения МРТ иногда необходимо до 40 минут. Второй метод не всегда возможно провести больным, которые постоянно нуждаются в аппаратной поддержке жизненно важных функций. Также метод может не подойди людям с тяжелыми формами клаустрофобии.

Какая методика является более информативной

Нельзя дать однозначного ответа на вопрос «какой способ диагностики эффективнее». Это, в одно и то же время, альтернативные и разные методы исследования. В одном случае лучший результат дает одна процедура, в ином – другая.

МРТ лучше показывает органы, окруженные скелетом, но имеющие высокое содержание жидкости (суставы, мозг (головной и спинной), межпозвоночные диски). Сам костный каркас более информативно отображает КТ. Для внутренних органов (почки, система пищеварения) применяется и тот и другой способ.

Стоит отметить, что для проведения компьютерной томографии необходимо намного меньше времени. А значит, ее целесообразно задействовать в экстренных случаях, когда важна каждая минута (например, после аварий, несчастных случаев).

При магнитно-резонансной томографии отсутствует облучение рентгеновским излучением. Поэтому она считается относительно более безопасной. В свою очередь, МРТ нельзя делать людям с имплантантами из металла и кардиостимулятором.

МРТ более безопасна, а КТ занимает меньше времени. Какую процедуру выбрать, должен определять только лечащий врач. Он учтет особенности пациента, характеристику области исследования и течения болезни. Также берутся во внимание предварительные результаты анализов и прочих обследований (УЗИ, рентгена).

Сравнение стоимости процедур

Оборудование для проведения компьютерной либо магнитно-резонансной томографии крайне дорогостоящее. Цена одной установки может доходить до нескольких млн. долларов. Такой аппарат могут позволить себе далеко не все медицинские учреждения.

Если рентген и УЗИ присутствуют в каждой уважающей себя клинике, то томографы могут быть в единственном экземпляре, особенно в маленьких городах. В селах и ПГТ подобные аппараты нередко и вовсе отсутствуют.

Также нужны хорошие специалисты, которые правильно расшифруют результаты диагностики. Все это в комплексе обусловливает немалую стоимость подобной процедуры. Чем выше имидж, новее аппаратура и лучше обустройство клиники, тем выше будет цена.

Самая низкая стоимость КТ либо МРТ составляет около 30 у.е. Чем обширнее площадь обследования, тем выше цена. При полной диагностике организма, введении контрастного вещества сумма может доходить доу.е. Диагностика каждого органа или системы организма имеет свою четко прописанную стоимость.

Из-за дороговизны подобного исследования, пациентов в первую очередь направляют на более доступные УЗИ и рентген. К МРТ и КТ прибегают в тех случаях, когда у врача остались вопросы по поводу диагноза.

Современные томографы – настоящий прорыв в сфере диагностики заболеваний. Конечно, томография – самая информативная на сегодняшний день методика. Каждый метод имеет свои плюсы и минусы, а также определенные показания и противопоказания. Что выбрать – КТ либо МРТ зависит от конкретного случая и области, которую нужно изучить.

Экстренность ситуации также определяет тип процедуры.

Подробно об отличиях КТ и МРТ - на видео:

Re: Компьютерная томография и МРТ в чем разница, показания и.

Имея проблемы с позвоночником в виде остеохондроза и посттравматической грыжи Шморля, пришлось пройти обследование и КТ и МРТ, но не знала об их особенностях, теперь понимаю для чего это было нужно.

  • Для комментирования войдите или зарегистрируйтесь

6 дней 13 часов назад

Получай новости на почту

Получай на почту секреты долголетия и здоровья.

Информация предоставлена для ознакомления, любое лечение посетители должны проводить со своим врачом!

Копирование материалов запрещено. Контакты | О сайте

Кт принцип работы

и многое другое о том, как вести ЗОЖ

Компьютерная проективная томография является неинвазивным методом диагностики заболеваний (то есть получение изображений внутреннего строения организма без его повреждения). Принцип работы компьютерного томографа основан на разности коэффициента поглощения разными по плотности тканями организма. Изображение получают путем компьютерной обработки разности ослабления рентгеновского излучения. Поглощение рентгеновского излучения может меняться при разных заболеваниях.

Преимущество КТ перед рентгенодиагностикой

Данный метод позволяет увидеть мельчайшие структуры внутренних органов размером всего несколько миллиметров. В отличии от классического рентгеновского обследование, где имеем изображение всех внутренних органов, через которые проходило рентгеновские лучи, КТ дает набор срезов (проекций) пациента. Далее данные обрабатывает компьютер, формируя трехмерное изображение. На рентгеновских снимках все слои тканей накладываются один на другой и небольшие патологические образования могут быть невидны. КТ дает информацию о небольших новообразованиях, которые еще поддаются хирургическому лечению.

Специфика работы компьютерного резонансного томографа

Компьютерный томограф представляет собой кольцо, через которое проходит стол с пациентом. В кольце расположена рентгеновская трубка, производящая излучение и детекторы, воспринимающие его.

Рентгеновская трубка вращается вокруг пациента, что дает возможность получать отдельные изображения поперечных слоев тканей. Качественные изображения позволяют с большой точностью определить локализацию очага заболевания, взаимное положение органов, а так же их морфологические изменения.

Компьютерная томография используется для обследования скелета, органов грудной клетки, брюшной полости, для диагностики злокачественных опухолей и других заболеваний.

Виды томографов

  • Томограф 1-го поколения имеет одну рентгеновскую трубку, один детектор. Сканирование проводится в несколько этапов, с одним оборотом снимается один слой, каждый занимает около 4 минут.
  • Томограф 2-го поколения имеет веерный тип конструкции. Одна рентгеновская трубка, несколько детекторов. Время обследования – 20 сек.
  • Томограф 3-го поколения использует принцип спиральной компьютерной томографии. За один шаг стола рентгеновская трубка с расположенными напротив нее детекторами (количество которых больше, чем в предыдущем поколении) осуществляет один оборот. Время обследования около 3 сек.
  • Томограф 4-го поколения имеет множество датчиков, расположенных по всему кольцу, вращается только рентгеновская трубка. Преимущество томографа 4-го поколения перед томографом 3-го поколения только во времени обследования, которое составляет меньше секунды.

Последние последних методов компьютерной томографии сделали возможным проведение обследования сердца, бронхов, кишечника.

Как проходит КТ обследование?

Перед обследованием пациент должен снять из себя все металлические предметы (украшения, ключи, телефон), так как они могут искажать картину, кроме того, электроника может выйти из строя. Существует множество фирм, занимающиеся техническим обслуживанием КТ. Вот, например, сайт одной из них http://mrimrt.ru/ . Рекомендуется пару часов не есть перед обследованием.

Во время процедуры пациент ложится на стол томографа и лежит в расслабленном состоянии. КТ абсолютно безболезненна. Процедура сканирования длится меньше одной минуты. После обследования пациент получает рентгеновскую пленку с отобранными снимками, заключение врача рентгенолога, а также CD-диск с полным обследованием и программой для его чтения.

Плюсы КТ

Обследование занимает около минуты.

Совершенно безболезненный метод.

Можно использовать как метод первичной диагностики, и как уточняющий метод, после ультразвукового или рентгеновского обследования.

Быстрое выявление повреждений дает возможность спасти человеку жизнь.

Диагностика болезней на ранних стадиях.

Не влияет на работу имплантированных медицинских устройств.

Высокое разрешение и контрастность изображений.

Минусы КТ

Более высокая доза излучения, чем в рентгеновском обследовании.

Если есть возможность беременности, нужно обязательно сообщить врачу.

При введении некоторых контрастных веществ (например, йод), есть возможность возникновения аллергических реакций.

Противопоказания для компьютерной томографии

Большая масса тела

Наличие гипса или металлического элемента.

Беременность и кормление грудью.

Дети (связано с лучевой нагрузкой).

Проблемы со щитовидной железой

КТ сосудов

Причина заболевания может крыться в нарушении работы сосудов. В таком случаи применяется метод ангиографии. В организм пациента вводится контрастное вещество и проводится компьютерная томография сосудов любой части тела

КТ головного мозга

Для того, чтобы сделать изображения мозга более четким, вводится контрастное вещество. Врач получает послойный снимок мозга и может диагностировать опухоли, кисты, заболевания сосудов, гематомы, отек, воспаления и другие заболевания.

Также проводится исследования брюшной полости (назначается при панкреатите, пиелонефрите, циррозе печени, болевых ощущения в брюшной полости),грудной клетки (пневмония, рак, туберкулез).

Томографы сегодня есть в большинстве современных больниц. Компьютерная томография незаменима для правильного планирования радиотерапии при опухолях, руководства малоинвазивными методами лечения, а так же для исследования состояния внутренних органов посте травмы или трансплантации.

Введение

В 1895 г. научное сообщество было потрясено первым медицински рентгеновским снимком. Эти посредственного качества рентгенограмм позволяли увидеть ранее невидимые для человеческого глаза структур, Первые рентгеновские снимки вызвали революционное развитие рентгенологии как важнейшего метода медицинской диагностики. Врачи, физики, биологи, химики объединились ради общей цели - возможности получав высококачественное прижизненное изображение органов и тканей человека для ранней диагностики различных заболеваний человека.

За последние годы современная технология получения медицински) изображений пошла значительно дальше рутинного рентгеновского мето­да. Рассматриваемые в этой книге технические и методологические прин-ципы являются основой учения о формировании компьютерно-томографи-ческого (КТ) изображения при различных клинико-диагностических ситуациях. На этих принципах базируются все другие, дополнительные методи­ки визуализации в компьютерной томографии, являясь их производными.

Известно, что чем больше мы познаем, тем больше осознаем, как много непознанного еще остается. Не существует простого решения проблемы по­лучения качественных медицинских изображений. Чем глубже становится на ше представление о физическо-математических принципах, лежащих в осно­ве формирования КТ-изображения, тем полнее осознание практической не­возможности создания «идеального» изображения при различных состояни­ях пациента. Сама аппаратно-техническая сущность оборудования и материалов, используемых для визуализации, требует компромиссного ме­тодологического подхода для получения КТ-изображения. Имеющийся в на­личии аппаратно-технический ассортимент следует рассматривать как некое «меню» возможностей, из которого следует выбирать наиболее подход? дие технические и материальные средства решения конкретной задачи.

Совмещая в повседневной практике деятельность врача и специалиста в области КТ-визуализации, мы должны так использовать все имеющиеся современные технические возможности, чтобы обеспечить получение опти­мально информативного диагностического изображения при минимальных времени обследования и лучевой нагрузке на пациента. Поэтому всюду где это возможно, важнейшие положения текста сопровождаются соответству­ющими рисунками, схемами и таблицами.

Целью данной книги является стремление дать специалисту по визуали­зации знания, помогающие принимать квалифицированные решения, кото­рые обеспечат высокоинформативное КТ-изображение при минимальном облучении пациента.

Эта книга написана, исходя из практических и образовательных потребнос­тей врачей, рентгенолаборантов, студентов медицинских институтов и медико-технических факультетов, а также других работников здравоохранения.

Технологические основы рентгеновской компьютерной томографии

Диагностика заболеваний внутренних органов всегда представляла большой интерес для врача. Длительное время для постановки диагно­за основой были рентгеновские снимки, дополненные по показаниям продольной томографией и рентгеноскопией. С момента начала приме­нения рентгеновских лучей в диагностическом процессе прошло более 100 лет. За этот период в классической рентгенологии был накоплен ко­лоссальный опыт их применения. Однако недостаточно высокие для современных требований точность, чувствительность и специфичность общерентгенологического метода (связанные как с самой рентге­новской пленкой, так и способом получения изображения) оставались серьезным препятствием для ранней диагностики заболеваний органов

и систем человека.

Научно-технический прогресс способствовал появлению принци­пиально новых методов лучевой диагностике, таких, как компьютерная томография (КТ), сонография, сцинтиграфия, ангиография, магнитно-резонансная томография с возможностью спектроскопии. Из этих нап­равлений наиболее революционным достижением в развитии рентгено­логии стало появление нового быстроразвивающегося метода - полу­чение изображения органов и тканей по данным измерения степени поглощения рентгеновского излучения объектом исследования, полу­чившего название рентгеновская компьютерная томография (РКТ).

Впервые методику определения рентгенологической плотности объ­ектов с использованием движущейся рентгеновской трубки предложил нейрорентгенолог W. Oldendorf (1961). Математические принципы реко­нструкции изображения были разработаны Frank (1918) и Cormarck П969). Первые томографические изображения головного мозга были получены инженером английской фирмы электромузыкальных инстру­ментов (EMI) G. Hounsfield, который создал первый прототип рентгеновского компьютерного томографа. Результаты первых экспериментов исследовании структур головы были настолько оптимистичны, что в августе 1970 г. он приступил к работе по изготовлению прототипа аппарата для клинического применения. В 1971 г. была создана установка сканирования, получившая название EMI-Scaner. Эта установка представляла сложную механико-электрическую рентгеновскую систе­му, основанную на принципе линейно вращательного движения блока «рентгеновская трубка - детектор полученного излучения» вокруг стола с пациентом. С пульта управления EMI-Scaner цифровые данные иссле­дования направлялись в специализированный вычислительный центр в котором в течение 6 ч производилась обработка информации. Тогда же, в 1971 г., EMI-Scaner был установлен в английском госпитале «Аткин сон Морли», где 4 октября было выполнено первое в мире КТ-исследо вание головного мозга человека в условиях медицинского учреждения И уже весной 1972 г. были опубликованы первые результаты клиничес­кого применения компьютерной томографии для диагностики заболе­ваний головного мозга.

Развитие электронно-вычислительной техники позволило в 1973 отказаться от отдельно стоящего сложного вычислительного комплекса и оснастить EMI-Scaner встроенным специализированным процессо­ром (аппарат II поколения), что не только сократило время обследова­ния пациента, но и позволило создать модель компьютерного томогра­фа для обследования органов и тканей всего тела. Время сбора данных с последующим преобразованием их в КТ-изображение составляло 4,5 мин на один КТ-срез. Эта система стала базовой для последующих поколений компьютерных томографов.

На рис. 1 схематически показан принцип действия аппарата III поко­ления, основанный на вращении жестко связанной между собой систе­мы «рентгеновская трубка - система детекторов» вокруг поступательно двигающегося стола с пациентом.

Преимущества компьютерной томографии в сравнении с рентгенографией:

1. КТ-изображение непосредственно не связано с принятым излучением, являясь результатом измерений показателей ослабления излучения только выбранного слоя.

2. Картина среза органа не имеет теней, содержащихся в других слоях.

3. Результаты представляются в цифровой форме в виде распреде­ления коэффициентов ослабления излучения.

4)Исследование тканей, незначительно различающихся между собой по поглощающей способности.

Присуждение Нобелевской премии по медицине (1979) G. Hounsfield и A. Cormarck за внедрение КТ в практику стало высшим признанием значения метода. Изображение, получаемое при КТ, значительно отли­чается от привычного рентгеновского снимка. Основное достоинство этого метода исследования в том, что КТ-изображение является резуль­татом измерений показателей ослабления излучения коллимированного рентгеновского пучка, а картина среза не содержит суммационных теней. КТ позволяет различать ткани, отличающиеся между собой по способности поглощать рентгеновское излучение (по коэффициенту аб­сорбции) и дифференцировать различные анатомические структуры (органы и ткани).

Несмотря на успехи современной лучевой диагностики, задачи ран­него выявления заболеваний и оценки эффективности проводимых ле­чебных мероприятий в настоящее время полностью не решены.

Устройство рентгеновского компьютерного томографа

1. Штатив (гентри), в который вмонтированы рентгеновская трубка, коллиматор, система детекторов, система сбора и передачи информа­ции на персональный компьютер. В штативе имеется отверстие, внутри которого перемещается стол с пациентом. Сканирование производится перпендикулярно (либо под углом) к продольной оси тела.

2. Стол, оборудованный транспортером для перемещения пациента.

3. Консоли управления установкой.

4. Персональный компьютер для обработки и хранения информации,

представляющий собой единый комплекс с консолью управления и штативом.

Принцип работы рентгеновского компьютерного томографа

В основе работы рентгеновского компьютерного томографа лежит просвечивание тонким рентгеновским лучом объекта исследования с последующими регистрацией не поглощенной части прошедшего че­рез этот объект излучения и выявлением распределения коэффициен­тов поглощения излучения в структурах полученного слоя. Пространственное распределение этих коэффициентов преобразуется компью­тером в изображение на экране дисплея, доступное для визуального и количественного анализа.

В процессе развития компьютерной томографии было создано несколько поколений компьютерных томографов.

В томографах I поколения (упомянутый выше EMI-Scaner, впервые установленный в 1971 г. в английском госпитале «Аткинсон Морли») ос­нову системы сканирования исследуемого объекта составляли рентге­новская трубка (как источник излучения) и один детектор, расположен­ные друг напротив друга. Блок рентгеновская трубка - детектор совер­шал только поступательное движение в плоскости среза.

В томографах II поколения использован аналогичный принцип ска­нирования. Модификацией были увеличение количества детекторов (до 100) и более широкий спектр ракурсов просвечивания, что позволило сократить время сканирования.

Аппараты III поколения стали дальнейшим развитием системы ска­нирования. В этих моделях был применен вращательный тип движения сканирующей системы (см. рис. 1) с большим количеством детекторов. Томографы III поколения позволили сканировать все тело пациента и по­лучили широкое распространение. (Они до настоящего времен i используются во многих медицинских учреждениях). Однако имеются2 обстоятельства технического свойства, на которые следует обратить внимание. Прежде всего, необходимо отметить основной недостаток аппаратов III поколения: жесткое крепление системы рентгеновская трубка - блок детекторов, которое при сбое работы одного из детекто­ров (или в измерительном канале) проявляется на изображении в виде кольцевого артефакта, вызывая проблемы последующей визуализации объекта исследования. Все это послужило основанием для создана следующего - IV поколения компьютерных томографов.

В компьютерных томографах IV поколения используется принципиаль­но новый вид технического решения системы рентгеновская трубка - де­текторы. В этом случае детекторы неподвижно размещены по всей внут­ренней поверхности кольца, внутри которого вращается источник излуче­ния. При этом количество детекторов составляет 4 тыс., а на некоторых моделях и 4,8 тыс. (фирма Picker, США), что позволяет добиться разреше­ния 22 пар линий/см. При этом при спиральном сканировании (об этом ре­жиме речь пойдет далее. - Прим. авт.) на оборудовании этого производи­теля разрешающая способность аппаратов остается неизменной.

Большое количество детекторов позволяет обеспечить максимально плотное их размещение (минимизируя попадание излучения в промежутки между детекторами), что повышает эффективность использования источника излучения и снижает лучевую нагрузку на пациента. В аппаратах IV поколения цикл сканирования соответствует обороту рентгеновской Т рубки (360°) с экспонированием от 1,0 до 0,25°, в результате чего собираются данные от 360 до 1440 проекционных профилей соот­ветственно.

В V поколении компьютерных томографов источником электронов является электронная пушка. Поток электронов попадает на тормозные пластины, образуя рентгеновское излучение. Для визуализации изображения требуется 5 мл/с с последующей трехмерной реконструкцией. Апертура компьютерного томографа V поколения более 1 м, что позво­ляет укладывать пациента самым разным образом. Следует отметить, что во всем мире используется около 100 томографов V поколения -из-за высокой стоимости и сложности технического обслуживания ши­рокого применения они не получили.

В настоящее время имеются два варианта КТ-сканирования - ак­сиальное и спиральное. На аппаратах II поколения возможно только ак­сиальное сканирование. Применение КТ-аппаратов последующих поко­лений позволяет использовать как аксиальное, так и спиральное скани­рование. Различия между этими видами обработки информации заклю­чаются в следующем.

При аксиальном сканировании получается такой вид изображения, который ограничивает качество последующей реконструкции.

Спиральное сканирование - новый этап в развитии КТ. В этом случае продуцируется один непрерывный массив информации, что дает новые возможности для последующей реконструкции изображения. (С каждо­го витка спирали можно получить множественные срезы. При этом па­раметры обработки данных можно выбрать до и после получения информации). Спиральное сканирование в отличие от аксиального осуще­ствляется при непрерывном движении стола через поле сканирования, которое образует постоянно вращающаяся рентгеновская трубка.

Преимущества спирального типа сканирования: скорость проведе­ния исследования, исключение пропуска информации между КТ-срезами, возможность синхронизировать КТ с введением большого объема контрастного препарата и выполнять исследования в разные промежут­ки времени после его введения. Особое внимание при получении изоб­ражения следует обратить на возможность использования в этом случае ещё одной или нескольких обработок «сырых» математических данных сканирования, для чего было введено новое понятие «индекс рекон­струкции» (толщина слоя, выделяемого из «сырых» данных компью­тера). Если величина индекса реконструкции меньше толщины выде­ляемого КТ-слоя, восстанавливаемого из «сырых» данных, то происхо­дит математическое наложение близлежащих периферических отделов КТ-срезов, что позволяет получить новую серию изображений высокого качества той же области сканирования без риска для пациента, так как повторное сканирование (дополнительное облучение) отсутствует. Однако при этом значительно увеличивается количество реконструированных срезов, что увеличивает время анализа КТ-информации. Математическое наложение близлежащих слоев позволяет нивелировать зубчатые края контуров органов и тканей при построении качественных мультипланарных и трехмерных изображений.

Мультислайсовая КТ - последнее достижение в развитии методики сканирования: благодаря увеличению рядов детекторов за один оборот рентгеновской трубки можно получить до 320 срезов. С помощью мультислайсовой КТ также получают цифровое изображение поперечных срезов любого отдела тела человека, отражающее топографию органов и систем, а также локализацию, характер и стадии выявленных измене­ний, их взаимосвязи с окружающими структурами. При этом сохраняет­ся эффективность спирального сканирования. Одним из достоинств мультислайсового способа сканирования является возможность после­дующих реконструкций с изменением величин толщины среза и шага стола томографа. Последующая реконструкция полученных при иссле­довании КТ-срезов дает полное представление об анатомо-топографических взаимоотношениях.

Мультислайсовый компьютерный томограф представляет собой сверхбыстрый вычислительный комплекс, позволяющий сократить до нескольких минут время самого сложного в методическом плане иссле­дования. На аппарате этого класса при соответствующем анестезиоло­гическом обеспечении можно обследовать детей в возрасте от одного года и старше. Ограничениями в данном случае являются лучевая нагрузка на пациента и разрешающая способность аппарата.

Для диагностики заболеваний легких мультислайсовая спиральная КТ особенно важна, позволяя оценивать узловые образования в легоч­ной ткани: их размеры, объем, скорость роста. Автоматически и с высо­кой чувствительностью вычисляется время удвоения размера узла, а кроме того, выстраивается трехмерная модель узлового образования с выделением из сосудистых и плевральных структур, что дает представление о его наружном изображении.

Мультислайсовая спиральная КТ - незаменимая неинвазивная мето­дика в кардиологии. С ее помощью получают изображения сердца в раз­личные фазы, подсчитывают сердечные объемы, такие как фракция выброса левого желудочка, пиковая скорость выброса, диастолические объемы правого и левого желудочков, конечный диастолический и удар­ный объемы, а также толщину миокардиальной стенки, ее подвижность, массу миокарда и, кроме того, выполняют объемную реконструкцию на­ружного изображения сердца.

Следует отметить, что использование неионных контрастных препаратов в различной концентрации (ультравист, омнипак и т. д.) существенно повышает надежность и безопасность контрастных исследований при КТ.

Возможности мультислайсовой спиральной КТ свидетельствуют о том, что данная методика исследования позволяет по-новому осмыслить представления о роли КТ в диагностическом процессе. В первую очередь это обусловлено возможностями сканирования, которое практически исключает пропуск диагностически важной информации при поиске небольших по размеру патологических изменений, а также быстрого сканирования анатомически больших областей без потери качества. Пои этом необходимо подчеркнуть возможность малоинвазивного исследования сердечно-сосудистой системы с использованием болюсного внутрисосудистого введения контрастного вещества. К тому же данная КТ-методика позволяет получить и изучить данные о состоянии паренхиматозных органов и тканей в различные фазы (артериальную, венозную, смешанную) прохождения контрастного вещества по иссле­дуемому органу, а также объединить полученные при КТ-исследовании данные в одно комбинированное изображение органов и тканей. Такое комбинированное изображение можно рассматривать в различных плоскостях (мультипланарная реконструкция), строить объемное трех­мерное изображение, вращая его на экране монитора под любым углом вокруг оси.

С внедрением новых компьютерных методик становится возможным исследовать сердечно-сосудистую систему. Это позволяет быстро и ка­чественно получить представление об анатомии сердца и сосудов в выб­ранной анатомической области: измерить ход, минимальный и макси­мальный диаметр, степень стеноза в процентном отношении и абсолют­ных величинах, его протяженность, а также осуществить планирование хирургического вмешательства и контроль за его эффективностью.

Благодаря наличию объемного пакета программного обеспечения в современных аппаратах стало реальным создание томограмм практи­чески в любой плоскости. Трехмерная реконструкция КТ-данных, позво­ляет получить более детальное представление об анатомо-топографических взаимоотношениях органов и систем. С внедрением трехмерных изображений изучаемых органов и систем возрастают наглядность и Достоверность получаемых данных.

Примеры трёх различных компьютерных томографов для мелких животных

1 - рентгеновская трубка; 2 – поворачивающийся образец; 3 – детектор; 4 – ось вращения; 5 – конический луч; 6 – варьирующее увеличение; 7 – поворачивающийся гентри; 8 – мышиная кровать.

Настольный микро-КТ (A, B) с вращающейся моделью держателя, стационарным детектором области и микрофокусной рентгеновской трубкой, обеспечивающей усиленное излучение. Такая установка в основном используется для проведения лабораторных исследований. Хорошие результаты исследования зависят от оптимального соотношения между полем сканирования, чёткостью, хорошей фиксации животного к столу, при условии вращающегося гентри (C, D). Всё большие требования к пространственному разрешению, быстрому и более широкому сканированию исследуемого поля достигаются и отображаются на плоской панели детектора, крутящегося гентри со стационарным столом (E, F).

Таблица 1. Сравнение показателей микро-, мини- и клинических компьютерных томографов.

КлиническийКТ

Подходит для

Образцы тканей, насекомые, мыши, крысы

Мыши, крысы, кролики, приматы,

мини-свиньи

До людей

Пространственное разрешение (изотропное)

5 мкм (одна конечность) - 100 мкм (целое животное)

100 – 450 мкм

> 450 мкм (z-ось > 600 мкм)

Осевое сканирование поля зрения

Время получения "стандартного"

объёма (например, всего животного)

От нескольких секунд до нескольких часов (иногда наблюдается получение компьютерными томографами одного среза

менее, чем за секунду)

От 0,5 секунды до нескольких секунд

Через несколько секунд (с вращением

Доза радиации

~ 10-500 мГр

Настольный, вращающийся образец (с изменением

геометрии, резкости сканирования в поле зрения и т.д.)

или вращающийся гентри

Вращающийся образец или вращающийся

гентри (определённая геометрия)

Вращающийся гентри (определённая геометрия)

Компенсирование сердечных и дыхательных движений

Ожидаемый запуск

Ожидаемый запуск, ретроспективный строб

Модуляция сканирования, ретроспективный строб

Примеры цифр

Рис. (1 ) A, B, C, D, (3 ), (4 )

Рис. (1 ) E, F, (2 ), (5 ), (6 )

Основы получения изображения

Компьютерно-томографическая диагностика основана на традици­онных рентгенологических принципах работы, и важнейшими задачами, которые необходимо решить при проведении исследования, являются определение точной локализации, количества, формы и размеров пато­логических очагов, интенсивности их тени, четкости контуров, а также один из основных моментов - возможность математически точного оп­ределения коэффициента абсорбции (плотности) исследуемой ткани, отражающего величину поглощения пучка рентгеновского излучения при прохождении через тело человека. В зависимости от плотности каж­дая ткань по-разному поглощает рентгеновское излучение, и, соответ­ственно, для каждой ткани имеется свой коэффициент абсорбции. Пер­сональный компьютер выполняет математическую реконструкцию вы­численных коэффициентов абсорбции и их пространственное распре­деление на многоклеточной матрице с последующей трансформацией в виде изображения на экране дисплея. Картина воспроизводится на матрице, размеры которой зависят от конструкции аппарата (от 256 на аппарате Somatom CR фирмы Siemens до 1024 на аппарате PQ-6000 фирмы Picker) с соответствующей величиной клетки (пиксель). Увеличе­ние матрицы наряду с увеличением количества детекторов, а также плотности их расстановки позволяет определить коэффициент абсорб­ции меньшего участка КТ-изображения. Коэффициенты абсорбции из­меряются в относительных единицах по шкале плотностей, предложен­ной G. Hounsfield (рис. 2), известных как единицы Хаунсфилда (ед.Н).

Таким образом, компьютерный томограф обладает двумя видами разрешающей способности: пространственная (зависящая от размера клетки матрицы) и перепад плотности (порог чувствительности равен 5 ед.Н (0,5%).

Шкала плотностей позволяет сопоставлять коэффициент абсорбции различных тканей с поглощающей способностью воды, коэффициент абсорбции которой принят за 0. На практике положение центра окна ус­танавливают равным измеренному или ожидаемому среднему значению плотностей исследуемых структур в области интереса, а ширину окна - в соответствии с диапазоном плотностей исследуемых органов и тканей. Окно шириной в 256 значений градаций серого может быть раз­мещено на любом участке шкалы плотностей путем произвольного вы­бора центра окна. Если значения чисел в матрице изображения пропор­циональны значениям чисел Хаунсфилда в матрице реконструкции, то те участки экрана, которые отображают более плотные ткани, будут выглядеть светлее, чем рентгенологически менее плотные области. Со­ответственно, на экране монитора белым цветом будут отображаться наиболее рентгенологически плотные структуры, а более темным цве­том - структуры, имеющие меньшую рентгенологическую плотность. Изменение плотностных характеристик органов и тканей на экране ви­зуально будет восприниматься как изменение контрастности. Регулируя ширину окна, можно изменять изучаемый диапазон плотностей, что ви­зуально будет восприниматься как изменение в контрастности изобра­жения близких по значению плотности структур.

Следует отметить, что соотношение, предложенное G. Haunsfield, имеет простую физическую интерпретацию. В этой системе отсчета ед.Н воды равна 0, ед.Н воздуха равна -1000, а для самых плотных структур ед.Н составляют примерно 3000.

Диагностические возможности компьютерной томографии

Поданным литературы (2, 6, 8,11, 19, 24, 31, 48, 50, 53), чувствитель­ность метода составляет от 80 до 95%, специфичность несколько ни­же - 75-90% для различных патологических процессов.

Известны 2 типа ограничений диагностических возможностей рент­геновской КТ - объективные и субъективные.

К объективным ограничениям относятся:

1) малые размеры патологического очага, отсутствие градации плот­ностей между патологическими и неизмененными тканями;

2) атипичное течение патологического процесса при нетипичной КТ-картине.

Субъективные ограничения включают:

1) неверно выбранную тактику исследования;

2) ошибки, возникающие в результате неполноценной подготовки па­циента к исследованию или из-за артефактов технического порядка, обусловленных подвижностью объекта исследования.

Для качественной реконструкции необходимо выполнять десятки срезов. При этом сразу же встает вопрос о лучевой нагрузке на пациента, которая представляет собой величину эффективной дозы (Е). Эффективная доза - условное понятие, характеризующее дозу равномерного облучения всего тела, соответствующую риску появления отдаленных последствий при дозе реального неравномерного облучения определенного органа (или нескольких органов). Измеряется эффективна доза в зивертах (Зв).

В настоящее время дозовая нагрузка для жителя нашей страны при рентгенологических обследованиях составляет 2,5-3,0 мЗв в год, что 2-3 раза превышает уровень облучения в таких странах, как Англия Франция, Швеция, США, Япония (2, 17, 23).

Для качественной мультипланарной реконструкции необходимо делать десятки КТ-срезов, а значит, при выполнении исследования следует рассматривать все возникающие вопросы о лучевой нагрузке на пациента.

В Российском научном центре рентгенорадиологии Минздравсоцразвития РФ было проведено исследование дозовых нагрузок на пациентов при выполнении ряда рентгенологических процедур, включая КТ. По результатам проведенной работы (11, 39) было установлено, что К является наиболее щадящим методом рентгеновского исследования (табл. 1).

Необходимо подчеркнуть, что для рентгеновской КТ характерны ло­кальность лучевой нагрузки и высокий уровень защиты других органов от рассеянного излучения. Кроме того, лучевая нагрузка, благодаря модернизации оборудования, уменьшается.

Таблица 1. Эффективные дозы при ряде компьютерно-томографических и

рентгенографических исследований

Организация отделения компьютерной томографии

Штат отделения рентгеновской компьютерной томографии мно­гопрофильной 600-коечной больницы, как правило, состоит из 6 чело­век (2 врача, 3 рентгенолаборанта и 1 инженер). По нашему опыту, это­го числа специалистов вполне достаточно для эффективного функцио­нирования подразделения.

Следует отметить, что штатное расписание кабинета РКТ регламен­тируется приказом Минздрава РСФСР № 132 от 02.08.91, в соответст­вии с которым кабинет РКТ входит в состав отдела (отделения) лучевой диагностики лечебно-профилактического учреждения, возглавляет его квалифицированный врач-рентгенолог, прошедший подготовку по рентгеновской компьютерной томографии. При этом штатные нормативы кабинета РКТ устанавливаются с учетом обеспечения работы не менее чем в двухсменном режиме из расчета для односменной работы: 1 врач-рентгенолог, 2 рентгенолаборанта и 1 инженер.

В отделении обследуются пациенты с патологией практически всех, кроме «движущихся», например сердца, органов как хирургического, так и терапевтического характера.

Запись больных на исследование производится на основании заявки и истории болезни - для стационарных больных, на основании краткой выписки из амбулаторной карты с обоснованием цели исследования -для амбулаторных больных. Амбулаторные больные обследуются в по­рядке очереди по предварительной записи, стационарные - в тот же (экстренная диагностика) либо на следующий день после необходимой подготовки для проведения процедуры.

Компьютерно-томографическое исследование проводится по следу­ющей схеме:

1) анализ медицинской документации, определение тактики КТ-исследования;

2) размещение пациента на столе;

3) ввод в компьютерный томограф общих сведений (паспортные данные. Дополнительные комментарии);

4) выполнение томограммы: уточнение исходного уровня выполнения процедуры и возможного угла наклона рамы томографа, т.е. определяется план исследования;

5) выполнение серии КТ-срезов;

6) запись полученной информации на магнитный и фотоносители;

7) обработка и описание результатов сканирования.

На компьютерно-томографическое исследование без внутривенного контрастного усиления отводится 45 мин, с внутривенным контрастным усилением - 60 мин. Полученное изображение фиксируется на жесткий диск то­мографа (временное хранение), магнитную ленту, компакт-диск, рент­геновскую пленку (для длительного хранения). Фотопроцесс осущес­твляется в специальной лаборатории (минимальная площадь 12 м 2) ав­томатически при помощи проявочной машины. Архив рентгенограмм хранится в специальной комнате в несгораемых шкафах.

В день исследования пациента его основные личные (паспортные) и анамнестические данные вводятся в базу данных персонального компь­ютера, где при помощи специально созданной программы выполняется описание полученных КТ-данных. Кроме того, основные сведения - пас­портные данные, уровень КТ-исследования, предварительный диагноз, заключение по результатам КТ, учет израсходованной пленки - записы­ваются в специальные журналы. Картотека обследованных больных (паспортные данные, название медицинского подразделения, напра­вившего пациента на исследование, дата и уровень исследования, предварительный диагноз, описание КТ-данных, количество выполнен­ных снимков) хранится в базе данных персонального компьютера и ре­гулярно подвергается статистической обработке.

Компьютерная томография - метод, который позволяет провести эффективную диагностику при помощи сканирования исследуемого участка и получить послойные изображения той или иной части тела. Каков принципы действия КТ?

Устройство аппарата и принцип действия метода компьютерной томографии

Что представляет собой специальный сканер? Этот аппарат напоминает куб или тоннель цилиндрической формы. В число основных частей прибора входят:

  • лучевая трубка, скрытая в корпусе КТ;
  • подвижный стол, который проходит через раму гентри;

Поскольку от аппарата исходит излучение, комната, в которой находится томограф защищается специальным экраном. Еще один вариант защиты пациентов и специалистов от негативного воздействия рентгеновского излучения - включение кабинета с медицинским оборудованием в структуру помещений отделения.

Как осуществляется управление сканером

Врач, располагающийся в специальной комнате, следит за ходом процедуры, и совершает необходимые манипуляции. Рядом с ним находятся:

  • компьютерный блок КТ;
  • мониторы, на которые выводится изображение;
  • специальные устройства. предназначенные для слежения за состоянием обследуемого.

Особенность процедуры

Возможности современной медицины позволяют предотвратить развитие серьезных болезней и обнаружить новообразования на ранних стадиях развития опухолевого процесса. Все это стало реальностью благодаря созданию установок, воздействующих на организм пациента при помощи излучения. Результатом процедуры становится детальный снимок, обеспечивающий безошибочную современную диагностику.

Для того чтобы разобраться в специфике обследования нужно определить, что такое КТ. Это метод, в основе которого лежит рентгеновское излучение. Специальный прибор осуществляет съемку тела больного под разными углами, а полученные срезы позже обрабатываются компьютерной программой и преобразуются в единое изображение. Проходя через тело исследуемого, X-лучи задерживаются в тканях,от степени поглощения которых зависит четкость и детализация проекции.

Принципы работы КТ (компьютерной томографии) просты: вокруг больного вращается рентгеновская трубка - специальное устройство, выпускающее рентгеновское излучение. Позже установка фиксирует сведения, попадающие на чувствительную матрицу, а компьютерная программа производит обработку полученной информации и позволяет увидеть четкую картинку.

Отличия компьютерной томографии от рентгенографии

  • КТ дает возможность рассмотреть мелкие новообразования, в то время как рентгеновская установка не обладает подобной детализацией из-за наложения одного слоя на другой - явления известного как суперпозиция тканей.
  • Компьютерная томография позволяет получить изображение в поперечной плоскости: это необходимо для точного представления о соотношении органов.

Как работает КТ

Пациента кладут на специальный стол, который не стоит неподвижно, а перемещается по направлению к раме гентри. В ее устройстве заключается одно из важнейших отличий компьютерной томографии от магнитно-резонансной: отверстие не узкое, а широкое, что не вызывает у обследуемых боязни закрытых пространств. Часто перед процедурой требуется введение контрастного вещества.

Как врач получает снимки? По мере того как установка производит сканирование обследуемого участка, рентгеновские лучи проходят через различные плоскости организма: плотность тканей становится той информацией, которая передается компьютеру в виде коэффициента - цифрового значения, обрабатываемого программой. После преобразования данных в оттенки серого, изображение выводится на монитор: специалист видит серию картинок, которые представляют собой поперечные срезы исследуемого органа или части тела.

Зачем может понадобиться КТ?

Её назначают, когда необходимо тщательно исследовать области тела или конечности.

    Грудная клетка

Осмотр ГК поможет выявить ранние и запущенные стадии легочных заболеваний. Кроме того, определит наличие проблем в тканях, сосудах или пищеводе. Продиагностировать наличие очагов воспаления, инфекций, метастаз. Покажет, если легочная эмболия и аневризма аорты.

    Брюшная полость

Если исследовать эту область с помощью КТ, то можно понять, если ли болезни желудка и печени. Узнать все о том, какого характера образовавшаяся киста или опухоль. Выявить образование абсцесса, деформаций аорты брюшины. Определить размеры лимфоузлов, найти кровотечения внутренних органов.

    Мочевыводящие пути

Исследовать такие органы как: почки, мочеточники и мочевой пузырь, можно, используя одну из разновидностей КТ, называющуюся урограммой.

С её помощью можно обнаружить наличие камней в почках или любых других элементов мочевыводящей системы.

В самых сложных случаях доктора прибегают к еще одному методу, который именуется пиелограммой. Суть его состоит в том, что пациенты вводится особое контрастное вещество, после этого можно обнаружить не только отложения солей, но и различные виды опухолевых образований, как злокачественные, так и доброкачественные.

    Поджелудочная железа

Компьютерная томография хорошо справляется с выявлением панкреатитов различной степени запущенности. Кроме того, с помощью такого исследования можно определить наличие и характер опухоли этого органа.

    Желчный пузырь и желчные протоки

Можно продиагностировать проходимость протоков желчного пузыря. Кроме этого, исследование позволяет определить наличие камней. Однако для этого чаще всего используют УЗИ, которое отлично справляется с поставленной задачей.

    Надпочечники

КТ хорошо показывает наличие опухолевых образований и позволяет определить состояние и структуру надпочечника.

    Селезенка

С помощью такой диагностики можно рассмотреть повреждения тканей данного органа и оценить его размеры.

Если вовремя произвести диагностику этого отдела организма, то можно предотвратить серьёзные изменения фаллопиевой трубы или предстательных желез у пациентов различных полов.

    Конечности

КТ поможет найти различные заболевания в суставах и частях костной ткани. С легкостью справиться с диагностированием опухолей или деформаций в элементах колен, костей, бедер, щиколоток или стоп.


Некоторым современным КТ достаточно 1 вращения для получения точного и детального изображения исследуемого органа. Подобные устройства называются мультиспиральными. Высокие технологии, применяемые разработчиками медицинского оборудования, позволили улучшить качество проводимой процедуры:

  • снизить шумы, издаваемые установкой во время вращения;
  • сократить время исследования;
  • уменьшить толщину срезов и повысить диагностические возможности КТ.

Последние модели компьютерных томографов позволяют рассмотреть отдельные участки и области человеческого тела за несколько секунд, что особенно удобно при обследовании пожилых пациентов в критическом состоянии или больных, страдающих клаустрофобией.

Возросшая эффективность подобной процедуры позволяет уменьшить долю рентгеновского излучения. Подобная безопасность КТ-сканирования делает эту технологию незаменимой при исследовании детей - снижение лучевой нагрузки дает возможность полностью исключить риск развития онкологических заболеваний.

Увеличить информативность обследования на компьютерном томографе помогает введение пациенту контрастного вещества. В результате проводимая процедура приобретает сходство с ангиографией.

Что чувствует пациент во время процедуры

На самом деле, человек не испытывает никаких неприятных ощущений или боли.

В некоторых случаях ему может быть неудобно из-за того, что он лежит на жесткой поверхности или из-за открытого в кабинете окна.

Впечатлительные пациенты нервничают, когда оказываются внутри аппарата. В этом случае им предлагают успокоительное средство, которое поможет им расслабиться и не придавать значения нахождению в замкнутом пространстве.

Во время введения контрастного вещества, если это необходимо, медсестра делает все возможное, чтобы причинить наименьшее количество боли, делая инъекцию в руку.

Следует сказать немного о специфике самого вещества. Иногда после его введения люди чувствуют небольшой жар или пощипывание в месте укола. Это нормально. Однако, если вас начало тошнить или появились резкие головные боли, об этом следует немедленно сообщить доктору.

Опасна ли КТ

Если до того, как прийти на томографию, вы знали о наличии какого-либо заболевания, то не беспокойтесь о том, что данная процедура провоцирует какие-то осложнения.

Однако, стоит учесть следующие моменты:

    У некоторые пациентов наблюдаются аллергические реакции на состав контрастного вещества.

    Если вы больны сахарным диабетом любого типа или употребляете метморфин, то контраст может ухудшить ваше состояние. Таким больным необходимо получить консультацию лечащего врача еще перед проведением диагностики.

    В некоторых случаях можно говорить о возникновении онкологических заболеваний, которые могут быть спровоцированными злоупотребления разных видов КТ. В зоне риска дети и старики.Если проводить исследование не чаще нескольких раз в месяц, то об опасности можно не волноваться.Вы можете пообщаться с врачом и узнать какую именно дозу облучения вы или ваш ребенок получите после каждой процедуры и насколько это безопасно.

  • Иногда имеются риски повреждения имплантатов или кардиостимуляторов, которые находятся внутри тела человека. Именно поэтому важно предупреждать специалистов о наличии подобных приборов в вашем случае. Однако такие ситуации крайне редки, поэтому говорить о статистике подобных явлений не приходится.

Может ли что-то повлиять на действие КТ

На результаты и проведение обследования могут повлиять следующие нюансы:

    Любой срок беременности у женщин. Данная диагностика не рекомендуется все будущим мамам, особенно на первых триместрах.

    Применение таких веществ, как висмут и барий до проведения КТ. Часто, когда медики назначают ирригоскопию, которая подразумевает применение данных составов, возникает необходимость переноса КТ. Ведь и виснут и барий проявятся на конечном снимке, что затруднит постановку правильного диагноза.

    Совершение каких либо телодвижений во время нахождения в аппарате. Очень важно во время КТ оставаться неподвижным.

    Различные металлические элементы в теле пациента. Части имплантов или другие фрагменты снижают качество готового изображения, делая область вокруг них размытой.

Принципы и методы работы компьютерной томографии

    Бывает, что результаты КТ не сответствуют данным, полученным в результате магнитного исследования или ультразвукового. На самом деле, это вовсе не значить, что какое-то из обследований проведено неверно. Томография позволяет сканировать определенный орган совершенно с другого ракурса, что наоборот, делает диагностику более развернутой.

    Если вы отправляете на процедуру ребенка, то обязательно приготовьте его морально ко всему, с чем ему придется столкнуться. Научите его задерживать дыхание, расскажите об ощущениях, настройте его правильно. Часто дети не могут спокойно лежать длительное время, поэтому врачи делают им инъекции успокоительного. Расскажите ему об этом, чтобы вид иглы не напугал его ещё больше.

    Обязательно получите консультацию педиатра. Он сможет определить, насколько уровень облучения навредит состоянию маленького пациента.

    Специалисты в самых сложных случаях рекомендуют применять различные виды оборудования, чтобы сделать исследования более тщательными и сформировать многослойное изображение.

    Часто результатами КТ можно заменить результаты ПЭТ. Особенно, если дело касается диагностирования онкологии.

    Чтобы определить, есть ли у пациента ишемия или атеросклероз, врачи используют одну из разновидностей данного исследования. ЭПТ занимает меньше времени, но прекрасно подходит для диагностики состояния сердца или сосудов.Сейчас эта технология уступает мультидекторной разновидности томографии, которая является более инновационной и точной.

    В данную процедуру может входить комплекс мер, назначенный на оценку уровня усвоения кальция коронарными артериями. Это способствует определению рисков возникновения болезней сердца и сосудов.

    Иногда намного эффективнее может быть использование МРТ-технологий. Следует допускать использование разных методов для диагностирования различных заболеваний.

    Не все специалисты едины во мнении, что если исследовать с помощью КТ все тело пациента, то можно выявить ишемическую болезнь. Обязательно проконсультируйтесь со своим доктором, если вам назначена процедура именно для этой цели.

  • Помните о том, что исследование всего организма с помощью КТ - это дорого и не совсем безопасно. Злоупотребление данной процедурой повышает риски оперативного вмешательства и образования злокачественных опухолей. Поэтому, если у вас нет предпосылок предполагать наличие какого-либо заболевания, не проводите такое исследование в подобных масштабах.

Где применяется компьютерная томография

С открытием КТ врачам по всему мира стала доступна диагностика множества серьезных заболеваний: первоначально метод использовался в нейрохирургии и неврологии. Еще одна сфера применения - выявление патологий легких, надпочечников, желчного пузыря, печени и других органов брюшной полости.Точное и детализованное изображение позволяет провести полноценное исследование костей, спинного мозга и позвоночного столба.

Загрузка...