docgid.ru

Клонирование невозможно. Эксперименты по клонированию человека проходились во многих странах мира. Та самая Долли

Генные технологии основаны на методах молекулярной биологии и генетики, связанных с целенаправленным конструированием новых, не существующих в природе сочетаний генов . Генные технологии зарождались в начале 70-х годов как методы рекомбинантных (заново сконструированных) ДНК, названные генной инженерией . Современные генные технологии объединяют химию нуклеиновых кислот и белков, микробиологию, генетику, биохимию и открывают новые пути решения многих проблем биотехнологий, медицины, сельского хозяйства.

Основная операция генной технологии заключается в извлечении из клеток организма гена, кодирующего нужный признак, и дальнейшее его соединение с молекулами ДНК, способными размножаться в клетках другого организма. Основная цель генных технологий видоизменить ДНК , закодировав ее для производства белка с заданными свойствами. Генные технологии привели к разработке современных методов анализа генов и геномов, к синтезу, то есть к конструированию новых, генетически модифицированных организмов (ГМО).

На основе генной инженерии возникла новая отрасль фармацевтической промышленности – микробиологический синтез, с помощью которого получены инсулин, интерферон и другие лекарства, интенсивно используемые в лечебной практике. Генные технологии производства вакцин развиваются в двух основных направлениях. Первое – улучшение уже существующих вакцин и создание комбинированных, состоящих из нескольких вакцин. Второе направление – получение вакцин против таких болезней, как СПИД, малярия, язвенная болезнь желудка и других.

Генная инженерия позволила оплодотворить яйцеклетку in vitro, т. е. в искусственных условиях (в пробирке), а затем имплантировать зародыш в матку. В этом состоит метод экстракорпорального оплодотворения (ЭКО), который широко используется во всем мире.

С помощью молекулярных проб (фрагментов ДНК с определенной последовательностью нуклеотидов) можно определить, заражена ли донорская кровь вирусом СПИДа. А генные технологии для идентификации некоторых микробов позволяют следить за их распространением, например, внутри больницы или при эпидемиях.

Проводится целенаправленная работа по генетической модификации свойств микробов, используемых в производстве хлеба, молочной промышленности, пивоварении и виноделии с целью увеличения устойчивости производственных штаммов, повышения их конкурентоспособности по отношению к вредным бактериям и улучшения качества конечного продукта.

Однако при всех положительных результатах нельзя однозначно утверждать, что широкое практическое внедрение генных технологий не приведет к появлению новых заболеваний и других нежелательных последствий. В связи с этим все виды работ с микроорганизмами строго регламентированы, и цель таких ограничений – снижение вероятности распространения инфекционных агентов. ГМО не должны содержать генов, которые после их переноса в другие организмы могут дать опасный эффект.

Развитие генных технологий в конце XX века привело к появлению клонированных существ. Клонирование – это точное воспроизведение живого объекта в каком-то количестве копий. Клон представляет собой генетическую копию организма - донора соматической (телесной) клетки. Особенность соматической клетки - двойной набор хромосом, тогда как в половой клетке родителя только половина необходимых для развития клетки хромосом. Таким образом, клонирование относится к размножению посредством партеногенеза – бесполому размножению. Случаи подобного размножения встречаются в природе – это однояйцевые близнецы (не двойняшки). Этот достаточно редкий феномен (около 0,5 % от всех родов) возникает благодаря разделению оплодотворенной яйцеклетки на два бластомера, которые впоследствии развиваются самостоятельно.

В XX веке было проведено немало удачных экспериментов по клонированию животных, но все они были выполнены с помощью переноса ядер эмбриональных (недифференцированных или частично дифференцированных) клеток. При этом считалось, что получить клон с использованием ядра соматической (полностью дифференцированной) клетки взрослого организма невозможно. Однако в 1997 г. британские ученые объявили об успешном сенсационном эксперименте: получении живого потомства (овечка Долли) после переноса ядра, взятого из соматической клетки взрослого животного (донорской клетке более 8 лет). Недавно в США (универсистет в Гонолулу) были проведены успешные эксперименты по клонированию мышей. Таким образом, современная биология доказала, что получение клонов млекопитающих принципиально возможно. В средствах массовой информации заговорили об ошеломляющих перспективах клонирования, в первую очередь для животноводства. Особо острые дискуссии развернулись вокруг проблемы клонирования человека, что принципиально выглядит вполне выполнимым проектом.

Полученные данные заставили по-новому посмотреть на процесс клеточной дифференциации. Оказалось, что этот процесс обратим, и цитоплазматические факторы способны инициировать развитие нового организма на основе генетического материала ядра сформированной, полностью дифференцированной клетки. Можно сказать, «биологические часы» пошли вспять: развитие организма вновь может начинаться из генетического материала соматической клетки взрослого организма. Появление овечки Долли открыло новые перспективы для решения проблем геронтологии (старения организма).

Вместе с тем ученые очень осторожно относятся к перспективам клонирования, указывают на ограниченности этого метода исходя из закономерностей молекулярной генетики.

Во-первых, длительность жизни клонированного организма не будет равна времени жизни обычного организма, сформировавшегося из половых клеток, а в любом случае меньше ее (с учетом возраста донорского организма); так, овечка Долли умерла в 2003 г., прожив чуть более 5 лет, тогда как «естественные» овцы живут 14-15 лет. Предположительно, это произошло потому, что хромосомы соматической клетки значительно короче хромосом половых (зародышевых) клеток.

Во-вторых, клонированный организм будет нести на себе груз генетических мутаций донорской клетки, а значит, ее болезни, признаки старения и т.п. Следовательно, онтогенез клонов не идентичен онтогенезу их родителей: клоны проходят другой, сокращенный и насыщенный болезнями жизненный путь. Можно утверждать, что клонирование не несет омоложения, возврата молодости, бессмертия. Таким образом, метод клонирования нельзя считать абсолютно безопасным для человека.

В-третьих, клон человека не будет иметь жизненный и социально-культурный опыт донора клетки, и, значит, не является его полной копией.

Вообще, что же такое человеческий клон? С одной стороны, он может быть назван ребенком своего родителя. С другой стороны, он же одновременно является и чем-то вроде однояйцевого генетического близнеца своего родителя. Это рождает целый ряд моральных и юридических проблем.

Юристам необходимо будет определиться в следующем: должен ли обладать человеческий клон всеми правами человека и гражданина; кто должен считаться его родителями, раз в его появлении на свет участвуют три особи: донор клетки, донор яйцеклетки и суррогатная мать; нужно ли в связи с этим, а если нужно, то в каком направлении, пересматривать соответствующие разделы конституционного, гражданского, семейного и наследственного права, в частности, какие (родительские) права (и обязанности) имеют «вкладчик генетического материала», донор яйцеклетки, суррогатная мать? Вполне возможно, что юристам придется рассмотреть и вопрос о праве собственности на свою ДНК - ведь клетки могут быть взяты без согласия человека.

Юридическая сторона проблемы запутывается еще больше, если к этому добавить, что, по-видимому, нет принципиальных препятствий клонированию человека от клеток умершего человека. И тогда возникают еще вопросы: кто имеет право распоряжаться генетическим материалом умершего для последующего его клонирования; может ли индивид, чьи клетки были клонированы после смерти, считаться отцом (матерью)?

Кроме того, при клонировании человека необходимо принимать во внимание еще целый ряд аспектов. Клонирование человека может привести к коммерциализации ДНК, созданию детей с целью получения донорских органов, к осуществлению попыток создания «высшего класса» человеческих существ. В этом состоит биоэтический аспект проблемы клонирования.

Моральный аспект данной проблемы заключается в создании угрозы человеческому достоинству и личной неприкосновенности, утрате личной индивидуальности и неповторимости. Социальный аспект: при клонировании человека нарушаются важнейшие связи между личностями (кровное родство, материнство и отцовство); возникает вопрос о роли семьи в обществе клонов и опасение, что клоны «нормальными» людьми не будут восприниматься как люди. Не следует забывать и об ущемлении чувств верующих – часть проблемы религиозного плана.

Таким образом, для проведения дорогостоящих экспериментальных работ по клонированию человека в настоящее время нет ни естественнонаучной, ни нравственно-правовой базы. Не случайно многие общественные организации заявляют о неприемлемости любых попыток клонирования человека, а ООН готовит международное соглашение о запрете клонирования человека.

И все же процесс познания мира остановить невозможно. Очевидно, что исследования в области эмбриологии и клонирования человека очень важны для медицины, понимания путей достижения здоровья человека. Поэтому они должны проводиться. Сопутствующие клонированию научные знания могут быть уже сейчас полезными в решении многих медицинских проблем (лечение бесплодия, клонирование тканей и органов человека для создания банка донорских органов с целью продления его жизни). Непосредственное же клонирование человека (вплоть до обстоятельного уточнения правовых, этических и других аспектов этой проблемы) пока, по-видимому, неприемлемо.

Создание животных и растений с заданными качествами всегда было чрезвычайно заманчивым потому, что это означало создать организмы устойчивые к болезням, климатическим условиям, дающие достаточный приплод, необходимое количество мяса, молока, плодов, овощей и прочих продуктов. Однако клонирование целых высокоорганизованных организмов - процесс гораздо более сложный. Животные клетки, в отличие от растений не обладают тотипотентностью, поэтому вырастить целый организм из нескольких соматических клеток невозможно. Для клонирования животных приходится использовать процедуру переноса ядер:

1) из яйцеклетки микропипеткой удаляют собственное ядро и на его место помещают ядро соматической клетки;

2) затем индуцируют деление получившейся «зиготы» вне организма, либо в организме промежуточного (первого) реципиента (в перевязанном яйцеводе овцы);

3) полученный эмбрион на стадии бластоцисты помещают в матку суррогатной матери (окончательного, второго реципиента), где их развитие происходит до рождения детеныша.

Первый опыт клонирования земноводных датируется 1952. Впоследствии удалось клонировать также мышей, кроликов, овец, свиней, коров и обезьян. Одним из первых успех сопутствовал советским ученым Пущинского НЦ - в 1987г. появилось первое клонированное животное – мышь. Для этого из яйцеклетки мыши удаляли ядро, а затем вводили в яйцеклетку ядро из эмбриональной мышиной клетки. Т. е. был использован генетический материал соматической, но недифференцированной (неспециализированной) эмбриональной клетки .

В начале же 1990-х годов исследования ученых обратились и к крупным млекопитающим. В 1996 г. группой Вильмута было первое млекопитающее, полученное из ядра взрослой соматической клетки - овца по кличке Долли. Она прожила шесть с половиной лет и оставила после себя 6 ягнят, что вполне может говорить об успехе этого эксперимента. В дальнейшем были проведены успешные эксперименты по клонированию различных млекопитающих (козы, свиньи, коровы, бычков) с использованием ядер, взятых из взрослых соматических клеток животных, а также взятых у мёртвых, замороженных на несколько лет животных.

Надо сказать, что эксперименты, в которых использовали клетки эмбриона, изолированные на ранних стадиях развития до начала их дифференцировки, были более успешными. Дело в том, что по мере роста и развития животного соответствующие его гены "включаются" и "выключаются" в строго определенное время, что обеспечивает гармоничное формирование и функционирование всех частей сложного организма. У взрослой особи гены, регулирующие процессы в специализированных (дифференцированных) клетках, должны работать без сбоев, выполняя характерную именно для этой части тела программу: малейшие нарушения могут привести к болезни и даже гибели особи. Таким образом, клонирование животных из их взрослых клеток путем перепрограммирования последних на нормальное эмбриональное развитие представляет собой хотя и выполнимую, но крайне сложную задачу, которую многие специалисты считали неразрешимой.

Процедура переноса ядер часто сопровождается повреждением внутриклеточных структур, что приводит к гибели большинства зародышей: выход потомства не превышает 10-15 % от количества полученных «зигот». Кроме того, из-за отсутствия среди исследователей однозначного мнения о влиянии переноса ядер на здоровье и продолжительность жизни животных, в настоящее время действует мораторий на эксперименты по клонированию человека. В некоторых странах (США, Великобритания) на законодательном уровне разрешено терапевтическое клонирование человека, когда развитие человеческого эмбриона останавливается в срок не позднее 14 дней, после чего эмбрион используется для получения стволовых клеток. Однако законодатели многих стран опасаются, что легализация даже терапевтического клонирования может привести к его переходу в репродуктивное.

Сама идея клонирования Homo sapiens ставит перед человечеством ряд нерешенных проблем:

·технологические : невозможность достичь стопроцентной чистоты опыта (полного повторения) обуславливает некоторую не идентичность клонов, по этой причине снижается практическая ценность клонирования. Точное воспроизведение организма, даже при естественном клонировании, невозможно, поскольку при клонировании копируется генотип, а не фенотип. Кроме того, даже при развитии в одинаковых условиях клонированные организмы не будут полностью идентичными, так как существуют случайные отклонения в развитии. Это доказывает пример естественных клонов человека - монозиготных близнецов, которые обычно развиваются в весьма сходных условиях. Родители и друзья могут различать их по расположению родинок, небольшим различиям в чертах лица, голосу и другим признакам. Они не имеют идентичного ветвления кровеносных сосудов, также далеко не полностью идентичны их папиллярные линии. Хотя конкордантность многих признаков (в том числе связанных с интеллектом и чертами характера) у монозиготных близнецов обычно гораздо выше, чем у дизиготных, она далеко не всегда стопроцентная. Клонированный организм будет отличаться от материнского за счет:

Соматических мутаций,

Влияния окружающей среды на фенотип

Случайных отклонений, возникающих в ходе онтогенеза.

Из экспериментов с клеточными культурами известно, что у всех позвоночных животных число циклов деления клеток ограничено. Это значит, что если взять клетку взрослого человека, уже прошедшую какую-то часть циклов размножения, то эта клетка и донор закончат свою жизнь ровно с той же скоростью.

· социально-этические : возможные неудачи приведут к созданию неполноценных людей. Как поступать с ними? Имеет ли человек право уничтожать неполноценный клон и как это расценивать (как убийство?). При терапевтическом клонировании проблемой является создание человека лишь для немедленного умерщвления, так же практически неизбежное при современных методиках, например при ЭКО, создание сразу нескольких идентичных клонов, которые практически всегда уничтожаются. Использование клонирования для получения отдельных органов с целью пересадки, предполагает необходимость вырастить весь организм, а не его часть, т.к. в организме существует динамика сложнейших взаимосвязей, индукционных процессов.

· этико-религиозные : клонирование - создание жизни искусственным, противоестественным способом. Проблема в возможности потери уникальности личности.

· социально -правовые : вопросы отцовства, материнства, наследования, брака и др.

· биологические : долгосрочная непредсказуемость генетических изменений. Нет необходимой информации о последствиях для человечества.

Генная терапия

Генная терапия (генотерапия) – это лечение наследственных болезней путем введения пациенту здоровых генов, помимо или вместо дефектных. При этом "маневрированиие" с генетической информацией в живом организме человека требует решения множества сложных технических задач:

Ввести чужеродный ген в клетку и добиться его встраивания в подходящий участок хромосомы

Добиться последующей экспрессии("включения") нормального гена путем введения химических стимуляторов

- «выключить» дефектный ген или вызвать его обратную мутацию

Этиологическое лечение какого-либо наследственного заболевания предполагает изменение структуры ДНК не в одной клетке, а во всех функционирующих клетках (и не только функционирующих).

Сложности этой задачи очевидны, хотя методы для их решения уже имеются в настоящее время.

Первая успешная попытка применения генотерапии в клинической практике была предпринята в 1990 г. в США: ребенку, страдающему тяжелым комбинированным иммунодефицитом, вместо дефектного гена, аденозиндезаминазы ввели его неповрежденную копию. К сожалению, полного излечения достичь не удалось, т.к. требовались повторные введения того же гена в новые клоны лимфоцитов. Сегодня на различных стадиях разработки находится более двухсот различных проектов генной терапии, направленных на лечение моногенные заболеваний (фенилкетонурии, гемофилии, талассемии, муковисцидоза, лизосомных болезней накопления и других).

В лечение генами существуют несколько подходов и технологий . Гены можно вводить в половые клетки, в клетки эмбриона на ранних стадиях развития, либо в соматические клетки.

При работе с половыми и эмбриональными клетками предполагается, что «здоровый» ген попадет во все клетки реципиента. Тем самым происходит исправление его собственного генотипа, и, что важно, создадутся условия для оздоровления генофонда будущих поколений. Однако в настоящее время подобные исследования находятся под запретом по этическим причинам.

Генотерапия соматических клеток получила большее развитие, она затрагивает только организм самого пациента. Генетическая модификация может производиться:

· in vivo - непосредственно в организме больного. В этом случае предусмотрено прямое введение последовательностей ДНК в ткани больного, что сопряжено с техническими трудностями по целенаправленной доставке ДНК к определенным типам клеток. Пока заметные успехи достигнуты только в разработке аэрозольных вакцин для лечения легочных заболеваний.

· ex vivo – вне организма больного, что предполагает выделение и культивирование специфических типов клеток пациента, введение в них чужеродных генов, отбор трансформированных клеток и их возвращение в организм больного.

Все перечисленные методы используются для так называемой заместительной терапии - когда дефектный ген в геноме сохраняется, а внесенная копия заменяет его по функциям. Вероятно, в будущем станет возможно проведение корректирующей терапии , направленной на исправление дефектов «больного» гена.

Человеческий эмбрион (6 дней после оплодотврения)

Плюрипотентные зародышевые клетки, полученные из крови пуповины человека

Стволовые клетки костного мозга человека (электронная микрофотография)

Эритроциты – первые специализированные клетки, полученные из стволовых клеток человека

Колонии недифференцированных эмбриональных стволовых клеток человека при увеличении х 20

В октябре 2001 г. компании Advanced Cell Technology (АСТ, США) удалось впервые получить клонированный эмбрион человека, состоявший из 6 клеток. Это означает, что клонирование эмбрионов в медицинских целях (так называемое терапевтическое клонирование) уже не за горами.

Целью такого клонирования является получение бластоцистов человека (полых сферических образований, состоящих примерно из 100 клеток), которые содержат внутреннюю клеточную массу. После извлечения из бластоцистов внутренние клетки могут развиваться в культуре, превращаясь в стволовые клетки, которые, в свою очередь, могут превращаться в любые дифференцированные клетки человека: нервные, мышечные, кроветворные, клетки желез и т.д.

Медицинские применения стволовых клеток очень перспективны и необычайно разнообразны. Они могут использоваться, например, для лечения сахарного диабета путем восстановления популяции погибших или поврежденных клеток поджелудочной железы, производящих инсулин. Их можно использовать и для замены нервных клеток при повреждениях головного или спинного мозга. При этом не возникает опасности отторжения трансплантатов и прочих нежелательных осложнений, сопровождающих обычные операции по пересадке клеток, тканей и органов.

В последнее время термин «терапевтическое клонирование» стали использовать и для обозначения клонирования эмбрионов, предназначенных для имплантации в матку женщины, которая затем может родить клонированного ребенка. Это оправдывают тем, что такое клонирование позволит иметь детей бесплодным парам. Однако оно не имеет отношения к лечению как таковому. Поэтому большинство ученых, занимающихся клонированием в медицинских целях, считают, что время «репродуктивного» клонирования еще не наступило – предстоит решить еще множество сложнейших биологических, медицинских и этических проблем.

Под клонированием понимают получение эмбриона либо при замене ядра яйцеклетки на ядро соматической клетки, либо путем партеногенеза, т.е. при делении неоплодотворенной яйцеклетки. В обоих случаях для клонирования необходимы жизнеспособные яйцеклетки, которые могут быть получены только от доноров.

На объявление компании АСТ с просьбой предоставить материал для научных исследований в области клонирования откликнулось множество женщин, из которых после тщательной проверки здоровья и психического состояния были отобраны 12 доноров. Интересно, что большинство потенциальных доноров заявили, что отказались бы участвовать в экспериментах по репродуктивному клонированию.

Донорам делали специальные инъекции гормонов, чтобы при овуляции выделялась не одна, а примерно 10 яйцеклеток. В качестве источников ядер для пересадки в яйцеклетки использовали фибробласты. Фибробласты получали из биопсий кожи анонимных доноров, среди которых были больные сахарным диабетом, а также пациенты с повреждениями спинного мозга. После выделения фибробластов из них получали культуры клеток.

В первых экспериментах были использованы ядра фибробластов. Однако после пересадки ядра яйцеклетка хоть и начинала делиться, но процесс быстро завершался, и не образовывалось даже двух раздельных клеток. После ряда неудач американские исследователи решили использовать подход Т.Вакаямы и Р.Янагимачи (так называемый гавайский метод), с помощью которого была получена первая клонированная мышь.

Этот метод состоит в том, что вместо ядра соматической клетки (фибробласта) в яйцеклетку пересаживается целая овариальная клетка. Овариальные клетки обеспечивают питанием развивающуюся яйцеклетку и настолько прочно с ней связаны, что сохраняются на ее поверхности даже после овуляции. Эти клетки настолько малы, что вместо ядра можно использовать целую клетку.

Однако и в этом случае возникли значительные трудности. Потребовалось более 70 экспериментов, прежде чем удалось получить делящуюся яйцеклетку. Из 8 яйцеклеток, в которые были введены овариальные клетки, две образовали четырехклеточный эмбрион, а одна – шестиклеточный. После этого их деление прекратилось.

Партеногенетический подход основан на том, что яйцеклетка становится гаплоидной не сразу, а на довольно позднем этапе созревания. Если бы такую почти созревшую яйцеклетку удалось активировать, т.е. стимулировать к делению, можно было бы получить бластоцист и стволовые клетки. Недостаток этого подхода заключается в том, что полученные стволовые клетки будут генетически родственны только донору яйцеклетки. Получить стволовые клетки для других людей таким способом невозможно – обязательно потребуется пересадка ядер в яйцеклетку.

Ранее были удачные попытки активации яйцеклеток мышей и кроликов с помощью различных веществ или электрического тока. Еще в 1983 г. Э.Робертсон получила стволовые клетки из партеногенетического эмбриона мыши и показала, что они могут формировать различные ткани, включая мышечную и нервную.

С человеческим эмбрионом все оказалось сложнее. Из 22 яйцеклеток, активированных химическим путем, только 6 образовали через пять дней нечто похожее на бластоцист. Однако внутренней клеточной массы в этих бластоцистах не было…

Существуют три типа клонирования млекопитающих: эмбриональное клонирование, клонирование зрелой ДНК (репродуктивное клонирование, метод Рослина) и терапевтическое (биомедицинское) клонирование.

При эмбриональном клонировании клетки, образующиеся в результате деления оплодотворенной яйцеклетки, разделяются и продолжают развиваться в самостоятельные эмбрионы. Так можно получать монозиготных близнецов, тройни и т.д. вплоть до 8 эмбрионов, развивающихся в нормальне организмы. Этот метод давно используется для клонирования животных различных видов, но по отношению к человеку его применимость исследована недостаточно.

Клонирование ДНК состоит в переносе ядра соматической клетки в неоплодотворенную яйцеклетку, из которой предварительно удалено ее собственное ядро. Такая клеточная операция впервые была осуществлена генетиком Г.Шпеманном в 1920-х гг.

После удаления ядра яйцеклетку различными способами заставляют перейти в стадию G0 клеточного цикла. В таком состоянии клетка находится в покое, что очень важно при подготовке ее к пересадке нового ядра. Пересадка ядра осуществляется либо путем трансплантации, как описано выше, либо путем слияния яйцеклетки с другой клеткой, содержащей ядро.

В каждой лаборатории используют свои модификации этих общих подходов. Наиболее известен метод Рослина, с помощью которого была получена овечка Долли.

Для успеха операции пересадки ядра важно синхронизировать клеточные циклы клеток-доноров и яйцеклетки. Такой метод был разработан и использован И.Уилмутом и К.Кэмпбеллом. Сначала клетки-доноры (при клонировании овец – из вымени) помещали в культуральную среду, где они начинали делиться. Затем выбирали одну из них и помещали в обедненную среду, в результате чего голодающая клетка переходила в стадию G0 клеточного цикла. После удаления ядра из яйцеклетки ее сразу же помещали рядом с клеткой-донором, а через 1–8 ч с помощью электрического импульса вызывали слияние клеток и активацию развития эмбриона.

Однако только немногие клетки выживают после такой процедуры. Выжившую клетку помещали в яйцевод овцы и позволяли развиваться примерно 6 дней, после чего переносили в матку, где и продолжалось развитие эмбриона. Если все складывалось удачно, в конце концов рождалась клонированная овца – точная генетическая копия овцы, от которой была взята клетка-донор.

Из-за высокого риска развития генетических дефектов и рака против использования этого метода для клонирования человека выступают многие ученые и общественные деятели. В большинстве стран репродуктивное клонирование человека запрещено.

Новым и наиболее эффективным является упомянутый выше гавайский метод репродуктивного клонирования. В июне 1998 г. группе ученых Гавайского университета впервые удалось клонировать мышь, причем были получены три поколения генетически идентичных клонов. Несмотря на то, что генетика и строение клеток мыши изучены лучше, чем у других животных, клонирование мыши представляло собой сложную задачу. Это связано с тем, что яйцеклетка мыши после оплодотворения практически сразу начинает делиться. Не случайно поэтому, что Рослин использовал для клонирования овцу: ее яйцеклетка начинает делиться только через несколько часов после оплодотворения.

Вакаяма и Янагимучи смогли преодолеть эту трудность и получили клоны мыши даже с большим выходом (3 из 100 попыток), чем Уилмут (1 из 277 попыток). Вакаяма подошел к проблеме синхронизации клеток иначе, чем Уилмут. Клетки вымени, использованные Уилмутом, надо было искусственно заставлять переходить в фазу G0. Вакаяма же с самого начала использовал три типа клеток – клетки Сертоли, клетки головного мозга и овариальные клетки, – которые сами по себе либо всегда находятся в фазе G0 (первые два типа клеток), либо почти всегда в фазе G0 или G1. Кроме того, донорские клетки использовали через несколько минут после выделения из тела мыши, а не содержали в культуре.

После удаления ядра из яйцеклетки в нее вводили ядро клетки-донора. Примерно через 1 ч клетка начинала нормально функционировать с новым ядром. Еще через 5 ч клетку помещали в специальную среду, которая стимулировала клеточное деление наподобие того, как это происходит при естественном оплодотворении. При этом среда содержала специальное вещество – цитохалазин В, – которое предотвращало развитие полярных телец. В результате из яйцеклетки развивался эмбрион, который затем можно было пересадить в матку будущей матери.

Чтобы убедиться в жизнеспособности клонов, Вакаяма получил клоны клонов, а также нормальное потомство от родителей-клонов, а всего к моменту публикации им было получено более 50 клонов.

Биомедицинское клонирование описано выше. Оно отличается от репродуктивного клонирования только тем, что яйцеклетка с пересаженным ядром развивается в искусственной среде, затем из бластоциста удаляют стволовые клетки, а сам пре-эмбрион при этом погибает. Стволовые клетки могут быть использованы для регенерации поврежденных или отсутствующих органов и тканей в очень многих случаях, однако процедура их получения порождает множество морально-этических проблем, и во многих странах законодатели обсуждают возможности запрещения биомедицинского клонирования. Тем не менее исследования в этой области продолжаются, и тысячи неизлечимо больных (болезнями Паркинсона и Альцгеймера, диабетом, рассеянным склерозом, ревматоидным артритом, раком, а также с травмами спинного мозга) с надеждой ждут их положительных результатов.

Представлены основные этапы научных исследований, зарождения и восприятия идеи клонирования в современном мире, возможные области применения и технологии клонирования человека.

Введение

Шестьдесят лет назад немецкий эмбриолог, лауреат Нобелевской премии Ганс Шпеман (Spemann) впервые поставил вопрос о целостности и идентичности генома в течение всей жизни организма. Он же предложил эксперимент по переносу ядра какой-нибудь дифференцированной клетки в яйцеклетку с предварительно разрушенным собственным ядром.

Совместно с Дришем (Driesch) он впервые показал, что ядра ранних эмбрионов морских ежей и тритонов тотипотентны, т.е. способны обеспечивать развитие любых типов клеток.

Естественно встал вопрос, действительно ли рост, развитие и дифференциация эмбриона затрагивают необратимые модификации генома в соматических клетках.

Ниже приведены некоторые сведения об экспериментальном клонировании животных, отраженные в литературе.

Так, эксперименты, начатые в 1952 г. и проведенные на амфибиях , показали, что из ядер, полученных из клеток ранних эмбрионов, можно клонировать взрослый организм. Однако ядра клеток взрослого животного могли развиваться только до стадии головастика и не могли создавать взрослого клона .

Пересадка ядер у млекопитающих впервые была предпринята на мышах в 1983 г. Более 90% реконструированных зигот мыши, получивших пронуклеусы от других зигот, успешно достигали стадии бластоцисты . Однако когда переносили ядра из 4-, 8-клеточных эмбрионов или ядра внутренней клеточной массы в энуклиированные яйцеклетки, ни одна зигота не достигала стадии бластоцисты .

Опыты по клонированию других видов млекопитающих методом переноса ядер эмбриональных клеток имели определенный успех, и были получены клоны овцы, коровы, кролика, свиньи, козы . Причем первые клонированные овцы родились после переноса ядер 8- 16-клеточных эмбрионов . Потомство у коров и овец было получено также после переноса ядер тотипотентных клеток короткоживущей клеточной культуры, полученной из ранних преимплантационных эмбрионов .

Перенос ядер эмбриональных клеток можно осуществлять между близкородственными видами, например между M.musculus и M.caroli . В то же время на последней ежегодной встрече 1997 г. Международного общества по переносу эмбрионов (International Embryo Transfer Society) в Бостоне исследователи из Университета Висконсия-Мадисон сообщили об успешном клонировании 70 эмбрионов при использовании энуклиированных яйцеклеток коров и ядер от эмбриональных клеток овец, свиней, крыс и обезьян. Реконструированные эмбрионы культивировали до 60-120-клеточной стадии. Однако не было получено ни одной беременности после переноса эмбрионов.

В 1997 г. Рослинский институт совместно с биотехнологической компанией PPL Therapeutics объявили о клонировании 5 овец с помощью переноса ядер клеток фибробластов плода, в которые предварительно были введены искусственно созданные генетические конструкции. Две полученные таким образом трансгенные овцы несли ген фактора свертываемости крови IX человека. Предполагается, что данный высокоценный белок будет экспрессироваться с молоком овец. Таким образом, интеграция чужеродной ДНК в геном фибробластов не нарушила, которая контролирует эмбриональное развитие овец .

Оригонский региональный исследовательский центр по изучению приматов сообщил о клонировании двух обезьян при использовании ядер клеток эмбриона на стадии дифференцировки .

Американская биотехнологическая компания ABS Global Inc. сообщила о рождении в феврале 1997 г. бычка, полученного с помощью технологии клонирования и с использованием ядер первичных стволовых клеток 30-дневного эмбриона .

Все приведенные выше работы были выполнены с помощью переноса ядер эмбриональных недифференцированных или частично дифференцированных клеток плодов и эмбрионов и считалось, что получить клон с использованием ядра полностью дифференцированной клетки взрослого организма невозможно.

Та самая Долли

Наибольший резонанс общественности, в том числе и научной, вызвала работа Уилмута (Wilmut) с коллегами, появившаяся в февральском номере Nature за 1997 г. Это единственная на сегодняшний день опубликованная научная статья, посвященная получению живого потомства после переноса ядра, взятого из соматической клетки взрослого животного.

Вкратце результаты этой работы таковы. Были получены три новые клеточные популяции из клеток 9-дневных преимплантационых эмбрионов, 26-дневных плодов и клеток молочной железы 6-летней овцы. Ядра из данных клеток переносили в предварительно энуклиированные неоплодотворенные ооциты овцы. С помощью электропорации стимулировали слияние кариопласта с цитоплазмой и активацию ооцита . Реконструированные таким образом ооциты культивировали in vivo до стадии морула/бластоциста и переносили суррогатным овцам - реципиентам. Из 834 удачно реконструированных ооцитов было получено 8 живых ягнят, причем из 277 ооцитов, в которые переносили ядра клеток взрослого животного, получена только одна - знаменитая Долли .

Развитие эмбрионов, созданных путем переноса ядер, в первую очередь зависит от сохранения плоидии реконструированного эмбриона и создания условий, необходимых для нормальной регуляции экспрессии генов во времени и пространстве. Основополагающим фактором, по всей видимости, является стадия клеточного цикла донора и реципиента и взаимодействие между ними.

Так, если ядра клеток, находящихся на стадии S или G2, переносят в ооциты, находящиеся на стадии МII, они имеют тенденцию проходить дополнительную ДНК-репликацию и преждевременную конденсацию хромосом, что ведет к анеуплоидии и аномальному развитию реконструированного ооцита . Уилмут преодолел эту проблему с помощью трансплантации ядер из клеток, которые были блокированы на стадии G0 диплоидной фазы путем истощения содержания сыворотки в культуральной среде. Перенос ядер на этой стадии лучше с цитоплазмой ооцита, уменьшая случаи хромосомных аномалий. Этим можно объяснить существующие трудности в клонировании мышей: ядра эмбриональных клеток в ранней преимплантационной стадии в основном находятся в S и G2, и очень трудно (или почти невозможно) блокировать эмбриональные стволовые клетки на стадии G0 путем истощения сыворотки.

Другими факторами, которые могли влиять на успешный исход работы Уилмута, являются 1) большая доступность хроматина (за счет деспирализации ДНК) из клеток на стадии G0 ооцитарному ремоделирующему фактору/факторам; 2) начало транскрипции эмбрионального генома овцы на 8-16-клеточной стадии (у тех же мышей начало транскрипции происходит уже на поздней двуклеточной стадии). Теоретически такая поздняя активация генома позволяет эмбриону овцы в течение, по крайней мере, двух клеточных циклов репрограммировать и ремоделировать ДНК трансплантированного ядра взрослой клетки. Если последний аспект действительно играет значительную роль в данном эксперименте, будет очень трудно воспроизвести результаты клонирования на других видах млекопитающих, у которых активация эмбрионального генома происходит на более ранних стадиях, чем у овцы .

Своей работой Уилмут с коллегами продемонстрировали, что ядра клеток молочной железы взрослой овцы могут быть при определенных условиях репрограммированы цитоплазмой ооцита и дать развитие новому организму. Полученные данные заставили по-новому посмотреть на процесс клеточной дифференциации. Этот процесс, как оказалось, не носит необратимый характер. Совершенно ясно, что цитоплазматические факторы способны инициировать развитие нового организма на основе генетического материала ядра взрослой полностью дифференцированной клетки. Таким образом, биологические часы могут быть повернуты вспять, и развитие организма может начаться из генетического материала взрослой дифференцированной клетки, что полностью противоречит ранее общепринятой биологической догме.

О. В. САБЛИНА,

кандидат биологических наук, СУНЦ НГУ

КЛОНИРОВАНИЕ ЖИВОТНЫХ

Пожалуй, ни одно из достижений биологической науки не вызывало такого накала страстей в обществе, как клонирование млекопитающих. Если некоторые люди, как биологи, так и не имеющие отношения к «Life Sciences» (наукам о жизни), с восторгом приняли появившуюся, хотя бы и теоретически, возможность клонирования человека и готовы завтра же клонироваться, то большинство неспециалистов отнеслись к такой возможности, мягко говоря, очень настороженно.

Бурные дебаты в средствах массовой информации привели к тому, что среди населения оказалось распространенным мнение о крайней опасности подобных исследований. Этому немало способствовали «клоны», «заселившие» художественную литературу и кино. Несколько лет назад одна из околонаучных группировок заявила о намерении клонировать Гитлера, для того чтобы его повесить за совершенные преступления. Это, в свою очередь, породило опасения, что диктаторы типа Гитлера могут увековечить свою власть, передав ее своим клонам. В большинстве подобных представлений клоны человека - «ненастоящие люди», тупые и злобные, а клонированные животные и растения угрожают погубить всю биосферу. Здесь следует особо отметить, что люди нередко путают клонирование и трансгенез, тогда как это абсолютно разные вещи. Действительно, при получении трансгенных многоклеточных животных применяют клонирование, однако в этом случае клонирование - не цель, а средство. Клонирование без транс-генеза - прием, широко используемый в самых разных по своим целям проектах.

Насколько обоснованы эти страхи и надежды? Представляется очень важным формирование спокойного взвешенного суждения относительно перспектив и возможных последствий этих исследований. Для этого нужно ответить на несколько основных вопросов, что мы и попытаемся сделать.

Итак, что же такое клонирование? Как клонируют животных? Почему ученые этим занимаются? Для чего можно использовать технику клонирования животных? Допустимо ли клонирование человека?

ЧТО ТАКОЕ КЛОН?

Греческое слово κλ w n означает побег, отросток. Сейчас клонами называются особи животных или растений, полученные путем бесполого размножения и имеющие полностью идентичные генотипы. Клоны очень широко распространены среди растений - все сорта вегетативно размножаемых культурных растений (картофель, плодовые и ягодные растения, гладиолусы, тюльпаны и т.д.) являются клонами. Разработанная в настоящее время техника микроклонального размножения позволяет получать за короткое время огромное количество генетически идентичных экземпляров даже таких растений, которые в естественных условиях вегетативно не размножаются.

У животных такой тип размножения распространен значительно меньше. Тем не менее известно более 10 ООО видов многоклеточных животных, размножающихся путем деления одного организма на два или даже несколько частей (аутофрагмен-тация), которые вырастают в полноценные организмы. Эти новые организмы также являются клонами. Естественные клоны, возникающие путем обособления части клеток организма и развития из них полноценной особи, характерны не только для таких примитивных животных, как губки или хрестоматийные гидры. Даже такие достаточно высоко организованные животные, как морские звезды и черви, могут размножаться делением. Но позвоночные или насекомые такой способности лишены. Тем не менее клоны, возникшие естественным путем, встречаются даже у млекопитающих.

Природными клонами являются так называемые монозиготные близнецы, которые происходят из одной оплодотворенной яйцеклетки. Это происходит, когда зародыш на самых ранних стадиях дробления разделяется на отдельные бластомеры и из каждого бластомера развивается самостоятельный организм. Например, у американского девятиполосного броненосца всегда рождается по четыре монозиготных близнеца. Разделение зародыша на стадии четырех бластомеров на самостоятельные зародыши - нормальное явление для этого млекопитающего.

Такие близнецы представляют собой как бы обособившиеся части одного организма и имеют один и тот же генотип, т. е. являются клонами.

Монозиготные (или идентичные) близнецы у человека также являются клонами. Наибольшее известное число родившихся монозиготных близнецов у человека равняется пяти. Вероятность рождения близнецов у человека невелика - среди белого населения Европы и Северной Америки она в среднем составляет около 1%. Реже всего близнецы рождаются в Японии. В африканском племени йоруба частота близнецов составляет 4,5% всех рождений, а в некоторых районах Бразилии - до 10%, однако только незначительная часть из них являются монозиготными. Существуют и семьи с генетической предрасположенностью к рождению близнецов, но тоже только дизиготных.

Одновременная овуляция обусловлена определенным сбоем в работе гормональной системы, который может иметь генетическую природу. Причина же, по которой происходят разделение зародыша и образование монозиготных близнецов у человека, неизвестна. Частота этого явления - около 0,3% во всех популяциях человека.

Очень редко случается, что по неизвестной причине зародыш разделяется не до конца. Тогда рождаются сросшиеся (вернее, недоразделившиеся), так называемые сиамские близнецы. Примерно четверть всех идентичных близнецов являются «зеркальными», например, один из близнецов левша, другой правша, у одного волосы на макушке закручены по часовой стрелке, у другого против, у одного сердце расположено слева, а печень справа, у другого - наоборот. Ученые считают, что «зеркальность» близнецов является следствием разделения эмбриона на достаточно поздней стадии развития.

Таким образом, клоны животных и человека - нормальное природное явление. Этот факт сразу позволяет ответить на некоторые вопросы в связи с клонированием человека: клоны - абсолютно нормальные, полноценные люди, отличающиеся от всех остальных людей только тем, что имеют генетического двойника. Они являются самостоятельными, автономными организмами, хотя и имеющими идентичные генотипы. Поэтому любые надежды достичь бессмертия путем клонирования абсолютно беспочвенны. По этой же причине клоны не могут нести никакой ответственности за поступки, совершенные их «генетическим оригиналом».


ЭКСПЕРИМЕНТАЛЬНОЕ КЛОНИРОВАНИЕ ЖИВОТНЫХ

Клонированием называют искусственное получение клонов животных (в случае клонирования растений чаще пользуются терминами «вегетативное размножение», «меристемная культура»). Поскольку высшие животные не могут размножаться вегетативно, то для получения клона можно в принципе воспользоваться тремя методами:


удвоить набор хромосом в неоплодот-воренной яйцеклетке, получив таким образом диплоидную яйцеклетку, и заставить ее развиваться без оплодотворения;
искусственно получить монозиготных близнецов, разделив начавший развиваться эмбрион;
удалить ядро из яйцеклетки, заменив его на диплоидное ядро соматической клетки, и тоже заставить развиваться такую «зиготу».


Все эти три возможности ученые использовали для клонирования животных.

Первый способ удается применить не для всех животных. Еще в 30-е гг. XX в. Б.Л. Астаурову удалось с помощью термического воздействия активировать неопло-дотворенное яйцо тутового шелкопряда к* развитию, блокировав при этом прохождение первого деления мейоза. Естественно, ядро при этом оставалось диплоидным. Развитие такой диплоидной яйцеклетки заканчивалось вылуплением личинок, точно повторяющих генотип матери. Естественно, при этом получались только самки. К сожалению, разводить самок экономически невыгодно, так как при большей затрате корма они дают коконы худшего качества. В.А. Струнников усовершенствовал этот метод, разработав способ получения клонов тутового шелкопряда, состоящих только из особей мужского пола. Для этого на ядро яйцеклетки воздействовали гамма-лучами и высокой температурой. Это делало ядра, не способными к оплодотворению. Ядро сперматозоида, проникшего в такое яйцо, удваивалось и приступало к делению. Это приводило к развитию самца, повторявшего генотип отца. Правда, полученные клоны для промышленного шелководства непригодны, но их используют в селекции для получения эффекта гетерозиса. Это позволяет резко ускорить и облегчить получение выдающегося по продуктивности потомства. Сейчас эти методы широко применяются в шелководстве в Китае и Узбекистане.

К сожалению, успех с тутовым шелкопрядом является исключением - у других животных получить клоны таким способом не удается. Исследователи пробовали удалить один из пронуклеусов из оплодотворенной яйцеклетки и удваивали число хромосом другого, обрабатывая их веществами, разрушающими микротрубочки веретена деления. Получались диплоидные клетки, гомозиготные по всем генам (содержащие либо два материнских, либо два отцовских генома). Такие зиготы начинали дробиться, однако развитие прекращалось на ранней стадии и получить таким способом клоны млекопитающих оказалось невозможно. Были сделаны попытки пересадить пронуклеусы из одной оплодотворенной яйцеклетки в другую. Оказалось, что полученные таким способом зародыши развивались нормально только в том случае, если один пронуклеус представлял собой ядро яйцеклетки, а другой - сперматозоида. Эти эксперименты показали, что для нормального развития эмбрионов млекопитающих необходимы два разных генома - материнский и отцовский. Дело в том, что при формировании половых клеток имеет место геномный импринтинг - метилирование участков ДНК, что приводит к выключению метилированных генов. Это выключение остается на всю жизнь. Поскольку в мужских и в женских половых клетках выключаются разные гены, то для нормального развития организма нужны оба генома - одна работающая копия гена должна быть.

Второй метод - разделение эмбриона на ранних стадиях дробления в эмбриологии используют очень давно, правда в основном на морских ежах и лягушках. Именно таким способом были получены данные о способности выделенных из зародыша бластоме-ров дать начало полноценному организму. Клоны-монозиготные близнецы млекопитающих были получены существенно позже, но искусственное разделение эмбрионов и последующая их имплантация «суррогатным матерям» уже применяются в селекции сельскохозяйственных животных для получения большого числа потомков от особо ценных родителей. В 1999 г. таким способом была клонирована обезьяна. Оплодотворение было проведено в пробирке. Зародыш на стадии восьми клеток был разделен на четыре части, и каждая двуклеточная часть была имплантирована в матку другой обезьяны. Три зародыша при этом развиваться не стали, а из четвертого родилась обезьянка, которую назвали Тетра (Четвертинка).

Самое знаменитое клонированное животное, овечка Долли, была клонирована с помощью третьего метода - переноса генетического материала соматической клетки в яйцеклетку, лишенную собственного ядра.
Метод пересадки ядер был разработан еще в 40-х гг. XX в. русским эмбриологом Г.В. Лопашовым, работавшим с яйцеклетками лягушки. Правда, взрослых лягушек он не получил. Позднее англичанину Дж. Гёрдону удалось заставить яйцеклетки лягушки с чужим ядром развиваться до получения взрослых особей. Это было выдающееся достижение - ведь он пересаживал в яйцеклетку ядра дифференцированных клеток взрослого организма. Он использовал клетки плавательной перепонки и клетки эпителия кишечника. Но и у него до взрослого состояния развивалось не более 2% таких яйцеклеток, причем выросшие из них лягушки отличались меньшими размерами и пониженной жизнеспособностью по сравнению с их нормальными сверстниками.

Пересадить ядро в яйцеклетку млекопитающего значительно труднее, так как она примерно в 1000 раз мельче, чем яйцеклетка лягушки. В 1970-х гг. в нашей стране в Институте цитологии и генетики в Новосибирске на мышах это пытался сделать замечательный ученый Л.И. Корочкин. К сожалению, его работы не получили продолжения из-за трудностей с финансированием. Зарубежные ученые продолжали исследования, однако операция трансплантации ядра оказалась слишком травматичной для мышиных яйцеклеток. Поэтому экспериментаторы пошли другим путем - стали просто проводить слияние яйцеклетки, лишенной собственного ядра, с целой неповрежденной соматической клеткой.

Группа исследователей из Рослинско-го института в Шотландии, возглавляемая Я. Вилмутом, клонировавшие Долли, использовали для слияния клеток электрический импульс. Они удаляли ядра из зрелых яйцеклеток, затем с помощью микропипетки вводили под оболочку яйцеклетки соматическую клетку, выделенную из молочной железы овцы. С помощью электрического удара клетки сливались и в них стимулировалось деление. Затем, после культивирования в течение 6 дней в искусственных условиях, начавший развиваться эмбрион на стадии морулы имплантировали в матку специально подготовленной овцы другой породы (хорошо отличавшейся фенотипически от донора генетического материала). Рождение овечки Долли стало громкой сенсацией, а у некоторых ученых возникли сомнения в том, что она действительно была клоном. Однако специальные проведенные исследования ДНК показали, что Долли - настоящий клон.

В дальнейшем техника клонирования млекопитающих была усовершенствована. Группе ученых из университета Гонолулу под руководством Риузо Янагимачи удалось с помощью изобретенной ими микропипетки осуществить перенесение ядра соматической клетки непосредственно в яйцеклетку. Это позволило им обойтись без электрического импульса, который был далеко небезопасен для живых клеток. Кроме того, они использовали менее дифференцированные клетки - это были клетки кумулуса (соматических клеток, окружающих яйцеклетку и сопровождающих ее во время движения по яйцеводу). К настоящему времени этим методом клонированы и другие млекопитающие - корова, свинья, мышь, кошка, собака, лошадь, мул, обезьяна.

ЗАЧЕМ КЛОНИРОВАТЬ ЖИВОТНЫХ?

Несмотря на огромные успехи, клонирование млекопитающих остается сложной и дорогостоящей процедурой. Почему же ученые не оставляют эти эксперименты? Прежде всего потому, что это... интересно. Причем не просто любопытно - получится или нет, уже ясно, что получится. Клонирование млекопитающих чрезвычайно важно для фундаментальной науки. Это уникальный инструмент, позволяющий исследовать один из самых сложных и интригующих вопросов биологии - как, какими путями информация, записанная последовательностью нуклеотидов в ДНК, реализуется во взрослом неповторимом организме, каким образом осуществляется точнейшее взаимодействие тысяч генов, каждый из которых «включается» и «выключается» именно в то время и в той клетке, где это необходимо. Известно, что некоторые гены, работающие на самых ранних этапах эмбриогенеза, в ходе дальнейшего развития и дифферен-цировки клеток необратимо выключаются.

Как это происходит? Можно ли заставить дифференцированную клетку претерпеть обратную дифференцировку? На последний вопрос без клонирования ответить вообще невозможно. Сам факт, что клонирование млекопитающих удается, вроде бы говорит о том, что обратная дифференцировка возможна. Однако не все так просто. Часто животные клонированы из недифференцированных - эмбриональных стволовых клеток или из клеток кумулуса. В других случаях, возможно, также были использованы стволовые клетки. В частности, овечка Долли была клонирована из клетки молочной железы беременной овцы, а при беременности под действием гормонов стволовые клетки молочной железы начинают размножаться, так что вероятность того, что экспериментаторы возьмут именно стволовую клетку, повышается. Предполагают, что именно так и было с Долли. Этим может объясняться и очень малая эффективность клонирования - ведь стволовых клеток в ткани немного.

Но, конечно, если бы у метода клонирования не было хорошо просматриваемых практических выходов, исследования не были бы столь интенсивными. Какая же практическая польза может быть от клонированных животных? В первую очередь, клонирование высокопродуктивных домашних животных может быть использовано для получения в короткий срок больших количеств элитных коров, ценных пушных зверей, спортивных лошадей и т.д. Некоторые ученые считают, что клонирование никогда не будет широко применяться в животноводстве из-за того, что эта процедура весьма дорогая. Кроме того, условием селекции всегда было генетическое разнообразие, клонирование же, тиражируя один генотип, сужает это разнообразие. Тем не менее поскольку половое размножение необходимо связано с рекомбинацией, разрушающей сочетания аллелей, клонирование может помочь сохранить уникальные генотипы. Клонирование путем разделения начавших дробиться эмбрионов уже сейчас используется в селекции крупного рогатого скота.

Особые надежды ученые возлагают на клонирование диких животных, которым грозит исчезновение. Уже в настоящее время создаются «Замороженные Зоопарки» - образцы клеток таких животных, хранящиеся в замороженном виде при температуре жидкого азота (-196°С). В Америке уже родились два детеныша дикого быка бантенга, клонированные из клеток животного, умершего в 1980 г. Его клетки были заморожены и более 20 лет хранились в жидком азоте. Клонированы также другой вид дикого быка гаур, европейский дикий баран, дикие африканские степные кошки.

Клонирование кошек - особо интересный и важный эксперимент, проведенный в Институте Природы в городе Одюбоне (США). Там были получены два клона-самки от одной кошки-донора и один клон-самец от кота по имени Джаз. Джаз, в свою очередь, был выращен из эмбриона, который в течение 20 лет хранился в замороженном состоянии в жидком азоте, а потом был выношен и рожден обычной домашней кошкой. В 2005 г. обе кошки-клоны общими усилиями родили восьмерых котят. Отцом всех восьмерых был кот-клон Джаз. Этот опыт показал, что клоны способны к нормальному размножению. Следует, однако, понимать, что с помощью клонирования вряд ли удастся «воскресить» исчезнувший вид. Тем не менее это может помочь сохранить генофонд, если использовать полученные клоны в скрещиваниях с животными, содержащимися в зоопарках. Такое использование клонов может помочь избежать негативных последствий близкородственного скрещивания, неизбежного при малой численности вида.

Здесь следует сказать и о надеждах клонировать уже исчезнувших животных - мамонта, тасманийского сумчатого волка, зебры квагги. Оптимисты предполагают, что можно использовать ДНК этих животных, сохранившуюся либо в вечной мерзлоте, либо в законсервированных тканях. Однако предпринятая попытка клонировать тасманийского сумчатого волка, последнийэкземпляр которого погиб в зоопарке в 1936 г., не удалась. Это и неудивительно, так как в распоряжении ученых не было живых клеток, а только образцы тканей, хранившиеся в спирте. Из них была выделена ДНК, но она оказалась слишком поврежденной, да и существующие в настоящее время методы не позволяют клонировать животных») не имея достаточного количества живых клеток. По этой же причине мала вероятность когда-либо клонировать мамонта. Во всяком случае, все предпринятые попытки культивировать клетки мамонта, пролежавшие тысячелетия в вечной мерзлоте, оказались безуспешными. Кроме того, следует иметь в виду, что если даже и удалось бы получить и вырастить один клон мамонта или квагги, это не было бы воскрешением вида. Из одного или даже из нескольких экземпляров получить вид нельзя. Считается, что для устойчивого существования и воспроизведения вида необходимо по крайней мере несколько сотен особей. Поэтому ископаемая ДНК или ДНК из хранящихся в спирте тканей достаточна для анализа или даже для трансгенеза, но недостаточна для клонирования. Хотя известны случаи выживания вида после катастрофического падения численности. Один из таких видов - гепард. Генетический анализ показывает, что в его истории был момент, когда его поголовье составляло 7-10 особей. Хотя гепарды и выжили, последствия близкородственного скрещивания остались - частое бесплодие, мертворождения и другие трудности с размножением. Другой такой вид - человек. В эволюционной истории человека было не менее двух эпизодов прохождения резкого падения численности вида, а для американских индейцев - даже больше (заселение Америки шло из Восточной Сибири по Берингийскому перешейку очень небольшими группами - 7-10 человек). Именно поэтому генетическое разнообразие человека невелико, следствием чего является разнообразие фенотипическое - многие гены находятся в гомозиготном состоянии.

Безусловно, незаменимым методом клонирование является для получения трансгенных животных. Хотя применяются и другие методы получения трансгенных животных, именно клонирование позволяет получать животных с заданными свойствами для практических нужд. В том же Рослинском институте в Эдинбурге, где родилась Долли, были получены и клонированные овечки Полли и Молли. Для их клонирования были использованы генетически измененные клетки, культивировавшиеся в искусственных условиях. Эти клетки, кроме обычных овечьих генов, несли человеческий ген IX фактора свертываемости крови.

Генетическая конструкция содержала промотор, экспрессирующийся в клетках молочной железы. Поэтому белок, кодируемый этим геном, выделялся с молоком. Полли была первым клонированным трансгенным млекопитающим. Ее рождение открыло новые перспективы в лечении некоторых заболеваний человека. Ведь многие болезни связаны с нехваткой определенного белка - фактора свертываемости или гормона. До сего времени такие лекарства можно было получать только из донорской крови. А ведь количество гормона в крови очень мало! Кроме того, использование препаратов крови чревато инфекционными заболеваниями - не только СПИДом, но и вирусными гепатитами, которые не менее опасны. А трансгенных животных можно тщательно отобрать и проверить, содержать их на чистейших альпийских пастбищах. Ученые подсчитали, что для того чтобы обеспечить лекарственным белком всех (!) больных гемофилией на Земле, потребуется не слишком большое стадо трансгенных животных - 35-40 коров. При этом провести трансгенез и клонирование нужно-то всего только двух животных - самки и самца, а они, размножаясь естественным путем, передадут нужный ген потомству. При этом, поскольку у самцов ген в молочной железе не работает вообще, а у самок работает только во время лактации и продукт сразу же выводится с молоком из организма, никаких неудобств или нежелательных последствий для животных этот чужой ген не представляет. Сейчас используют в качестве таких биореакторов овец, коз, кроликов и даже мышей. Правда, коровы дают существенно больше молока, но и размножаются они гораздо медленнее и лактировать начинают позже. Есть и другие возможности использования трансгенных клонов и в научных, и в практических целях, но здесь мы это рассматривать не будем.

ТРУДНОСТИ И ПРОБЛЕМЫ, ВОЗНИКАЮЩИЕ ПРИ КЛОНИРОВАНИИ МЛЕКОПИТАЮЩИХ

Несмотря на впечатляющие успехи, пока нельзя утверждать, что клонирование стало обычной лабораторной методикой. Это по-прежнему очень сложная процедура, не слишком часто приводящая к ожидаемому результату. Какие же трудности возникают при клонировании животных?
В первую очередь, это низкая эффективность клонирования. Процедуры, применяемые при клонировании млекопитающих, являются весьма травмирующими для клеток. Далеко не всем клеткам удается их благополучно пережить. Не все начавшие развиваться эмбрионы доживают до рождения. Так, чтобы получить Долли, пришлось для выделения яйцеклеток прооперировать 40 овец (см. рис. 5). Из 430 яйцеклеток удалось получить 277 диплоидных «зигот», из которых только 29 начали развиваться и были имплантированы «суррогатным» матерям. Из них дожил до рождения всего один эмбрион - Долли. Для получения клонированной лошадки Прометеи было «сконструировано» около 840 эмбрионов, из них только 17 развились до того, чтобы их можно было имплантировать «матерям». Четыре из них стали развиваться, но до рождения дожила только одна Прометея.

Другой серьезной проблемой является здоровье родившихся клонов. Как правило, когда сообщается о рождении очередного клона, подчеркивается его отменное здоровье. Действительно, многие клонированные животные, вполне здоровые при рождении, доживали до взрослого состояния и рождали нормальных детенышей. Однако потом у них проявлялись нарушения со стороны разных систем органов. Так, Долли родилась здоровой и родила нескольких здоровых ягнят, но потом начала стремительно стареть и прожила вдвое меньше, чем обычная овца. Трансгенные Полли и Молли, также клонированные в Рослинском институте, прожили еще меньше. Успешно размножились клонированные степные кошки. Правда, о продолжительности их жизни данных пока нет. А вот бычок гаур, также производивший при рождении впечатление здорового, прожил всего два дня из-за кишечного заболевания. Вопрос о здоровье клонов еще нельзя считать окончательно решенным - результаты разных исследователей противоречивы. По некоторым данным очень многие клоны обладают слабым иммунитетом, подвержены простудным и желудочно-кишечным заболеваниям и стареют в 2-3 раза быстрее своих генетических родителей. Исследования японских ученых показали, что у клонированных мышей серьезно нарушено функционирование примерно 4% генов.

Но, пожалуй, самым обескураживающим оказалось то, что клоны могут довольно сильно отличаться от оригинала. Еще В.А. Струнниковым на тутовом шелкопряде было установлено, что, несмотря на одинаковые генотипы, члены одного клона оказываются непохожими по целому ряду признаков. В некоторых клонах это разнообразие оказалось даже большим, чем в обычных, генетически разнородных, популяциях. Несколько лет назад в США родилась очередная клонированная кошечка, которую назвали Сиси (Сс, CopyCat). Генетической мамой ее была трехцветная кошка Рэйн-боу (Радуга). Сиси оказалась непохожей на маму - двухцветной. Но анализ ДНК показал, что она действительно является клоном Радуги. Различия связаны с тем, что ген рыжей окраски находится в Х-хромосоме. У самок одна из Х-хромосом оказывается инактивированной в раннем эмбриогенезе. Инактивируются Х-хромосомы случайно, состояние инактивированности в клетке и клетках-потомках сохраняется на всю жизнь. У гетерозиготной кошки рыжими оказываются те клетки, где инактивирована «нерыжая» Х-хромосома. Клон был получен из одной соматической клетки, в которой одна из Х-хромосом уже была инактивирована. У Сиси инактивированной оказалась «рыжая» Х-хромосома. У млекопитающих в Х-хромосоме находится около 5% всех генов, и клоны могут оказаться непохожими друг на друга по достаточно большому числу признаков. Кстати, такое явление известно и для природных клонов - монозиготных близнецов. Были описаны две сестры - монозиготные близнецы, одна из которых была здорова, а у другой была гемофилия. Известно, что у женщин гемофилия бывает крайне редко, только в случае гомозиготное™. У гетерозигот примерно половина «здоровых» Х-хромосом инактивирована, но оставшейся половины достаточно для нормальной свертываемости крови. Упомянутые близнецы, по-виДимому, возникли в результате разделения эмбриона на стадии, когда Х-хромосомы уже были инакти-вированы и у одной из сестер нормальная хромосома оказалась инактивированной во всех клетках организма. Результатом стало развитие заболевания у гетерозиготы.

Могут быть и другие причины непохожести клонов. Все искусственно полученные клонированные эмбрионы развиваются не в таких условиях, как оригинал. Другими являются возраст суррогатной матери, её гормональный статус, питание и т. п. А эти факторы очень важны во время эмбриогенеза. Причинами различий клона и оригинала могут быть и вариации фенотипического проявления генов (экспрессивность и пенетрантность), различия в геноме митохондрий (клоны имеют не такие митохондрии, как оригинал), отличия в рисунке инактивации (импринтинг) некоторых генов в эмбриогенезе, неустранимые различия ядер соматических и половых клеток (например, неполная дедифференцировка ядра соматической клетки, помещенного в яйцеклетку).

ПРОБЛЕМА КЛОНИРОВАНИЯ ЧЕЛОВЕКА

Именно возможность искусственного клонирования человека вызвала бурные эмоции в обществе. Количество самых полярных высказываний (диапазон их от «к концу следующего столетия население планеты будет состоять из клонов» до «какой-то фантастический роман, интересный, но абсолютно нереалистичный») не поддается исчислению. Некоторые люди уже завещают сохранить их клетки в состоянии глубокого замораживания для того, чтобы, когда техника клонирования будет отработана, воскреснуть в виде клона, обеспечив тем самым себе бессмертие. Другие думают путем клонирования преодолеть бесплодие или вырастить себе «запасные части» - органы для трансплантации. Третьи хотят облагодетельствовать человечество, населив его клонами гениев. Насколько оправданы эти оценки и чаяния? Попробуем спокойно, «без гнева и пристрастья» ответить на некоторые вопросы, возникающие в связи с понятием «клонирование человека».

Вопрос первый: возможно ли клонирование человека? Ответ однозначен: да, конечно, технически это возможно.

Вопрос второй: зачем клонировать человека? Ответов несколько, разной степени реалистичности:

1. Достижение личного бессмертия. Эту перспективу можно серьезно не обсуждать, об абсурдности этих надежд было сказано выше.
2. Выращивание гениальных личностей. Главное сомнение - а будут ли они гениальными? Слишком сложный это признак, и, хотя генетическая составляющая в его формировании не вызывает сомнения, величина этой составляющей может варьировать, а влияние средовых факторов может быть велико и непредсказуемо. И - важный вопрос - будут ли они благодарны тем, кто создал их двойников, нарушив естественное право человека на собственную неповторимость? Ведь и у монозиготных близнецов иногда возникают проблемы, связанные именно с этим аспектом.
3. Научные исследования. Сомнительно, чтобы существовали такие научные проблемы, которые можно было бы разрешить исключительно только с помощью клонов человека (об этических аспектах этого - чуть позже).
4. Использование клонирования в медицинских целях. Это именно тот вопрос, который следует обсуждать серьезно.

Предполагается, что можно использовать клонирование для преодоления бесплодия - это так называемое репродуктивное клонирование. Бесплодие, действительно, является чрезвычайно важной проблемой, многие бездетные семьи согласны на самые дорогие процедуры, чтобы иметь возможность родить ребенка.

Но возникает вопрос - а что принципиально нового может дать клонирование по сравнению, например, с экстракорпоральным оплодотворением с использованием донорских половых клеток? Честный ответ будет - ничего. Клонированный ребенок не будет иметь генотипа, являющего комбинацией генотипов мужа и жены. Генетически такая девочка будет монозиготной сестрой своей матери, генов отца у нее не будет. Точно так же клонированный мальчик для своей матери будет генетически чужд. Другими словами, получить генетически полностью «своего» ребенка с помощью клонирования бездетная семья не сможет, так же как и при использовании донорских половых клеток («дети из пробирки», полученные с помощью собственных половых клеток мужа и жены, генетически не отличаются от «обычных» детей). А в таком случае - зачем такая сложная и, что особенно важно, очень рискованная процедура? А если вспомнить, какова эффективность клонирования, представить себе, сколько нужно получить яйцеклеток, чтобы родился один клон, который к тому же, возможно, будет больным, с укороченной продолжительностью жизни, сколько эмбрионов, уже начавших жить, погибнет, то перспектива репродуктивного клонирования человека становится устрашающей. В большинстве тех стран, где технически возможно осуществление клонирования человека, репродуктивное клонирование законодательно запрещено.

Терапевтическое клонирование предполагает получение эмбриона, выращивание его до 14-дневного возраста, а затем использование эмбриональных стволовых клеток в лечебных целях. Перспективы лечения с помощью стволовых клеток ошеломляющи - излечение многих нейродегене-ративных заболеваний (например болезней Альцгеймера, Паркинсона), восстановление утраченных органов, а при клонировании трансгенных клеток - лечение многих наследственных болезней. Но посмотрим правде в лицо: фактически это означает вырастить себе братика или сестричку, а потом - убить, чтобы использовать их клетки в качестве лекарства. И если убивается не новорожденный младенец, а двухнедельный эмбрион, дела это не меняет. И, хотя, ограниченное использование терапевтического клонирования в большинстве стран не запрещено, очевидно, что человечество вряд ли пойдет по этому пути. Поэтому ученые ищут другие пути для получения стволовых клеток.

Китайские ученые с целью получения эмбриональных стволовых клеток человека создали гибридные эмбрионы путем клонирования ядер клеток кожи человека в яйцеклетках кроликов. Было получено более 100 таких эмбрионов, которые в течение нескольких дней развивались в искусственных условиях, а затем из них были получены стволовые клетки. Неизбежно возникает вопрос, что получилось бы, если такой эмбрион имплантировали бы в матку суррогатной матери и дали ему возможность развиваться. Эксперименты с другими видами животных дают основания считать, что жизнеспособный плод вряд ли бы мог развиться. Ученые надеются, что такой способ получения стволовых клеток окажется этически более приемлемым, чем клонирование человеческих эмбрионов.

Но, к счастью, оказывается, что эмбриональные стволовые клетки можно получать гораздо проще, не прибегая к сомнительным с этической точки зрения манипуляциям. У каждого новорожденного в его собственной пуповинной крови содержится довольно много стволовых клеток. Если эти клетки выделить, а затем хранить в замороженном виде, их можно будет использовать, если возникнет такая необходимость. Создавать такие банки стволовых клеток можно уже сейчас. Правда, следует иметь в виду, что стволовые клетки еще могут преподнести сюрпризы, в том числе и неприятные. В частности, есть данные о том, что стволовые клетки могут легко приобретать свойства злокачественности. Скорее всего, это связано с тем, что в искусственных условиях они изъяты из-под жесткого контроля со стороны организма. А ведь контроль «социального поведения» клеток в организме не только жесткий, но весьма сложный и многоуровневый. Но, конечно, возможности использования стволовых клеток столь впечатляющи, что исследования в этой области и поиски доступного источника стволовых клеток будут продолжаться.

И наконец, последний вопрос: допустимо ли клонирование человека?
Конечно, клонирование человека, безусловно, недопустимо, пока не преодолены технические сложности и низкая эффективность клонирования, пока не гарантирована нормальная жизнеспособность клонов. Несмотря на то, что время от времени появляются сообщения о том, что где-то родились клонированные дети, до настоящего времени ни одного документированного, достоверного случая успешного клонирования человека нет. Сенсационное сообщение о клонировании человеческих эмбрионов с очень высокой эффективностью южнокорейским ученым Ву-Сук Хваном не подтвердилось, были получены доказательства фальсификации результатов. До того чтобы клонирование стало обычной безопасной процедурой, еще очень далеко. Смысл вопроса в другом - допустимо ли клонирование человека в принципе? Какие последствия могло бы иметь применение этого способа размножения?

Одним из вполне реальных последствий клонирования может стать нарушение соотношения полов в потомстве. Не секрет, что очень и очень многие семьи во многих странах хотели бы иметь скорее мальчика, чем девочку. Уже в настоящее время в Китае возможность пренатальной диагностики пола и меры по ограничению рождаемости привели к такому положению, что в некоторых районах среди детей наблюдается значительное преобладание мальчиков. Что будут делать эти мальчики, когда придет время заводить семью?

Другое негативное следствие широкого применения клонирования - снижение генетического разнообразия человека. Оно и так невелико - существенно меньше, чем, например, даже у таких малочисленных видов, как человекообразные обезьяны. Причина этого - резкое снижение численности вида, имевшее место не менее двух раз за последние 200 тыс. лет. Следствием является большое количество наследственных заболеваний и дефектов, вызываемых переходом мутантных аллелей в гомозиготное состояние. Дальнейшее снижение разнообразия может поставить под угрозу существование человека как вида. Правда, справедливости ради следует сказать, что столь широкого распространения клонирования вряд ли следует ожидать даже в отдаленном будущем.

И наконец, не следует забывать о тех последствиях, которые мы пока не в состоянии предусмотреть.

В заключение нужно сказать вот о чем. Стремительное развитие биологии и медицины поставило перед человеком множество новых вопросов, которые никогда раньше не возникали и не могли возникнуть - допустимость клонирования или эвтаназии; возможности реанимации поставили вопрос о границе жизни и смерти; угроза перенаселения Земли требует ограничения рождаемости. С подобными проблемами человечество никогда не сталкивалось и поэтому не выработало никаких этических установок по их поводу. Именно поэтому сейчас невозможно дать ясные и четкие ответы, что можно, а что нельзя. Нужно отдавать себе отчет и вот еще в чем: можно законодательно запретить те или иные работы, но природа человека такова, что, если что-нибудь (клонирование человека, например) технически возможно, оно рано или поздно будет сделано несмотря ни на какие запреты. Именно поэтому необходимо широкое обсуждение подобных вопросов, с тем чтобы вырабатывалось осознанное отношение к таким проблемам, по которым в настоящее время невозможно дать однозначного ответа.


"Биология для школьников" . - 2014 . - № 1 . - С. 18-29.


Загрузка...