docgid.ru

Волны. Мировой океан. Морские волны

Откуда берутся гигантские волны?

Чем обусловлено появление большинства волн в океанах и морях, об энергии волн и о самых гигантских волнах.

Основная причина появления океанических волн – влияние ветров на водную поверхность. Скорость некоторых волн может развиться и даже превысить 95 км в час. Гребень от гребня может быть разделен 300-ми метрами. Они проходят по поверхности океана огромные расстояния. Большая часть их энергии расходуется еще до того, как они достигнут суши, может быть, минуя при этом самое глубокое место в мире – Марианскую впадину. Да и размеры их становятся меньше. А если ветер успокаивается, то и волны становятся более спокойными и гладкими.

Если в океане сильный бриз, то высота волн обычно достигает 3 метров. Если ветер начинает становиться штормовым, то они могут стать 6 м. При сильном штормовом ветре их высота уже может быть выше 9 м и они становятся крутыми, с обильными брызгами.

Во время шторма, когда в океане видимость затрудняется, высота волн превышает 12 метров. А вот во время сильнейшего шторма, когда море сплошь покрыто пеной и даже небольшие корабли, яхты или суда (а не то, что рыба, даже самая большая рыба ) могут просто затеряться между 14-ми волнами.

Удары волн

Большие волны постепенно размывают берега. Маленькие волны могут потихоньку выровнять пляж с наносом. Волны ударяются о берега под определенным углом, поэтому, нанос, смытый в одном месте, вынесется и будет отложен на другом.

Во время сильнейших ураганов или штормов могут произойти такие изменения, что громадные участки берега могут значительно трансформироваться внезапно.

Да и не только берега. Когда-то, в очень далеком от нас 1755 году, волны 30-ти метровой высоты снесли с лица земли Лиссабон, погрузив под тоннами воды постройки города, превратив их в руины и погубив более полумиллиона человек. И случилось это в большой католический праздник – День всех святых.

Волны-убийцы

Самые большие волны обычно наблюдают по Игольному течению (или течению Агульяс), что у берегов Южной Африки. Здесь же была отмечена и самая высокая волна в океане . Ее высота составила 34 м. А вообще самая большая из когда-либо замеченных волн, была зафиксирована лейтенантом Фредериком Марго на судне, держащем свой путь из Манилы в Сан-Диего. Было это 7 февраля 1933 года. Высота той волны тоже была около 34 метров. Таким волнам моряки дали прозвище «волны-убийцы». Как правило, необыкновенно высокой волне всегда предшествует такая же глубокая впадина (или провал). Известно, что в таких впадинах-провалах исчезло большое количество кораблей. Кстати, волны, образующиеся во время во время приливов, с приливами-то и не связаны. Они бывают вызваны подводным землетрясением или извержением вулкана на морском или океаническом дне, которое создает перемещение огромных масс воды и, как следствие, большие волны.

Водная стихия может быть по-настоящему грозной! Только представьте, что почувствует человек, на которого надвигается волна, высотой в 30 метров (примерно с 9-этажный дом). Это необычное и довольно редкое природное явление носит название «волна убийца». Еще совсем недавно океанологи относили его к , но сегодня у ученых появились неопровержимые доказательства существования супер-волн.

Волна убийца, которую также называют блуждающей или белой волной, появляется словно бы из ниоткуда. Предсказать время и место ее образования совершенно невозможно. Огромная масса воды, размер которой достигает 20..30 и более метров, представляет угрозу даже для современных лайнеров. Судно, попавшее под удар волны убийцы, затонет гораздо быстрее, чем легендарный Титаник. На это уйдет не более нескольких минут.

Страшная месть Нептуна

У мореплавателей средних веков водная стихия вызывала благоговение и страх. Существовали многочисленные ритуалы, призванные умилостивить Нептуна - повелителя морей и океанов. Викинги вырезали в носовой части своих лодок драккаров из ясеня. Морские разбойники верили, что благородное дерево обладает способностью «отводить» штормы и бури.

Разумеется, современные моряки уже не выказывают почестей Нептуну. Но это не означает, что некоторые природные явления не могут внушить суеверный ужас даже закоренелому скептику. Люди, которым повезло выжить после встречи с волной убийцей, говорят о том, что она «возникла словно бы из ниоткуда и исчезла непонятно куда».

Волна убийца генерирует инфразвук?

Старинные морские легенды повествуют о сиренах - мифических женщинах-русалках, завлекающих мореплавателей на самое дно. Согласно поверьям, их голоса способны затуманить разум человека и заставить его пойти на любое безумство, например, броситься за борт. Иногда случалось даже так, что за бортом сразу оказывался весь экипаж судна. Впоследствии другие мореплаватели, столкнувшиеся с пустым кораблем, вполне могли принять его за легендарный .

Вы спросите, какая связь между мифом о сиренах и громадной волной убийцей? Нам придется сделать небольшое отступление, и рассказать читателю о таком интересном природном явлении, как инфразвук. Этим термином называют низкочастотный звук, который не слышен человеческому уху, но между тем способен оказывать влияние на организм. Некоторые люди начинают плохо себя чувствовать, у других мутится рассудок.

В море инфразвук иногда может возникать во время шторма. Под воздействием природного явления людей начинают преследовать галлюцинации. К примеру, морякам может показаться, что корабль охвачен пламенем, что и побуждает их выброситься за борт. Считается, что именно инфразвук породил легенды о женщинах-сиренах.

Теперь самое интересное - некоторые исследователи предполагают, что гигантская волна убийца тоже способна генерировать инфразвук. Если это правда, то у тех, кто встретится с ней в море, практически нет шансов на выживание.

Почему они появляются?

Одна из наиболее популярных гипотез о причинах возникновения волны-убийцы основана на суперпозиции волн разной длины. Если говорить простым языком, несколько относительно небольших валов «сливаются» в одну огромную волну, которая «живет» в течение некоторого времени, а затем исчезает. Однако произведенные расчеты показали, что правдоподобность этой гипотезы ничтожно мала.

Вызывает интерес тот факт, что волна убийца может быть не только гребнем, но и впадиной. Впрочем, судну, столкнувшемуся с природной ловушкой, от этого не будет легче. Только представьте себе неожиданное падение в морскую бездну на глубину девятиэтажного дома!

Исследователи паранормальных явлений тоже заинтересовались феноменом, природу которого не могут объяснить ученые. Согласно одной из выдвинутых версий, причиной появления суперволн может стать аномальная активность . Некоторые даже предполагают, что раса атлантов все еще живет на дне и занимается разработкой новых технологий. Уфологи выдвигают гипотезу о том, что появление волн убийц связано с экспериментами НЛО.

Столкновения с волнами убийцами

Первый задокументированный случай столкновения судна с волной убийцей произошел 7-го февраля 1933 года. Жертвой разбушевавшейся стихии стал корабль «Рамапо», принадлежавший вооруженным морским силам США. Невероятной высоты вал подстерег судно в водах Тихого океана. Люди, которым посчастливилось выжить, зафиксировали волну в 34 метра, передвигающуюся со скоростью примерно 85 км/час.

В апреле 1966-го года очередной жертвой водной стихии стал лайнер Michelangelo, который подвергся удару блуждающей волны в средней части Атлантики. Один из бортов и нос судна серьезно пострадали, 50 человек получили ранения, а двух пассажиров смыло в море.

Последний раз морского «убийцу» наблюдали в сентябре 1995-го года. Этот случай был зафиксирован персоналом лайнера «Queen Elizabeth 2». Отважные моряки попытались «оседлать» громадный вал, высотой в 29 метров. Местом столкновения с природным феноменом стала Северная Атлантика.

Предлагаем вам смотреть фильм «Волна убийца» онлайн. Этот небольшой десятиминутный ролик наверняка вызовет интерес у любителей мистики и морской тематики.

За тысячи лет мореплавания люди научились бороться с опасностями водной стихии. Лоции указывают безопасный путь, синоптики предупреждают о штормах, спутники наблюдают за айсбергами и другими опасными объектами. Однако до сих пор непонятно, как уберечься от тридцатиметровой волны, которая неожиданно возникает без видимых причин. Еще пятнадцать лет назад загадочные волны-убийцы считались выдумкой.

Иногда появление гигантских волн на поверхности океана вполне понятно и ожидаемо, но иногда они — настоящая загадка. Зачастую такая волна — смертный приговор для любого судна. Имя этим загадкам — волны-убийцы.

Вряд ли вы найдете моряка, который не прошел бы крещение штормом. Поскольку, перефразируя известную поговорку, бури бояться — в море не выходить. С самой зари мореплавания шторм был лучшим экзаменом и на мужество, и на профессионализм. И если любимая тема воспоминаний ветеранов войн — былые сражения, то «морские волки» непременно расскажут вам о свистящем ветре, срывающем радиоантенны и радары, и огромных ревущих волнах, едва не поглотивших их корабль. Который, возможно, был «самым-самым».

Но уже 200 лет назад возникла необходимость уточнить силу шторма. Поэтому в 1806 году ирландским гидрографом и адмиралом британского флота Френсисом Бофортом (Francis Beaufort, 1774-1875) была введена специальная шкала, по которой погода на море классифицировалась в зависимости от степени воздействия ветра на водную поверхность. Она была разбита на тринадцать ступеней: от нуля (полный штиль) до 12 баллов (ураган). В ХХ веке, с некоторыми изменениями (в 1946 году она была 17-бальная), её принял Международный метеорологический комитет — в том числе и для классификации ветров на суше. С тех пор перед моряком, прошедшим 12-бальное «волнение», невольно снимали шляпы — поскольку были хотя бы наслышаны, что это такое: вздымающиеся огромные валы, вершины которых ураганный ветер раздувает в сплошные тучи брызг и пены.

Однако для страшного явления, которое регулярно обрушивается на Юго-Восточную оконечность Североамериканского континента, в 1920 году пришлось придумать новую шкалу. Это пятибалльная шкала ураганов Саффира-Симпсона, которая оценивает не столько саму мощь стихии, сколько разрушения, которые она производит.

Согласно этой шкале, ураган первой категории (скорость ветра 119-153 км/ч) ломает ветки деревьев и наносит некоторые повреждения небольшим судам у причала. Ураган третьей категории (179-209 км/ч) валит деревья, срывает крыши и разрушает легкие сборные дома, затапливает береговую линию. Самый страшный ураган пятой категории (более 255 км/ч) разрушает большую часть зданий и вызывает серьезные наводнения — гоня на сушу большие массы воды. Именно таким был печально известный ураган «Катрина», который в 2005 году обрушился на Новый Орлеан.

Карибское море, где в ежегодно в период с 1 июня по 30 ноября проносятся до десяти формирующихся в Атлантике ураганов, издавна считалось одним из опаснейших районов для мореплавания. Да и жить на островах этого бассейна отнюдь не безопасно — особенно в такой бедной стране, как Гаити — где нет ни нормальной службы предупреждения, ни возможности эвакуироваться с опасного побережья. В 2004 году во время урагана «Дженни» там погибли 1316 человек. Ревущий как эскадрилия реактивных самолетов ветер сдувал ветхие хижины вместе с их жильцами, обрушивал на головы людей пальмы. А с моря на них накатывались пенящиеся валы.

Можно только представить себе, что испытывает команда корабля, попавшего в «самое пекло» такого урагана. Однако случается, что корабли гибнут вовсе не во время шторма.

В апреле 2005 года круизный лайнер «Norwegian Dawn», покинув сказочные Багамские острова, направлялся в гавань Нью-Йорка. Море слегка штормило, однако огромный 300-метровый корабль мог себе позволить просто не замечать такое волнение. Две с половиной тысячи пассажиров весело оттягивались в ресторанах, гуляли по палубам и фотографировались на память.

Внезапно лайнер резко накренился, а в следующие секунды гигантская волна обрушилась на его борт, выбивая иллюминаторы кают. Она пронеслась через корабль, сметая на своем пути шезлонги, переворачивая шлюпки и установленные на 12-й палубе джакузи, сбивая с ног пассажиров и матросов.

«Это был настоящий ад, — рассказывал Джеймс Фрэйли, один из пассажиров, отмечавший на лайнере медовый месяц со своей женой. — Потоки воды перекатывались через палубы. Мы принялись звонить родным и близким, чтобы попрощаться, решив, что корабль гибнет».

Так «Norwegian Dawn» столкнулся с одной из самых загадочных и ужасных океанских аномалий — гигантской волной-убийцей. На Западе они получили различные названия: freak, rogue, rabid-dog, giant waves, cape rollers, steep wave events и пр.

Кораблю очень повезло — он отделался лишь небольшими повреждениями корпуса, смытым за борт имуществом да ранеными пассажирами. Но волна, внезапно обрушившаяся на него, не зря получила свое зловещее прозвище. Лайнер вполне могла постигнуть судьба голливудского «Посейдона» — перевернувшегося вверх дном в одноименном фильме. Или, что ещё хуже — просто переломиться пополам и утонуть, став вторым «Титаником».

Ещё в 1840 году во время своей экспедиции французский мореплаватель Дюмон Дюрвиль (Jules Sebastien Cesar Dumont d’Urville, 1792-1842) наблюдал гигантскую волну высотой около 35 м. Но его сообщение на заседании Французского географического общества вызвало лишь иронический смех. Никто из ученых мужей не мог поверить в то, что такие волны могут существовать.

Всерьез за изучение этого явления взялись только после того, как в 1980 году у берегов Японии пошел на дно английский сухогруз «Дербишир» (Derbyshire). Как показало обследование, судно длиной почти 300 метров погубила гигантская волна, которая пробила главный грузовой люк и залила трюм. Погибли 44 человека. В том же году к востоку от побережья ЮАР с волной-убийцей столкнулся нефтяной танкер «Эссо Лангедок» (Esso Languedoc).

«Штормило, но несильно, — приводил рассказ старшего помощника капитана Филиппа Лижура (Philippe Lijour) английский журнал New Scientist, — Вдруг со стороны кормы появилась огромная волна, во много раз выше всех остальных. Она накрыла все судно, под водой скрылись даже мачты».

Пока вода прокатывалась по палубе, Филипп успел схватить сфотографировать её. По его оценке, вал взметнулся не менее чем на 30 метров. Танкеру повезло — он остался на плаву. Однако эти два случая стали последней каплей, заставившие запаниковать компании, занимающиеся экспортом-импортом сырья. Ведь считалось, что перевозить его на гигантских судах не только экономически выгодней, но и безопасней — мол, таким кораблям, которым «море по колено», не страшен никакой шторм.

Увы! Только в период с 1969 по 1994 годы в Тихом и Атлантическом океанах при встрече с подобными волнами затонули или получили серьезные повреждения двадцать два супертанкера — при этом погибли пятьсот двадцать пять человек. Ещё двенадцать подобных трагедий за это время произошло в Индийском океане. Страдают от них и морские нефтяные платформы. Так, 15 февраля 1982 года волна-убийца перевернула буровую вышку компании «Mobil Oil» в районе Ньюфаундлендской банки, унеся жизни восьмидесяти четырех рабочих.

Но ещё большее количество мелких судов (траулеры, прогулочные яхты) при встрече с волнами-убийцами просто исчезают без следа, даже не успев послать сигнал бедствия. Гигантские водные валы высотой с пятнадцатиэтажный дом сминали или разбивали суденышки. Не спасало и мастерство рулевых: если кому-то удавалось успеть развернуться носом к волне, то его участь была такой же, как и у несчастных рыбаков в фильме «Идеальный шторм»: кораблик, пытаясь взобраться на гребень, становился в вертикальное положение — и срывался вниз, падая в пучину килем кверху.

Обычно волны-убийцы возникают во время шторма. Это тот самый «девятый вал», которого так страшатся моряки — но столкнуться с ним, к счастью, случается не всем. Если высота обычных штормовых гребней в среднем составляет 4-6 метров (10-15 при урагане), то внезапно возникающая среди них волна может достигать высоты 25-30 метров.

Однако более редкие, и гораздо более опасные волны-убийцы появляются при довольно спокойной погоде — и иначе, как аномалией, это не называют. Сначала их пытались обосновать столкновением морских течений: наиболее часто такие волны появляются у мыса Доброй Надежды (южная оконечность Африки), где соединяются теплые и холодные потоки. Именно там порою возникают т.н. «три сестры» — следующие одна за другой три гигантские волны, поднявшись на которые, переламываются под собственным весом супертанкеры.

Но сообщения о смертоносных валах поступали и из других уголков планеты. В том числе их видели на Черном море — «всего» десятиметровой высоты, но этого было достаточно, чтобы перевернуть несколько небольших траулеров. В 2006 году такая волна обрушилась на британский паром «Понт-Авен» (Pont-Aven), следовавший по проливу Па-де-Кале. Она разбила окна на высоте шестой палубы, причинив ранения нескольким пассажирам.

Что побуждает морскую гладь внезапно взметнуться гигантским валом? И серьезные ученые, и теоретики-любители вырабатывают самые разные гипотезы. Волны фиксируют спутниками из космоса, создаются их модели в исследовательских бассейнах, однако до сих пор не могут пояснить причины всех случаев возникновения волн-убийц.

Зато давно установлены и изучены причины, вызывающие самые страшные и разрушительные морские волны — цунами.

Приморские курорты не всегда бывают райским уголком планеты. Иногда они становятся настоящим адом — когда на них неожиданно, в ясную и солнечную погоду, обрушиваются гигантские водные валы, смывая на своем пути целые города.

…Эти кадры обошли весь мир: ничего не подозревающие туристы, которые из любопытства вышли на дно внезапно отхлынувшего моря — подобрать несколько ракушек и морских звезд. И вдруг они замечают, как на горизонте возникает стремительно приближающаяся волна. Бедняги пытаются убежать, но мутный бурлящий поток настигает и захватывает их, а затем несется к белеющим на побережье домам…

Катастрофа, разразившаяся 26 декабря 2004 года в Юго-Восточной Азии, потрясла человечество. Гигантская волна сметала все на своем пути, расходясь по Индийскому океану. Пострадали Суматра и Ява, Шри-Ланка, Индия и Бангладеш, Таиланд, волна дошла даже до восточного побережья Африки. Андаманские острова на несколько часов ушли под воду — и местные аборигены чудом выжили, спасаясь на верхушках деревьев. В результате катастрофы погибли более 230 тысяч человек — на поиск и захоронение всех их ушло более месяца. Миллионы людей остались без крова и средств к существованию. Трагедия оказалось одной из самых масштабных и трагических природных катастроф в истории человечества.

«Высокая волна, входящая в гавань» — так с японского переводится слово «цунами». В 99% случаев цунами возникают в результате землетрясения океанского дна, когда оно резко опускается или поднимается. Всего на несколько метров, но на огромной площади — и этого достаточно, чтобы вызвать разбегающуюся от эпицентра по кругу волну. В открытом море её скорость достигает 800 км/ч, но заметить её практически невозможно, так как её высота составляет всего около одного, максимум двух метров — но при длине до нескольких километров. Корабль, под которым она пронесется, лишь слегка качнет — именно поэтому, получив предупреждение, суда стремятся покинуть порты и выйти как можно дальше в море.

Ситуация меняется, когда волна приближается к берегу, на мелководье (заходит в гавань). Её скорость и длина резко падают, зато вырастает высота — до семи, десяти и более метров (известны случаи 40-метровых цунами). Она врывается на сушу сплошной стеной и обладает огромной энергией — вот почему цунами столь разрушительны и могут пройти по земле несколько сот, а иногда и тысяч метров. Причем каждое цунами бьет дважды. Вначале — когда обрушивается на берег, затапливая его. А потом — когда вода начинает возвращаться в море, унося обратным потоком тех, кто выжил после первого удара.

В 1755 году вызванное разрушительным землетрясением цунами унесло жизни 40 тысяч португальцев. Грозный океанский вал обрушился на Японию 15 июня 1896 года: высота волны достигала 35 метров, тогда погибло 27 тысяч человек, а все прибрежные городки и деревни в 800 км полосе прекратили свое существование. В 1992 году от цунами погибли 2 000 жителей островов Индонезии.

Бывалые жители приморских городов и поселков сейсмически опасных районов знают: как только начинается землетрясение, а после него — внезапный и быстрый отлив, нужно бросать все и без оглядки бежать на возвышенность или вглубь суши. В ряде же регионов, регулярно страдающих от цунами (Япония, Сахалин, Гавайи), созданы специальные службы предупреждения. Они фиксируют землетрясение в океане и тут же дают пор всем СМИ и через уличные громкоговорители сигнал тревоги.

Но цунами могут вызываться не только землетрясениями. Взрыв в 1883 году вулкана Кракатау вызвал волну, которая обрушилась на острова Ява и Суматра, смыв более 5000 рыбацких суденышек, около 300 деревень и погубив более 36 000 людей. А в заливе Литуя (Аляска) цунами вызвал оползень, обрушивший в море склон горы. Волна распространилась на ограниченной территории, но зато её высота была грандиозной — свыше трехсот метров, при этом, обрушившись на противоположный берег, она слизнула кустарник на высоте 580 метров!

Однако и это не предел. Самые огромные и разрушительные волны рождаются при падении в океан больших метеоритов или астероидов. Правда, к счастью, это бывает крайне редко — раз в несколько миллионов лет. Но зато этот катаклизм принимает масштабы поистине всепланетного потопа. Например, германские ученые установили, что около 200 миллионов лет назад в Землю врезалось крупное космическое тело. Оно подняло цунами высотой свыше одного километра, которое ворвалось на материковые равнины, уничтожая все живое на своем пути.

Волны-убийцы не следует путать с цунами: цунами возникают в результате сейсмических явлений и набирают большую высоту лишь вблизи от берега, тогда как волны-убийцы могут появляться без известных причин, практически на любом участке моря, при слабом ветре и относительно небольшом волнении. Цунами опасны для береговых сооружений и судов, стоящих близко к берегу, в то время как волна-убийца может погубить любое судно или морское сооружение, которое ей подвернется.

Откуда же берутся эти монстры? До недавнего времени океанографы полагали, что они формируются в результате хорошо известных линейных процессов. Согласно бытующей теории большие волны просто являются продуктом интерференции, в рамках которой малые волны объединяются в одну большую.

В некоторых случаях именно так и происходит. Хорошим тому примером служат воды у мыса Игольного, самой южной точки африканского континента. Там стыкуются Атлантический и Индийский океаны. На суда, огибающие мыс, регулярно нападают огромные волны, которые образуются в результате столкновения быстрого Агульясова течения и ветров, дующих с юга. Движение воды замедляется, а волны начинают громоздиться друг на друга, образуя гигантские валы. Помимо этого суперволны часто можно встретить в Гольфстриме, в течении Куросио к югу от берегов Японии и в пользующихся мрачной славой водах у мыса Горн, где происходит то же самое — быстрые течения сталкиваются с противодействующими ветрами.

Однако механизм интерференции не подходит ко всем волнам-великанам. Во-первых, он никак не годится для того, чтобы обосновать появление гигантских волн в таких местах, как Северное море. Там быстрых течений нет и в помине.

Во-вторых, даже если интерференция имеет место, волны-гиганты не должны встречаться столь часто. Их абсолютное большинство должно тяготеть к средней высоте — одни чуть выше, другие чуть ниже. Исполины двойного размера должны появляться не чаще одного раза на протяжении человеческой жизни. Тем не менее на деле всё обстоит совсем по-другому. Наблюдения океанографов наводят на мысль, что большинство волн по размеру меньше среднего, а настоящие великаны встречаются гораздо чаще, чем мы думаем. Ортодоксальная океанография получает пробоину ниже ватерлинии.

Обычно волна-убийца описывается как быстро приближающаяся водяная стена огромной высоты. Перед ней движется впадина глубиной несколько метров — "дыра в море". Высота волны обычно указывается именно как расстояние от высшей точки гребня до низшей точки впадины. По внешнему виду "волны-убийцы" делятся на три основных типа: "белая стена", "три сестры" (группа из трех волн), одиночная волна ("одиночная башня").

Чтобы оценить, что они могут, достаточно взглянуть на фотографию "Уильстара" выше. Поверхность, на которую обрушивается такая волна, может испытывать давление до ста тонн на квадратный метр (около 980 килопаскалей). Типичная двенадцатиметровая волна угрожает лишь шестью тоннами на квадратный метр. Большинство современных судов может выдержать до 15 тонн на квадратный метр.

По наблюдениям Национального управления океанических и атмосферных исследований США (NOAA), волны-убийцы бывают рассеивающиеся и нерассеивающиеся. Нерассеивающиеся могут проделать по морю довольно долгий путь: от шести до десяти миль. Если судно замечает волну издали, можно успеть принять какие-то меры. Рассеивающиеся же появляются буквально ниоткуда (видимо, такая волна атаковала "Таганрогский залив"), обрушиваются и исчезают.

По мнению некоторых экспертов, волны-убийцы опасны даже для низко летающих над морем вертолетов: в первую очередь, спасательных. Несмотря на кажущуюся маловероятность такого события, авторы гипотезы считают, что ее нельзя исключать и что как минимум два случая гибели спасательных вертолетов похожи на результат удара гигантской волны.

Ученые пытаются выяснить, как энергия в океане перераспределяется таким образом, что образование волн-убийц становится возможным. Поведение нелинейных систем, подобных морской поверхности, описать крайне сложно. Некоторые теории используют для описания возникновения волн нелинейное уравнение Шредингера. Некоторые пытаются применить существующие описания солитонов — одиночных волн необычной природы. В ходе последнего исследования на эту тему ученым удалось воспроизвести очень похожее явление в электромагнитных волнах, однако к практическим результатам это пока не привело.

Некоторые эмпирические данные о том, в каких условиях возникновение волн-убийц более вероятно, все же известны. Так, если ветер гонит волны против сильного течения, то это может привести к появлению высоких крутых волн. Этим печально известно, например, течение Игольного мыса (в котором пострадал "Уильстар"). Другими зонами повышенной опасности являются течение Куросио, Гольфстрим, Северное море и прилегающие районы.

Эксперты называют следующие предпосылки для возникновения волны-убийцы:

1. область пониженного давления;
2. ветер, дующий в одном направлении более 12 часов подряд;
3. волны, движущиеся с той же скоростью, что и область пониженного давления;
4. волны, движущиеся против сильного течения;
5. быстрые волны, догоняющие более медленные волны и сливающиеся с ними вместе.

Вздорный характер волн-убийц, однако, проявляется в том, что они могут возникать и тогда, когда перечисленные условия не выполняются. В этой непредсказуемости и заключается основная загадка для ученых и опасность для моряков.

Им удалось спастись

1943 год, Северная Атлантика. Круизный лайнер „Куин Элизабет“ попадает в глубокую ложбину и подвергается двум мощным волновым ударам подряд, которые наносят серьёзные повреждения на мостике — на высоте двадцать метров над ватерлинией.

1944 год. Индийский океан. Крейсер британских ВМС „Бирмингем“ проваливается в глубокую яму, после чего на его носовую часть обрушивается гигантская волна. Согласно записям командира корабля палуба, находящаяся на высоте восемнадцать метров от уровня моря, залита водой по колено.

1966 год, Северная Атлантика. На пути в Нью-Йорк итальянский пароход „Микеланджело“ получает удар от волны высотой восемнадцать метров. Вода врывается на мостик и в каюты первого класса, в результате чего гибнут два пассажира и один член экипажа.

1995 год, Северное море. Серьёзное повреждение от гигантской волны получает плавучая буровая установка „Веслефрикк Б“, принадлежащая компании Statoil. По свидетельству одного из членов экипажа, за несколько минут до удара он видел „стену воды“.

1995 год. Северная Атлантика. При переходе в Нью-Йорк круизный лайнер „Куин Элизабет-2“ попадает в ураган и принимает на носовую часть удар волны высотой двадцать девять метров. „Ощущение было такое, что мы врезаемся в Белые скалы Дувра“, — рассказывает капитан Рональд Уоррик.

1998 год, Северная Атлантика. Плавучая эксплуатационная платформа „Шихэллион“ компании ВР Amoco подвергается удару гигантской волны, которая разносит её баковую надстройку на высоте восемнадцать метров от уровня воды.

2000 год, Северная Атлантика. Приняв сигнал бедствия от яхты на расстоянии 600 миль от ирландского порта Корк, британский круизный лайнер „Ориана“ получает удар волны высотой двадцать один метр.

Волна (Wave, surge, sea) - образуется благодаря сцеплению частиц жидкости и воздуха; скользя по гладкой поверхности воды, поначалу воздух создаёт рябь, а уже затем, действует на ее наклонные поверхности, развивает постепенно волнение водной массы. Опыт показал, что водяные частицы не имеют поступательного движения; перемещается только вертикально. Морскими волнами называют движение воды на морской поверхности, возникающее через определённые промежутки времени.

Высшая точка волны называется гребнем или вершиной волны, а низшая точка - подошвой . Высотой волны называется расстояние от гребня до её подошвы, а длина это расстояние между двумя гребнями или подошвами. Время между двумя гребнями или подошвами называется периодом волны.

Основные причины возникновения

В среднем высота волны во время шторма в океане достигает 7-8 метров, обычно может растянуться в длину - до 150 метров и до 250метров во время шторма.

В большинстве случаев морские волны образуются ветром.Сила и размеры таких волн зависят от силы ветра, а так-же его продолжительности и «разгона» - длины пути, на котором ветер действует на водную поверхность. Иногда волны, которые обрушиваются на побережье, могут зарождаются за тысячи километров от берега. Но есть ещё много других факторов возникновения морских волн: это приливообразующие силы Луны, Солнца, колебания атмосферного давления, извержения подводных вулканов, подводных землетрясений, движением морских судов.

Волны, наблюдаемые и в других водных пространствах, могут быть двух родов:

1) Ветровые , созданные ветром, принимающие по прекращении действия ветра установившийся характер и называемые установившимися волнами, или зыбью; Ветровые волны создаются вследствие воздействия ветра (передвижение воздушных масс) на поверхность воды, то есть нагнетания. Причина колебательных движений волн становится легко понятна, если заметить воздействие того же ветра на поверхность пшеничного поля. Хорошо заметна непостоянность ветровых потоков, которые и создают волны.

2) Волны перемещения , или стоячие волны, образуются в результате сильных толчков на дне при землетрясениях или возбужденные, например, резким изменением давления атмосферы. Данные волны носят также название одиночных волн.

В отличие от приливов, отливов и течений волны в не перемещают массы воды. Волны идут, но вода остается на месте. Лодка, которая качается на волнах, не уплывает вместе с волной. Она сможет немного переместиться по наклонной, только благодаря силе земной гравитации. Частицы воды в волне движутся по кольцам. Чем дальше эти кольца от поверхности, тем меньше они становятся и, наконец, исчезают совсем. Находясь в субмарине на глубине 70-80 метров, вы не ощутите действие морских волн даже при самом сильном шторме на поверхности.

Виды морских волн

Волны могут проходить огромные расстояния, не изменяя формы и практически не теряя энергии, долго после того, как вызвавший их ветер утихнет. Разбиваясь о берег, морские волны высвобождают огрмную энергию, накопленную за время странствия. Сила непрерывно разбивающихся волн по-разному изменяет форму берега. Разливающиеся и накатывающиеся волны намывают берег и поэтому называются конструктивными . Волны, обрушивающиеся на берег, постепенно разрушают его и смывают защищающие его пляжи. Поэтому они называются деструктивными .

Низкие, широкие, закругленные волны вдали от берега называются зыбью. Волны заставляют частички воды описывать кружки, кольца. Размер колец уменьшается с глубиной. По мере приближения волны к покатому берегу частицы воды в ней описывают все более сплющенные овалы. Приближаясь к берегу, морские волны больше не могут замкнуть свои овалы, и волна разбивается. На мелководье частицы воды больше не могут замкнуть свои овалы, и волна разбивается. Мысы образованы из более твердой породы и разрушаются медленнее, чем соседние участки берега. Крутые, высокие морские волны подтачивают скалистые утесы у основания, образуя ниши. Утесы порой обрушиваются. Сглаженная волнами терраса - это все, что остается от разрушенных морем скал. Иногда вода поднимается по вертикальным трещинам в скале до вершины и вырывается на поверхность, образуя воронку. Разрушительная сила волн расширяет трещины в скале, образуя пещеры. Когда волны подтачивают скалу с двух сторон, пока не соединятся в проломе, образуются арки. Когда верх арки падает в море, остаются каменные столбы. Их основания подтачиваются, и столбы обрушиваются, образуя валуны. Галька и песок на пляже - это результат эрозии.

Деструктивные волны постепенно размывают берег и уносят песок и гальку с морских пляжей. Обрушивая всю тяжесть своей воды и смытого материала на склоны и обрывы, волны разрушают их поверхность. Они вжимают воду и воздух в каждую трещину, каждую расщелину, часто с энергией взрыва, постепенно разделяя и ослабляя скалы. Отколовшиеся обломки скал используются для дальнейшего разрушения. Даже самые твердые скалы постепенно уничтожаются, и суша на берегу изменяется под действием волн. Волны могут разрушать морской берег с поразительной быстротой. В графстве Линкольншир, в Англии, эрозия (разрушение) надвигается со скоростью 2 м в год. С 1870 г., когда был построен самый большой в США маяк на мысе Гаттерас, море смыло пляжи на 426 м в глубину побережья.

Цунами

Цунами - это волны огромной разрушительной силы. Они вызываются подводными землетрясениями или извержениями вулканов и могут пересекать океаны быстрее, чем реактивный самолет: 1000 км/ч. В глубоких водах они могут быть ниже одного метра, но, приближаясь к берегу, замедляют свой бег и вырастают до 30-50 метров, прежде чем обрушиться, затопляя берег и сметая все на своем пути. 90% всех зарегистрированных цунами отмечено в Тихом океане.

Наиболее распространённые причины.

Около 80% случаев зарождения цунами являются подводные землетрясения . При землетрясении под водой происходит взаимное смещение дна по вертикали: часть дна опускается, а часть приподнимается. На поверхности воды происходят колебательные движения по вертикали, стремясь вернуться к исходному уровню, - среднему уровню моря, - и порождает серию волн. Далеко не каждое подводное землетрясение сопровождается цунами. Цунамигенным (то есть порождающим волну цунами) обычно является землетрясение с неглубоко расположенным очагом. Проблема распознавания цунамигенности землетрясения до сих пор не решена, и службы предупреждения ориентируются на магнитуду землетрясения. Наиболее сильные цунами генерируются в зонах субдукции. Также, необходимо чтобы подводный толчок вошёл в резонанс с волновыми колебаниями.

Оползни . Цунами такого типа возникают чаще, чем это оценивали в ХХ веке (около 7 % всех цунами). Зачастую землетрясение вызывает оползень и он же генерирует волну. 9 июля 1958 года в результате землетрясения на Аляске в бухте Литуйя возник оползень. Масса льда и земных пород обрушилась с высоты 1100 м. Образовалась волна, достигшая на противоположном берегу бухты высоты более 524 м. Подобного рода случаи достаточно редки и, не рассматриваются в качестве эталона. Но намного чаще происходят подводные оползни в дельтах рек, которые не менее опасны. Землетрясение может быть причиной оползня и, например, в Индонезии, где очень велико шельфовое осадконакопление, оползневые цунами особенно опасны, так как случаются регулярно, вызывая локальные волны высотой более 20 метров.

Вулканические извержения составляют примерно 5% всех случаев цунами. Крупные подводные извержения обладают таким же эффектом, что и землетрясения. При сильных вулканических взрывах образуются не только волны от взрыва, но вода также заполняет полости от извергнутого материала или даже кальдеру, в результате чего возникает длинная волна. Классический пример - цунами, образовавшееся после извержения Кракатау в 1883 году. Огромные цунами от вулкана Кракатау наблюдались в гаванях всего мира и уничтожили в общей сложности более 5000 кораблей, погибло около 36 000 человек.

Признаки появления цунами.

  • Внезапный быстрый отход воды от берега на значительное расстояние и осушка дна. Чем дальше отступило море, тем выше могут быть волны цунами. Люди, которые находятся на берегу и не знающие об опасности , могут остаться из любопытства или для сбора рыбы и ракушек. В данном случае необходимо как можно скорее покинуть берег и удалиться от него на максимальное расстояние - таким правилом следует руководствоваться, находясь, например, в Японии, на Индоокеанском побережье Индонезии, Камчатке. В случае телецунами волна обычно подходит без отступления воды.
  • Землетрясение . Эпицентр землетрясения находится, как правило, в океане. На берегу землетрясение обычно гораздо слабее, а часто его нет вообще. В цунамоопасных регионах есть правило, что если ощущается землетрясение, то лучше уйти дальше от берега и при этом забраться на холм, таким образом заранее подготовиться к приходу волны.
  • Необычный дрейф льда и других плавающих предметов, образование трещин в припае.
  • Громадные взбросы у кромок неподвижного льда и рифов, образование толчеи, течений.

Волны-убийцы

Волны-убийцы (Блужда́ющие во́лны, волны-монстры, freak wave - аномальная волна) - гигантские волны, возникающие в океане, высотой более 30 метров, обладают несвойственным для морских волн поведением.

Еще каких-то 10-15 лет назад ученые считали истории моряков об исполинских волнах-убийцах, которые возникают из ниоткуда и топят корабли, всего лишь морским фольклором. Долгое время блуждающие волны считались выдумкой, так как они не укладывались ни в одну существовавшую на то время математические модели расчётов возникновения и их поведения, потому как волны высотой более 21 метра в океанах планеты Земля не могут существовать.

Одно из первых описаний волны-монстра относится к 1826 году. Её высота была более 25 метров и заметили её в Атлантическом океане недалеко от Бискайского залива. Этому сообщению никто не поверил. А в 1840 году мореплаватель Дюмон д"Юрвиль рискнул явиться на заседание Французского географического общества и заявить, что своими глазами видел 35-метровую волну. Присутствующие подняли его на смех. Но историй о громадных волнах-призраках, которые появлялись внезапно посреди океана даже при небольшом шторме, и своей крутизной походили на отвесные стены воды, становилось все больше.

Исторические свидетельства "волн-убийц"

Так, в 1933 году корабль ВМС США "Рамапо" попал в шторм в Тихом океане. Семь суток корабль бросало по волнам. А утром 7 февраля сзади внезапно подкрался невероятной высоты вал. Вначале судно швырнуло в глубокую пропасть, а потом подняло почти вертикально на гору пенящейся воды. Экипаж, которому посчастливилось выжить, зафиксировал высоту волны - 34 метра. Двигалась она со скоростью 23 м/сек, или 85 км/ч. Пока что это считается самой высокой когда-либо измеренной волной-убийцей.

Во время Второй мировой войны, в 1942 году, лайнер "Королева Мария" вез 16 тыс. американских военных из Нью-Йорка в Великобританию (между прочим, рекорд по количеству человек, перевозимых на одном судне). Неожиданно возникла 28-метровая волна. "Верхняя палуба была на обычной высоте, и вдруг - раз! - она резко ушла вниз", - вспоминал доктор Норвал Картер, находившийся на борту злополучного корабля. Корабль накренился под углом 53 градуса - если бы угол составил хотя бы на три градуса больше, гибель была бы неизбежной. История "Королевы Марии" легла в основу голливудского фильма "Посейдон".

Однако 1 января 1995 года на нефтяной платформе «Дропнер» в Северном море у побережья Норвегии была впервые приборно зафиксирована волна высотой в 25,6 метров, названная волной Дропнера. Проект "Максимальная волна" позволил по-новому посмотреть на причины гибели сухогрузов судов, которые перевозили контейнеры и другие немаловажные грузы. Дальнейшие исследования зафиксировали за три недели по всему земному шару более 10 одиночных гигантских волн, высота которых превышала 20 метров. Новый проект получил название Wave Atlas (Атлас волн), в котором предусматривается составление всемирной карты наблюдавшихся волн-монстров и её последующую обработку и дополнение.

Причины возникновения

Существует несколько гипотез о причинах возникновения экстремальных волн. Многие из них лишены здравого смысла. Наиболее простые объяснения построены на анализе простой суперпозиции волн разной длины. Оценки, однако, показывают, что вероятность экстремальных волн в такой схеме оказывается слишком мала. Другая заслуживающая внимания гипотеза предполагает возможность фокусировки волновой энергии в некоторых структурах поверхностных течений. Эти структуры, однако, слишком специфичны для того, чтобы механизм фокусировки энергии мог объяснить систематическое возникновение экстремальных волн. Наиболее достоверное объяснение возникновения экстремальных волн должно основываться на внутренних механизмах нелинейных поверхностных волн без привлечения внешних факторов.

Интересно, что такие волны могут быть как гребнями, так и впадинами, что подтверждается очевидцами. Дальнейшее исследование привлекает эффекты нелинейности в ветровых волнах, способные приводить к образованию небольших групп волн (пакетов) или отдельных волн (солитонов), способных проходить большие расстояния без значительного изменения своей структуры. Подобные пакеты также неоднократно наблюдались на практике. Характерными особенностями таких групп волн, подтверждающими данную теорию, является то, что они движутся независимо от прочего волнения и имеют небольшую ширину (менее 1 км), причем высоты резко спадают по краям.

Впрочем, полностью прояснить природу аномальных волн пока не удалось.

Волнение — это колебательное движение воды. Оно воспринимается наблюдателем как движение волн по поверхности воды. На самом же деле водная поверхность совершает колебания вверх-вниз от среднего уровня положения равновесия. Форма волн при волнении постоянно изменяется в связи с движением частиц по замкнутым, почти круговым орбитам.

Каждая волна представляет собой плавное соединение возвышений и углублений. Основными частями волны являются: гребень — самая высокая часть; подошва - самая низкая часть; склон - профиль между гребнем и подошвой волны. Линия вдоль гребня волны называется фронтом волны (рис. 1).

Рис. 1. Основные части волны

Основные характеристики волн — это высота - разность уровней гребня и подошвы волны; длина - кратчайшее расстояние межу смежными гребнями или подошвами волн; крутизна - угол между склоном волны и горизонтальной плоскостью (рис. 1).

Рис. 1. Основные характеристики волны

Волны обладают очень большой кинетической энергией. Чем выше волна, тем больше в ней заключено кинетической энергии (пропорционально квадрату увеличения высоты).

Под влиянием силы Кориолиса справа по течению вдали от материка возникает водяной вал, а у суши создается депрессия.

По происхождению волны подразделяются следующим образом:

  • волны трения;
  • барические волны;
  • сейсмические волны или цунами;
  • сейши;
  • приливные волны.

Волны трения

Волны трения, в свою очередь, могут быть ветровыми (рис. 2) или глубинными. Ветровые волны возникают вследствие ветровые волнытрения на границе воздуха и воды. Высота ветровых волн не превышает 4 м, но при сильных и затяжных штормах она возрастает до 10-15 м и выше. Наиболее высокие волны — до 25 м — наблюдаются в полосе западных ветров Южного полушария.

Рис. 2. Ветровые волны и волны прибоя

Пирамидальные, высокие и крутые ветровые волны получили название толчея. Эти волны присущи центральным областям циклонов. Когда ветер стихает, волнение приобретает характер зыби , т. е. волнения по инерции.

Первичная форма ветровых волн - рябь. Она возникает при скорости ветра менее 1 м/с, а при скорости, большей 1 м/с, образуются сначала мелкие, а потом более крупные волны.

Волна близ берегов, в основном на мелководьях, основывающаяся на поступательных движениях, получила название прибоя (см. рис. 2).

Глубинные волны возникают на границе двух слоев воды с разными свойствами. Они часто возникают в проливах, с двумя этажами течения, близ устьев рек, у кромки тающих льдов. Эти волны перемешивают морскую воду и являются очень опасными для моряков.

Барическая волна

Барические волны возникают из-за быстрой смены атмосферного давления в местах происхождения циклонов, особенно тропических. Обычно эти волны одиночные и не приносят особого вреда. Исключение составляют случаи, когда они совпадают с высоким приливом. Таким бедствиям наиболее часто подвергаются Антильские острова, полуостров Флорида, побережья Китая, Индии, Японии.

Цунами

Сейсмические волны возникают под воздействием подводных толчков и прибрежных землетрясений. Это очень длинные и невысокие в открытом океане волны, но сила их распространения достаточно велика. Они движутся с очень большой скоростью. У побережий их длина сокращается, а высота резко возрастает (в среднем от 10 до 50 м). Их появление влечет за собой человеческие жертвы. Сначала морс отступает на несколько километров от берега, набирая силу для толчка, а потом волны с огромной скоростью выплескиваются на берег с интервалом 15-20 мин (рис. 3).

Рис. 3. Трансформация цунами

Японцы назвали сейсмические волны цунами , и этот термин используется во всем мире.

Сейсмический пояс Тихого океана является основным районом образования цунами.

Сейши

Сейши — это стоячие волны, которые возникают в заливах и внутренних морях. Они происходят по инерции после прекращения действия внешних сил — ветра, сейсмических толчков, резких изменений , выпадения интенсивных осадков и т. д. При этом в одном месте вода поднимается, а в другом — опускается.

Приливная волна

Приливные волны — это движения , совершаемые под влиянием приливообразующих сил Луны и Солнца. Обратная реакция морской воды на прилив - отлив. Полоса, осушаемая во время отлива, называется осушкой.

Существует тесная связь высоты приливов и отливов с фазами Луны. В новолуния и полнолуния наблюдаются самые высокие приливы и самые низкие отливы. Они называются сизигийными. В это время лунные и солнечные приливы, наступая одновременно, накладываются друг на друга. В промежутках между ними, в первую и последнюю четверги фазы Луны, наблюдаются самые низкие, квадратурные приливы.

Как уже было сказано во втором разделе, в открытом океане высота прилива невелика — 1,0-2,0 м, а у расчлененных берегов она резко возрастает. Максимальной величины прилив достигает на атлантическом побережье Северной Америки, в заливе Фанди (до 18 м). В России максимальная величина прилива — 12,9 м — отмечена в заливе Шелихова (Охотское море). Во внутренних морях приливы мало заметны, например, в Балтийском морс у Санкт-Петербурга прилив составляет 4,8 см, а вот по некоторым рекам прилив прослеживается на сотни и даже тысячи километров от устья, например, в Амазонке — до 1400 см.

Крутую приливную волну, поднимающуюся вверх по реке, называют бором. На Амазонке бор достигает высоты 5 м и ощущается на расстоянии 1400 км от устья реки.

Даже при спокойной поверхности в толще океанских вод происходит волнение. Это так называемые внутренние волны — медленные, но весьма значительные по размаху, достигающему порой сотен метров. Они возникают в результате внешнего воздействия на неоднородную по вертикали массу воды. К тому же так как температура, соленость и плотность океанской воды изменяются с глубиной не постепенно, а скачкообразно от одного слоя к другому, на границе между этими слоями и возникают специфические внутренние волны.

Морские течения

Морские течения — это горизонтальные поступательные движения водных масс в океанах и морях, характеризующиеся определенным направлением и скоростью. Они достигают нескольких тысяч километров в длину, десятков-сотен километров в ширину, сотен метров в глубину. По физико-химическим свойствам воды морских течений отличны от окружающих.

По продолжительности существования (устойчивости) морские течения подразделяют следующим образом:

  • постоянные , которые проходят в одних и тех же районах океана, имеют одно генеральное направление, более или менее постоянную скорость и устойчивые физико-химические свойства переносимых водных масс (Северное и Южное пассатные, Гольфстрим и др.);
  • периодические , у которых направление, скорость, температура подчинены периодическим закономерностям. Происходят они через равные промежутки времени в определенной последовательности (летнее и зимнее муссонные течения в северной части Индийского океана, приливно-отливные течения);
  • временные , вызываемые чаще всего ветрами.

По температурному признаку морские течения бывают:

  • теплые , которые имеют температуру выше, чем окружающая вода (например. Мурманское течение с температурой 2-3 °С среди вод О °С); они имеют направление от экватора к полюсам;
  • холодные , температура которых ниже окружающей воды (например, Канарское течение с температурой 15-16 °С среди вод с температурой около 20 °С); эти течения направлены от полюсов к экватору;
  • нейтральные , которые имеют температуру, близкую к окружающей среде (например, экваториальные течения).

По глубине расположения в толще воды различают течения:

  • поверхностные (до 200 м глубины);
  • подповерхностные , имеющие направление, противоположное поверхностному;
  • глубинные , движение которых совершается очень медленно — порядка нескольких сантиметров или первых десятков сантиметров в секунду;
  • придонные , регулирующие обмен вод между полярными — субполярными и экваториально-тропическими широтами.

По происхождению выделяют следующие течения:

  • фрикционные , которые могут быть дрейфовыми или ветровыми. Дрейфовые возникают под влиянием постоянных ветров, а ветровые создаются сезонными ветрами;
  • градиентно-гравитационные , среди которых выделяют стоковые , образующиеся в результате наклона поверхности, вызванного избытком вод вследствие их притока из океана и обильных осадков, и компенсационные , которые возникают благодаря оттоку вод, скудным осадкам;
  • инертные , которые наблюдаются после прекращения действия возбуждающих их факторов (например, приливные течения).

Система течений океана обусловлена общей циркуляцией атмосферы.

Если представить гипотетический океан, непрерывно простирающийся от Северного полюса к Южному, и наложить на него генерализированную схему атмосферных ветров, то с учетом отклоняющей силы Кориолиса получим шесть замкнутых колец -
круговоротов морских течений: Северное и Южное экваториальные, Северное и Южное субтропические, Субарктическое и Субантарктическое (рис. 4).

Рис. 4. Круговороты морских течений

Отступления от идеальной схемы вызваны наличием материков и особенностями их распределения по земной поверхности Земли. Однако, как и на идеальной схеме, в действительности на поверхности океана наблюдается зональная смена крупных — протяженностью в несколько тысяч километров — не полностью замкнутых циркуляционных систем: это экваториальная антициклоническая; тропические циклонические, северная и южная; субтропические антициклонические, северная и южная; антарктическая циркумполярная; высокоширотные циклонические; арктическая антициклоническая системы.

В Северном полушарии они движутся по часовой стрелке, в Южном — против. С запада на восток направлены экваториальные межпассатные противотечения.

В умеренных субполярных широтах Северного полушария существуют малые кольца течений вокруг барических минимумов. Движение вод в них направлено против часовой стрелки, а в Южном полушарии — с запада на восток вокруг Антарктиды.

Течения в зональных циркуляционных системах достаточно хорошо прослеживаются до глубины 200 м. С глубиной они меняют направление, слабеют и превращаются в слабые вихри. Взамен на глубине усиливаются меридиональные течения.

Самые мощные и глубокие из поверхностных течений играют важнейшую роль в глобальной циркуляции Мирового океана. Наиболее устойчивые поверхностные течения — это Северное и Южное пассатные течения Тихого и Атлантического океанов и Южное пассатное течение Индийского океана. Они имеют направление с востока на запад. Для тропических широт характерны теплые сточные течения, например Гольфстрим, Куросио, Бразильское и др.

Под действием постоянных западных ветров в умеренных широтах существуют теплые Северо-Атлантическое и Северо-

Тихоокеанское течения в Северном полушарии и холодное (нейтральное) течение Западных ветров — в Южном. Последнее образует кольцо в трех океанах вокруг Антарктиды. Замыкают большие круговороты в Северном полушарии холодные компенсационные течения: вдоль западных берегов в тропических широтах — Калифорнийское, Канарское, а в Южном — Перуанское, Бенгальское, Западно-Австралийское.

Наиболее известными течениями также являются теплое Норвежское течение в Арктике, холодное Лабрадорское в Атлантике, теплое Аляскинское и холодное Курило-Камчатское — в Тихом океане.

Муссонная циркуляция в северной части Индийского океана порождает сезонные ветровые течения: зимнее — с востока на запад и летнее — с запада на восток.

В Северном Ледовитом океане направление движения вод и льдов происходит с востока на запад (Трансатлантическое течение). Причины его — обильный речной сток рек Сибири, вращательное циклоническое движение (против часовой стрелки) над Баренцевым и Карским морями.

Помимо циркуляционных макросистем существуют вихри открытого океана. Их размер — 100-150 км, а скорость перемещения водных масс вокруг центра — 10-20 см/с. Эти мезосистемы называются синоптическими вихрями. Считается, что именно в них заключено не менее 90 % кинетической энергии океана. Вихри наблюдаются не только в открытом океане, но и в морских течениях типа Гольфстрим. Здесь они вращаются с еще большей скоростью, чем в открытом океане, их кольцевая система лучше выражена, поэтому их называют рингами.

Для климата и природы Земли, особенно прибрежных районов, значение морских течений велико. Теплые и холодные течения поддерживают разницу температур западных и восточных побережий материков, нарушая ее зональное распределение. Так, незамерзающий Мурманский порт находится за Полярным кругом, а на восточном побережье Северной Америки замерзает залив св. Лаврентия (48° с.ш.). Теплые течения способствуют выпадению осадков, холодные, напротив, уменьшают возможность их выпадения. Поэтому территории, омываемые теплыми течениями, имеют влажный климат, а холодными — сухой. При помощи морских течений осуществляются миграция растений и животных, перенос питательных веществ и газовый обмен. Течения учитывают и при мореплавании.

Загрузка...