docgid.ru

Строение молекулы фенола кратко. Алхимики: Фенолы

Молекулярная формула: C 6 H 5 – OH.

Строение молекулы: в молекуле фенола гидроксильная группа атомов связана с бензольным кольцом (ядром).

Ароматический радикал фенил (C 6 H 5 –) или бензольное ядро, в отличие от радикалов предельных углеводородов обладает свойством оттягивать к себе электроны кислородного атома гидроксильной группы, поэтому в молекуле фенола химическая связь между атомами кислорода и водорода становится более полярной, а атом водорода – более подвижным, чем в молекулах спиртов, и фенол проявляет свойства слабой кислоты (его называют карболовой кислотой).

С другой стороны, гидроксильная группа влияет на бензольное кольцо (ядро) так, что в нем происходит перераспределение электронной плотности и атомы водорода в положениях 2,4,6 становятся более подвижными, чем в молекуле бензола. Поэтому в реакциях замещения для фенола характерно замещение трех атомов водорода в положениях 2,4,6 (в бензоле замещается только один атом водорода). Таким образом, в молекуле фенола наблюдается взаимное влияние гидроксильной группы и бензольного кольца друг на друга.

Физические свойства: фенол – бесцветное кристаллическое вещество с характерным запахом, на воздухе бывает розового цвета, т.к. окисляется. Температура плавления – 42 ºC.

Фенол – ядовитое вещество! При попадании на кожу вызывает ожоги!

Химические свойства: хим. свойства обусловлены гидроксильной группой и бензольным кольцом (ядром).

· Реакции, идущие по гидроксильной группе:

Атом водорода в гидроксильной группе фенола более подвижен, чем в спиртах, поэтому фенол проявляет св-ва слабой кислоты (второе название – карболовая кислота) и взаимодействует не только с активными металлами, как спирты,но также со щелочами (спирты со щелочами не реагируют!).

2C 6 H 5 OH + 2Na → 2C 6 H 5 ONa + H 2 . C 6 H 5 OH + NaOH → C 6 H 5 ONa + H 2 O

фенол гидроксид натрия фенолят натрия

· Реакции, идущие по бензольному кольцу (ядру):

Фенол энергично (без нагревания и катализаторов) взаимодействует с бромом и азотной кислотой, при этом в бензольном кольце замещаются три атома водорода в положениях 2,4,6.



фенол бром 2,4,6 – трибромфенол бромоводород

фенол азотная кислота 2,4,6-тринитрофенол

Применение: Фенол используется для производства лекарственных веществ, красителей, веществ для дезинфекции (антисептиков), пластмасс (фенопластов), взрывчатых веществ

Получение: из каменноугольной смолы и из бензола.

Альдегиды, их строение и свойства. Получение, применение муравьиного и уксусного альдегидов.

Альдегиды – органические вещества, содержащие функциональную альдегидную группу

Связанную с углеводородным радикалом или атомом водорода.

Общая формула альдегидов: или R – CОН

Строение молекул. В молекуле альдегида между атомами углерода и водорода существуют σ-связи, а между атомами углерода и кислорода – одна σ-связь и одна π-связь. Электронная плотность смещена от атома углерода к более электроотрицательному атому – атому кислорода. Т.о. атом углерода альдегидной группы приобретает частичный положительный (δ+), а атом кислорода – частичный отрицательный заряд (δ–).

Номенклатура . Названия альдегидам даются: 1) от исторических названий соответствующих органических кислот, в которые они превращаются при окислении – муравьиный альдегид, уксусный альдегид и т.д. 2) по международной номенклатуре – от названий соответствующих углеводородов + суффикс -аль . Например,

H – C или Н – СНО муравьиный альдегид, или метаналь

СH 3 – C или СН 3 – СНО уксусный альдегид, или этаналь

Физические свойства. Метаналь – бесцветный газ с резким запахом, этаналь и следующие адьдегиды – жидкости, высшие альдегиды – твердые вещества.

Химические свойства.

Реакции окисления. Качественные реакции на альдегиды:

1) реакция «серебряного зеркала» – окисление альдегидов аммиачным раствором оксида серебра при нагревании:

CH 3 – C НО + Ag 2 O → CH 3 – CООН + 2Ag ↓

Уксусный альдегид уксусная кислота

окислитель оксид серебра восстановливается до серебра, которое оседает на стенках пробирки, а альдегид окисляется в соответствующую кислоту

2) Окисление альдегидов гидроксидом меди (II) при нагревании.

H – C НО + 2 Cu(OH) 2 → H – CООН + 2CuOH + H 2 O

голубой желтый

муравьиный альдегид муравьиная кислота

2CuOH → Cu 2 O + H 2 O

желтый красный

окислителем является медь со степенью окисления +2, которая восстанавливается до меди со степенью окисления +1.

Реакции присоединения.

3) Альдегиды при нагревании и в присутствии катализатора присоединяют водород за счет разрыва двойной связи в альдегидной группе. При этом альдегид восстанавливается – превращается в соответствующий спирт. Например, метаналь превращается в метанол:

H– C НО + H 2 → CH 3 – OH

метаналь метиловый спирт (метанол)

Получение.

Альдегиды можно получить:

1. Окислением первичных спиртов, например,

2CH 3 OH + O 2 → 2H – C НО + 2H 2 O

метиловый спирт муравьиный альдегид (метаналь).

2. метаналь можно также получить непосредственным окислением метана:

CH 4 + O 2 → H – CНО + H 2 O

3. Уксусный альдегид можно получить гидратацией этилена в присутствии катализатора (солей ртути) – реакция М.Г. Кучерова:

H – C ≡ C – H + H 2 O → CH 3 – CНО

Применение. Наибольшее применение имеют метаналь и этаналь.

· Метаналь используется для получения фенолформальдегидной смолы, из которой делают пластмассы - фенопласты.

· При растворении этой смолы в ацетоне или спирте получают различные лаки.

· Метаналь используется для производства некоторых лекарственных веществ и красителей.

· Широко используется 40%-ный водный раствор метаналя – формалин. Он применяется при дублении кож (свертывает белок – кожа твердеет и не поддается гниению), для сохранения биологических препаратов, для дезинфекции и протравления семян.

· Этаналь в основном используется для производства уксусной кислоты.

Кислотно-основные свойства. Кислотность фенолов значи­тельно выше (на 5-6 порядков), чем кислотность спиртов. Это оп­ределяется двумя факторами: большей полярностью связи О-Н из-за того, что неподеленная электронная пара атома кислорода вовлечена в сопряжение с бензольным кольцом (гидроксильная группа - сильный донор по +М-эффекту), и значительной ста­билизацией образующегося фенолят-иона за счет делокализации отрицательного заряда с участием ароматической системы:

В отличие от алканолов фенолы при действии щелочей об­разуют соли - феноляты, растворимые в водных растворах ще­лочей (рН > 12). Однако фенолы плохо растворимы в водных растворах гидрокарбонатов щелочных металлов (рН = 8), так как в этих условиях феноляты подвергаются полному гидролизу.

Основные свойства фенола выражены значительно слабее (на 4-5 порядков), чем у спиртов. Это связано с тем, что сопряжение неподеленной электронной пары кислородного атома с π-электро-нами бензольного кольца в образующемся катионе нарушено:

Ацилирование. Этерификация карбоновыми кислотами в при­сутствии H2SO4, характерная для спиртов, в случае фенола идет медленно из-за низкой нуклеофильности его кислородного цен­тра. Поэтому для получения сложных эфиров фенола применяют более сильные электрофилы - хлорангидриды RC0C1 или ангид­риды [(RCO) 2 0] карбоновых кислот в безводных условиях:


Алкилирование фенола. Нуклеофильность кислородного цен­тра в фенолятах значительно выше, чем в феноле. Так, при об­работке фенолята натрия галоидными алкилами образуются про­стые эфиры фенолов:

Все рассмотренные реакции фенолов происходят по связи О-Н. Реакции с разрывом связи С-О в фенолах, т. е. реакции замещения гидроксильной группы в феноле, в организме не происходят.

Окислительно-восстановительные свойства. Фенол легко окисляется на воздухе, из-за чего его белые кристаллы быстро розовеют. Состав образующихся продуктов точно не установлен.

Фенолы имеют характерную цветную реакцию с FeCl3 в водных растворах с появлением красно-фиолетового окрашива­ния, которое исчезает после прибавления сильной кислоты или спирта. Предполагают, что интенсивная окраска связана с образованием комплексного соединения, содержащего во внутрен­ней сфере фенолят-анион:

В этом комплексе из всех лигандов фенолят-анион - самый ак­тивный нуклеофил и восстановитель. Он способен передать один электрон электрофилу и окислителю - катиону железа(3) - с образованием во внутренней сфере ион-радикальной системы, содержащей феноксильный радикал (C6H5O*), что приводит к появлению интенсивной окраски:

Подобное образование радикалов во внутренней сфере ком­плексного соединения за счет внутрисферного окислительно-восстановительного процесса может происходить и в субстрат-ферментных комплексах организма. При этом радикальная час­тица может или оставаться связанной во внутренней сфере, или становиться свободной при выходе из этой сферы.

Рассмотренная реакция с FeCl3 свидетельствует о легкости окисления фенола, особенно его аниона. Еще легче окисляются многоатомные фенолы. Так, гидрохинон (особенно его дианион) легко окисляется за счет углеродных атомов в 1,4-бензохинон:

Гидрохинон используется в фотографии, поскольку он. вос­станавливает AgBr в фотографической эмульсии на засвечен­ных участках быстрее, чем на незасвеченных.

Соединения, содержащие 1,4-хиноидную группировку, назы­вают хинонами. Хиноны - типичные окислители, образующие с соответствующими гидрохинонами равновесную сопряженную окислительно-восстановительную пару (разд. 9.1). Такая пара в коферменте Q участвует в процессе окисления субстрата за счет дегидрирования (разд. 9.3.3) и переноса электронов по электронотранспортной цепи от окисляемого субстрата к кислоро­ду (разд. 9.3.4). Витамины группы К, содержащие нафтохиноновую группировку, обеспечивают свертывание крови на воздухе.

Электрофильное замещение по бензольному кольцу. Бла­годаря электронодонорному эффекту гидроксильной группы фе­нол значительно легче вступает в реакции электрофильного за­мещения, чем бензол. Гидроксильная группа ориентирует атаку электрофила в о- и n-положения. Например, фенол обесцвечи­вает бромную воду при комнатной температуре с образованием 2,4,6-трибромфенола:


Активность фенола в реакциях электрофильного замещения настолько велика, что он реагирует даже с альдегидами. Эта реакция поликонденсации лежит в основе получения различ­ных фенолоформальдегидных смол, широко используемых в промышленности. При проведении поликонденсации в кислой среде образуются бакелитовые полимеры, а в щелочной среде, где реакция идет глубже из-за высокой активности фенолят-аниона, - резольные полимеры:

Важнейшие представители спиртов и их практическое зна­чение. Алканолы - физиологически активные вещества, обла­дающие наркотическим действием. Это действие возрастает с разветвлением и удлинением углеродной цепи, проходя через максимум при C6-C8, а также при переходе от первичных спир­тов к вторичным. Продукты превращения спиртов в организме могут служить причиной их токсического действия.

Метанол СН 3 ОН - сильный яд, так как в пищеваритель­ном тракте окисляется в формальдегид и муравьиную кислоту. Уже в небольших дозах (10 мл) может вызвать слепоту.

Этанол С2Н5ОН, обычно называемый просто спирт. Упот­ребление этанола (алкогольных напитков) действует вначале возбуждающе, а затем угнетающе на центральную нервную сис­тему, притупляет чувствительность, ослабляет функцию мозга и мышечной системы, ухудшает реакцию. Его длительное и не­умеренное употребление приводит к алкоголизму. Механизм действия этанола на организм чрезвычайно сложен и оконча­тельно еще не выяснен. Однако важной стадией его превраще­ния в организме является образование ацетальдегида, который легко реагирует со многими важными метаболитами.

Этиленгликоль НОСН2СН2ОН - сильный яд, так как про­дуктами его превращения в организме являются щавелевая ки­слота и другие не менее ядовитые соединения. Обладает спирто­вым запахом, в связи с чем может быть принят за этанол и явиться причиной тяжелых интоксикаций. Используется в тех­нике как антиобледенитель и для приготовления антифризов -жидкостей с низкой температурой замерзания, применяемых для охлаждения двигателей зимой.

Глицерин НОСН 2 СН(ОН)СН 2 ОН - нетоксичная, вязкая, бесцветная жидкость сладкого вкуса. Он входит в состав боль­шинства омыляемых липидов: животных и растительных жи­ров, а также фосфолипидов. Применяется для производства тринитрата глицерина, в качестве мягчителя в текстильной и кожевенной промышленности и как составная часть косметиче­ских препаратов для смягчения кожи.

Биологически активными спиртами являются многие мета­болиты, относящиеся к разным классам органических соедине­ний: ментол - класс терпенов; ксилит, сорбит, мезоинозит -многоатомные спирты; холестерин, эстрадиол - стероиды.

Профильный химико-биологический класс

Тип урока: урок изучения нового материала.

Методы ведения урока:

  • словесные (беседа, объяснение, рассказ);
  • наглядные (компьютерная презентация);
  • практические (демонстрационные опыты, лабораторные опыты).

Цели урока: Обучающие цели: на примере фенола конкретизировать знания учащихся об особенностях строения веществ, принадлежащих к классу фенолы, рассмотреть зависимость взаимного влияния атомов в молекуле фенола на его свойства; познакомить учащихся с физическими и химическими свойствами фенола и некоторых его соединений, изучить качественные реакции на фенолы; рассмотреть нахождение в природе, применение фенола и его соединений, их биологическую роль

Воспитывающие цели: Создать условия для самостоятельной работы учащихся, укреплять навыки работы учащихся с текстом, выделять основное в тексте, выполнять тесты.

Развивающие цели: Создать на уроке диалоговое взаимодействие, содействовать развитию умений учащихся высказывать свое мнение, выслушивать товарища, задавать друг другу вопросы и дополнять выступления друг друга.

Оборудование: мел, доска, экран, проектор, компьютер, электронные носители, учебник «Химия», 10 кл., О.С. Габриелян, Ф.Н. Маскаев, учебник «Химия: в тестах, задачах и упражнениях», 10 кл., О.С. Габриелян, И.Г. Остроумов.

Демонстрация: Д. 1. Вытеснение фенола из фенолята натрия угольной кислотой.

Д. 2. Взаимодействие фенола и бензола с бромной водой (видеоролик).

Д. 3. Реакция фенола с формальдегидом.

Лабораторный опыт: 1. Растворимость фенола в воде при обычной и повышенной температуре.

2. Взаимодействие фенола и этанола с раствором щелочи.

3. Реакция фенола с FeCl 3 .

Скачать:


Предварительный просмотр:

МУНИЦИПАЛЬНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

«ГИМНАЗИЯ №5»

г. ТЫРНЫАУЗА КБР

Открытый урок-исследование по химии

Учитель химии: Грамотеева С.В.

I квалификационной категории

Класс: 10 «А», химико-биологический

Дата: 14.02.2012

Фе нол: строение, физические и химические свойства фено ла.

Примене ние фенола.

Профильный химико-биологический класс

Тип урока: урок изучения нового материала.

Методы ведения урока:

  1. словесные (беседа, объяснение, рассказ);
  2. наглядные (компьютерная презентация);
  3. практические (демонстрационные опыты, лабораторные опыты).

Цели урока: Обучающие цели: на примере фенола конкретизировать знания учащихся об особенностях строения веществ, принадлежащих к классу фенолы, рассмотреть зависимость взаимного влияния атомов в молекуле фенола на его свойства; познакомить учащихся с физическими и химическими свойствами фенола и некоторых его соединений, изучить качественные реакции на фенолы; рассмотреть нахождение в природе, применение фенола и его соединений, их биологическую роль

Воспитывающие цели: Создать условия для самостоятельной работы учащихся, укреплять навыки работы учащихся с текстом, выделять основное в тексте, выполнять тесты.

Развивающие цели: Создать на уроке диалоговое взаимодействие, содействовать развитию умений учащихся высказывать свое мнение, выслушивать товарища, задавать друг другу вопросы и дополнять выступления друг друга.

Оборудование: мел, доска, экран, проектор, компьютер, электронные носители, учебник «Химия», 10 кл., О.С. Габриелян, Ф.Н. Маскаев, учебник «Химия: в тестах, задачах и упражнениях», 10 кл., О.С. Габриелян, И.Г. Остроумов.

Демонстрация: Д. 1. Вытеснение фенола из фенолята натрия угольной кислотой.

Д. 2. Взаимодействие фенола и бензола с бромной водой (видеоролик).

Д. 3. Реакция фенола с формальдегидом.

Лабораторный опыт: 1. Растворимость фенола в воде при обычной и повышенной температуре.

3. Реакция фенола с FeCl 3 .

ХОД УРОКА

  1. Организационный момент.
  2. Подготовка к изучению нового материала.
  1. Фронтальный опрос:
  1. Какие спирты называются многоатомными? Приведите примеры.
  2. Каковы физические свойства многоатомных спиртов?
  3. Какие реакции характерны для многоатомных спиртов?
  4. Напишите качественные реакции, характерные для многоатомных спиртов.
  5. Приведите примеры реакции этерификации этиленгликоля и глицерина с органическими и неорганическими кислотами. Как называются продукты реакций?
  6. Напишите реакции внутримолекулярной и межмолекулярной дегидратации. Назовите продукты реакций.
  7. Напишите реакции взаимодействия многоатомных спиртов с галогеноводородами. Назовите продукты реакций.
  8. Каковы способы получения этиленгликоля?
  9. Каковы способы получения глицерина?
  10. Каковы области применения многоатомных спиртов?
  1. Проверка дом. задания: стр. 158, упр. 4-6 (выборочно у доски).
  1. Изучение нового материала в форме беседы.

На слайде представлены структурные формулы органических соединений. Вам необходимо назвать эти вещества и, определить к какому классу они принадлежат.

Фенолы – это вещества, в которых гидроксогруппа соединена непосредственно с бензольным кольцом.

Назовите молекулярную формулу фенил-радикала: C 6 H 5 – фенил. Если к этому радикалу присоединить одну или несколько гидроксильных групп, то мы получим фенолы. Обратите внимание на то, что гидроксильные группы должны быть непосредственно связаны с бензольным кольцом, в противном случае мы получим ароматические спирты.

Классификация

Так же как и спирты, фенолы классифицируют по атомности , т.е. по количеству гидроксильных групп.

  1. Одноатомные фенолы, содержат в молекуле одну гидроксильную группу:
  1. Многоатомные фенолы содержат в молекулах более одной гидроксильной группы:

Самый главный представитель этого класса – фенол. Название этого вещества и легло в основу названия всего класса – фенолы.

Многие из вас в скором будущем станут врачами, поэтому о феноле они должны знать как можно больше. В настоящее время можно выделить несколько основных направлений использования фенола. Один из них – производство лекарственных средств. Большинство этих лекарств - производные получаемой из фенола салициловой кислоты: o-HOC 6 H 4 COOH. Самое распространенное жаропонижающее - аспирин не что иное, как ацетилсалициловая кислота. Эфир салициловой кислоты и самого фенола тоже хорошо известен под названием салол. При лечении туберкулеза применяют парааминосалициловую кислоту (сокращенно ПАСК). Ну и, наконец, при конденсации фенола с фталевым ангидридом получается фенолфталеин, он же пурген.

Фенолы – органические вещества, молекулы которых содержат радикал фенил, связанные с одной или несколькими гидроксигруппами.

Как вы считаете, почему фенолы выделили в отдельный класс, хотя они содержат ту же гидроксильную группу, что и спирты?

Их свойства сильно отличаются от свойств спиртов. Почему?

Атомы в молекуле взаимно влияют друг на друга. (Теория Бутлерова).

Рассмотрим свойства фенолов на примере простейшего фенола.

История открытия

В 1834г. немецкий химик-органик Фридлиб Рунге обнаружил в продуктах перегонки каменноугольной смолы белое кристаллическое вещество с характерным запахом. Ему не удалось определить состав вещества, сделал это в 1842г. Огюст Лоран. Вещество обладало выраженными кислотными свойствами и было производным открытого незадолго до этого бензола. Лоран назвал его бензол феном, поэтому новая кислота получила название фениловой. Шарль Жерар считал полученное вещество спиртом и предложил называть его фенолом.

Физические свойства

Лабораторный опыт: 1. Изучение физических свойств фенола.

Инструктивная карточка

1.Рассмотрите выданное вам вещество и пишите его физические свойства.

2.Растворите вещество в холодной воде.

3.Слегка нагрейте пробирку. Отметьте наблюдения.

Фенол C 6 H 5 OH (карболовая кислота) - бесцветное кристаллическое вещество, t пл = 43 0 C, t кип = 182 0 C, на воздухе окисляется и становится розовым, при обычной температуре ограниченно растворим в воде, выше 66 °C смешивается с водой в любых соотношениях. Фенол - токсичное вещество, вызывает ожоги кожи, является антисептиком, поэтому с фенолом необходимо обращаться осторожно !

Сам фенол и его пары ядовиты. Но существуют фенолы растительного происхождения, содержащиеся, например, в чае. Они благоприятно действуют на организм человека.

Следствием полярности связи О–Н и наличия неподеленных пар электронов на атоме кислорода является способность гидроксисоединений к образованию водородных связей

Это объясняет, почему у фенола довольно высокие температуры плавления (+43) и кипения (+182). Образование водородных связей с молекулами воды способствует растворимости гидроксисоединений в воде.

Способность растворяться в воде уменьшается с увеличением углеводородного радикала и от многоатомных гидроксисоединений к одноатомным. Метанол, этанол, пропанол, изопропанол, этиленгликоль и глицерин смешиваются с водой в любых соотношениях. Растворимость фенола в воде ограничена.

Изомерия и номенклатура

Возможны 2 типа изомерии :

  1. изомерия положения заместителей в бензольном кольце;
  2. изомерия боковой цепи (строения алкильного радикала и числа радикалов ).

Химические свойства

Посмотрите внимательно на структурную формулу фенола и ответьте на вопрос: «Что такого особенного в феноле, что его выделили в отдельный класс?»

Т.е. фенол содержит и гидроксильную группу и бензольное кольцо, которые, согласно третьему положению теории А.М. Бутлерова, влияют друг на друга.

Свойствами каких соединений формально должен обладать фенол? Правильно, спиртов и бензола.

Химические свойства фенолов обусловлены именно наличием в молекулах функциональной гидроксильной группы и бензольного кольца. Поэтому химические свойства фенола можно рассмотреть как по аналогии со спиртами, так и по аналогии с бензолом.

Вспомните, с какими веществами реагируют спирты. Посмотрим видеоролик взаимодействие фенола с натрием.

  1. Реакции с участием гидроксильной группы.
  1. Взаимодействие мо щелочными металлами (сходство со спиртами).

2C 6 H 5 OH + 2Na → 2C 6 H 5 ONa + H 2 (фенолят-натрия)

Вспомните реагируют ли спирты со щелочами? Нет, а фенол? Проведем лабораторный опыт.

Лабораторный опыт: 2. Взаимодействие фенола и этанола с раствором щелочи.

1. В первую пробирку налейте раствор NaOH и 2-3 капли фенолфталеина, затем добавьте 1\3 часть раствора фенола.

2. Во вторую пробирку добавьте раствор NaOH и 2-3 капли фенолфталеина, затем добавьте 1\3 часть этанола.

Оформите наблюдения и напишите уравнения реакций.

  1. Атом водорода гидроксильной группы фенола обладает кислотным характером. Кислотные свойства у фенола выражены сильнее, чем у воды и спиртов. В отличие от спиртов и воды фенол реагирует не только со щелочными металлами, но со щелочами с образованием фенолятов:

C 6 H 5 OH + NaOH → C 6 H 5 ONa + H 2 O

Однако кислотные свойства у фенолов выражены слабее, чем у неорганических и карбоновых кислот. Так, например, кислотные свойства фенола примерно в 3000 раза меньше, чем у угольной кислоты, поэтому пропуская через раствор фенолята натрия углекислый газ, можно выделить свободный фенол (демонстрация ):

C 6 H 5 ONa + H 2 O + CO 2 → C 6 H 5 OH + NaHCO 3

Добавление к водному раствору фенолята натрия соляной или серной кислоты также приводит к образованию фенола:

C 6 H 5 ONa + HCl → C 6 H 5 OH + NaCl

Феноляты используются в качестве исходных веществ для получения простых и сложных эфиров:

C 6 H 5 ONa + C 2 H 5 Br → C 6 H 5 OC 2 H 5 + NaBr (этифениловый эфир)

C 6 H 5 ONa + CH 3 COCl → CH 3 – COOC 6 H 5 + NaCl

Ацетилхлорид фенилацетат, фениловый эфир уксусной кислоты

Как можно объяснить то, что спирты с растворами щелочей не реагируют, а фенол реагирует?

Фенолы представляют собой полярные соединения (диполи). Бензольное кольцо является отрицательным концом диполя, группа - OH - положительным. Дипольный момент направлен в сторону бензольного кольца.

Бензольное кольцо перетягивает электроны неподеленной пары электронов кислорода. Смещение неподелённой пары электронов атома кислорода в сторону бензольного кольца приводит к увеличению полярности связи O-H. Увеличение полярности связи O-H под действием бензольного ядра и появление достаточно большого положительного заряда на атоме водорода приводит к тому, что молекула фенола диссоциирует в водных растворах по кислотному типу:

C 6 H 5 OH ↔ C 6 H 5 O - + H + (фенолят-ион)

Фенол является слабой кислотой . В этом состоит главное отличие фенолов от спиртов , которые являются неэлектролитами .

  1. Реакции с участием бензольного кольца

Бензольное кольцо изменило свойства гидроксогруппы!

Есть ли обратное влияние – изменились ли свойства бензольного кольца?

Проведем еще один опыт.

Демонстрация: 2. Взаимодействие фенола с бромной водой (видеоролик).

Реакции замещения . Реакции электрофильного замещения в бензольном кольце фенолов протекают значительно легче, чем у бензола, и в более мягких условиях, благодаря наличию гидроксильного заместителя.

  1. Галогенирование

Особенно легко происходит бромирование в водных растворах. В отличие от бензола, для бромирование фенола не требуется добавление катализатора (FeBr 3 ). При взаимодействии фенола с бромной водой образуется белый осадок 2,4,6-трибромфенола:

  1. Нитрование также происходит легче, чем нитрование бензола. Реакция с разбавленной азотной кислотой идет при комнатной температуре. В результате образуется смесь орто- и параизомеров нитрофенола:

О-нитрофенол п-нитрофенол

При использовании концентрированной азотной кислоты образуется 2,4,6-тринитрофенол – пикриновая кислота, взрывчатое вещество:

Как вы видите фенол реагирует с бромной водой с образованием белого осадка, а вот бензол не реагирует. Фенол как и бензол реагирует с азотной кислотой, но не с одной молекулой а сразу с тремя. Чем это объясняется?

Приобретя избыток электронной плотности, бензольное кольцо дестабилизировалось. Отрицательный заряд сосредоточен в орто- и пара-положениях, поэтому эти положения наиболее активны. Замещение атомов водорода происходит именно здесь.

Фенол также как и бензол реагирует с серной кислотой, но с тремя молекулами.

  1. Сульфирование

Соотношение орто- и пара-измеров определяется температурой реакции: при комнатной температуре образуется в основном о-фенолсульфоксилота, при температуре 100 0 С – пара-изомер.

  1. Поликонденсация фенола с альдегидами, в част ности с формальдегидом, происходит с образовани ем продуктов реакции - фенолоформальдегидных смол и твердых полимеров (демонстрация ):

Реакция поликонденсации, т. е. реакция получения полимера, протекающая с выделением низкомолекулярного продукта (например, воды, аммиака и др.), может продолжаться и далее (до полного израсходования одного из реагентов) с образованием огромных макромолекул. Процесс можно описать суммарным уравнением:

Образование линейных молекул происходит при обычной температуре. Проведение же этой реакции при нагревании приводит к тому, что образующие имеет разветвленное строение, он твердый и нерастворимый в воде. В результате нагревания фенолоформальдегидной смолы линейного строения с избытком альдегида получаются твердые пластические массы с уникальными свойствами.

Полимеры на основе фенолоформальдегидных смол применяют для изготовления лаков и красок. Пластмассовые изделия, изготовленные на основе этих смол, устойчивы к нагреванию, охлаждению, действию щелочей и кислот, они также обладают высокими электрическими свойствами. Из полимеров на основе фенолоформальдегидных смол изготавливают наиболее важные детали электроприборов, корпуса силовых агрегатов и детали машин, полимерную основу печатных плат для радиоприборов.

Клеи на основе фенолоформальдегидных смол способны надежно соединять детали самой различной природы, сохраняя высочайшую прочность соединения в очень широком диапазоне температур. Такой клей применяется для крепления металлического цоколя ламп освещения в стеклянной колбе.

Все пластмассы с применением фенола опасны для человека и природы. Необходимо найти новый вид полимеров, безопасный для природы и легко разлагаемый в безопасные отходы. Это ваше будущее. Творите, изобретайте, не дайте опасным веществам погубить природу!”

Качественная реакция на фенолы

В водных растворах одноатомные фенолы взаимодействуют с FeCl 3 с образованием комплексных фенолятов, которые имеют фиолетовую окраску; окраска исчезает после прибавления сильной кислоты

Лабораторный опыт: 3. Реакция фенола с FeCl 3 .

В пробирку добавьте 1\3 часть раствора фенола и по каплям раствор FeCl 3 .

Оформите наблюдения.

Способы получения

  1. Кумольный способ.

В качестве исходного сырья используют бензол и пропилен, из которых получают изопропилбензол (кумол), подвергающийся дальнейшим превращениям.

Кумольный способ получения фенола (СССР, Сергеев П.Г., Удрис Р.Ю., Кружалов Б.Д., 1949 г.). Преимущества метода: безотходная технология (выход полезных продуктов > 99%) и экономичность. В настоящее время кумольный способ используется как основной в мировом производстве фенола.

  1. Из каменноугольной смолы.

Каменноугольную смолу, содержащую в качестве одно из компонентов фенол, обрабатывают вначале раствором щелочи (образуются феноляты), а затем кислотой:

C 6 H 5 OH + NaOH → C 6 H 5 ONa + H 2 O (фенолят натрия, промежуточный продукт)

C 6 H 5 ONa + H 2 SO 4 → C 6 H 5 OH + NaHSO 4

  1. Сплавление солей аренсульфокислот со щелочью:

300 0 C

С 6 Н 5 SO 3 Na + NaOH → C 6 H 5 OH + Na 2 SO 3

  1. Взаимодействие галогенопроизводных ароматических УВ со щелочами:

300 0 C, P, Cu

C 6 H 5 Cl + NaOH (8-10 % р-р) → C 6 H 5 OH + NaCl

или с водяным паром:

450-500 0 C, Al 2 O 3

C 6 H 5 Cl + H 2 O → C 6 H 5 OH + HCl

Биологическая роль соединений фенола

Положительная

Отрицательная (токсическое действие)

  1. лекарственные препараты (пурген, парацетамол)
  2. антисептики (3-5 % раствор –карболовая кислота)
  3. эфирные масла (обладают сильными бактерицидными и противовирусными свойствами, стимулируют иммунную систему, повышают артериальное давление: - анетол в укропе, фенхеле, анисе - карвакрол и тимол в чабреце - эвгенол в гвоздике, базилике

    Одноатомные фенолы - прозрачные жидкости или кристаллические вещества, часто окрашенные в розово-красный цвет благодаря их окислению. Это яды, и в случае попадания на кожу они вызывают ожоги. Они убивают множество микроорганизмов, то есть имеют дезинфицирующие и антисептические свойства. Растворимость фенолов в воде мала, их температуры кипения относительно большие вследствие существования межмолекулярных водородных связей.

    Физические свойства

    Фенолы - малорастворимы в воде, но хорошо растворяются в спирте, эфире, бензоле, с водой образуют кристаллогидраты, перегоняются с водяным паром. На воздухе сам фенол легко окисляется и темнеет. Введение в пара- положение молекулы фенола таких заместителей, как галоиды, нитрогруппы и др. значительно повышает температуру кипения и температуру плавления соединений:

    Рисунок 1.

    Фенолы - полярные вещества с дипольным моментом $\mu$ = 1,5-1,6 $D$. Значение $EI$ 8,5-8,6 эВ свидетельствует о больших донорных свойствах фенолов по сравнению с такими аренами, как бензол (9,25 эВ), толуол (8,82 эВ), этилбензол (8,76 эВ). Это связано со взаимодействием гидроксильной группы с $\pi$-связями бензольного ядра благодаря положительному $M$-эффекту $OH$-группы, преобладает ее негативный $I$ -эффект.

    Спектральные характеристики фенолов

    Максимум поглощения в УФ-части спектра для фенола смещен в сторону более длинных волн примерно на 15 нм по сравнению с бензолом (батохромное смещение) благодаря участию $\pi$-электронов кислорода в сопряжении с бензольным ядром и проявляется при 275 нм с тонкой структурой.

    В ИК-спектрах для фенолов, как и для спиртов, характерны интенсивные полосы $v_{OH}$ в области 3200-3600 см$^{-1}$ и 3600-3615 см$^{-1}$ для сильно разведенных растворов, но для $v_{c\_D}$ фенолов прослеживается полоса около 1230 см$^{-1}$ в отличие от 1220-1125 см$^{-1}$ для спиртов.

    В ПМР-спектрах сигнал протона $OH$-группы фенолов проявляется в широком диапазоне (4,0-12,0 м.ч.) по сравнению со спиртами в зависимости от природы и концентрации растворителя, температуры, наличия меж- или внутримолекулярных водородных связей. Часто сигнал протона $OH$-группы регистрируют при 8,5-9,5 м.ч. в диметилсульфоксиде или при 4,0-7,5 м.ч, в $CCl_4$.

    В масс-спектре фенола основным направлением фрагментации является элиминирования частиц $HCO$ и $CO$:

    Рисунок 2.

    Если в молекуле фенола присутствуют алкильные радикалы, первичным процессом будет бензильное расщепление.

    Химические свойства фенолов

    В отличие от спиртов, для которых характерны реакции с расщеплением как $O-H$-связи (кислотно-основные свойства, образование эфиров, окисления и т.д.), так и $C-O$-связи (реакции нуклеофильного замещения, дегидратации, перегруппировки), фенолам более характерны реакции первого типа. Кроме того, им свойственны реакции электрофильного замещения в бензольном ядре, активированном электронодонорной гидроксильной группой.

    Химические свойства фенолов обусловлены наличием взаимного влияния гидроксильной группы и бензольного ядра.

    Гидроксильная группа имеет $-I-$ и + $M$-эффект. Последний значительно превышает $-I$ эффект, обусловливающий $n-\pi$-сопряжение свободных электронов кислорода с $\pi$-орбиталью бензольного ядра. Вследствие $n-\pi$-сопряжения уменьшается длина связи $C - O$, величина дипольного момента и положения полос поглощения связей в ИК-спектрах по сравнению с этиловым спиртом:

    Некоторые характеристики фенола и этанола:

    Рисунок 3.

    $n-\pi$-Сопряжение приводит к уменьшению электронной плотности на атоме кислорода, поэтому полярность связи $O - H$ у фенолов растет. В связи с этим кислотные свойства фенолов выражены сильнее, чем у спиртов. Большая кислотность фенолов по сравнению со спиртами объясняется также возможностью делокализации заряда в фенолят-анион, что влечет стабилизацию системы:

    Рисунок 4.

    На различии кислотности фенола и спиртов указывает константа диссоциации. Для сравнения: Кд = $1,3 \cdot 10^{-10}$ для фенола и Кд = $10^{-18}$ для этилового спирта.

    Поэтому фенолы, в отличие от спиртов, образуют феноляты не толькос щелочными металлами, но и через взаимодействие со щелочами:

    Рисунок 5.

    Реакция фенола с щелочными металлами проходит довольно бурно и может сопровождаться взрывом.

    Но фенол является слабой кислотой, слабее даже угольной кислоты ($K = 4,7 \cdot 10^{-7}$). Поэтому угольная кислота вытесняет фенол из раствора фенолята. Эти реакции используют для разделения фенолов, спиртов или карбоновых кислот. Электронакцепторные группы в молекуле фенола значительно усиливают, а донорные - ослабляют кислотные свойства фенольного гидроксила.

    Кроме того фенолу характерен ряд реакций различной направленности:

    1. образование простых и сложных эфиров;
    2. реакции алкилирования и ацилирования;
    3. реакции окисления
    4. реакции электрофильного замещения в ароматическом кольце, в том числе реакции:

      • галогенирования,
      • сульфирования,
      • нитрозирование,
      • формилирования,
      • конденсации с альдегидами и кетонами,
      • карбоксилирования.

    Фенол С 6 Н 5 ОН – бесцветное, кристаллическое вещество с характерным запахом. Его t плавления = 40,9 С. В холодной воде он мало растворим, но уже при 70◦С растворяется в любых отношениях. Фенол ядовит. В феноле гидроксильная группа соединена с бензольным кольцом.

    Химические свойства

    1. Взаимодействие с щелочными металллами.

    2C 6 H 5 OH + 2Na → 2C 6 H 5 ONa + H 2

    фенолят натрия

    2. Взаимодействие со щелочью (фенол – слабая кислота)

    C 6 H 5 OH + NaOH → C 6 H 5 ONa + H2O

    3. Галогенирование .

    4. Нитрование

    5.Качественная реакция на фенол

    3C 6 H 5 OH +FeCl 3 → (C 6 H 5 O) 3 Fe +3HCl (фиолетовое окрашивание)

    Применение

    Для дезинфекции, получение лекарств, красителей, взрывчатых веществ, пластмасс.

    Получение спиртов из предельных и непредельных углеводородов. Промышленный способ получения метанола.

    Наибольшее промышленное значение имеют метанол и этанол.

    Промышленный синтез метанола.

    Метанол применяется в производстве ряда органических веществ (формальдегида, лекарств), используется как растворитель лаков и красок, служит добавкой к топливам. В настоящее время метанол получают экономически выгодным способом из синтез-газа:

    1.Синтез-газ получают взаимодействием метана (природного газа) с водяным паром в присутствии катализатора:

    СН 4 +Н 2 О → СО+3Н 2

    синтез-газ

    2.Из синтез-газа получают метанол:

    СО + 2Н 2 СН 3 ОН +Q

    1моль 2моль 1 моль

    Эта реакция обратимая, экзотермическая, чтобы сместить равновесие в сторону образования метанола, нужно воспользоваться принципом Ле-Шателье:

    1.Реакция сопровождается уменьшением объёма, поэтому повышение давления будет способствовать образованию метанола.

    2.Реакция экзотермическая, следовательно, особенно сильно нагревать вещества нельзя.

    Из-за обратимости процесса исходные вещества реагируют не полностью. Поэтому образовавшийся спирт необходимо отделять, а непрореагировавшие газы снова направлять в реактор, то есть осуществлять циркуляцию газов .

    Получение спиртов из предельных и непредельных углеводородов.

    1. Этанол в промышленности получают гидратацией этилена:

    СН 2 =СН 2 + Н 2 О → СН 3 -СН 2 -ОН

    2. Из предельных углеводородов спирты получают через галогенопроизводные. Первая реакция – галогенирование алкана:

    С 2 Н 6 + Br 2 → C 2 H 5 Br + HBr

    бромэтан

    Вторая реакция- взаимодействие бромэтана с водным раствором щёлочи:

    C 2 H 5 Br + НОНC 2 H 5 ОН + НBr

    Щёлочь нужна, чтобы нейтрализовать НBr.

    Промышленного значения такой способ не имеет, им пользуются в лабораториях. Но он важен в теоретическом отношении, так как показывает взаимосвязь между предельными углеводородами, их галогенопроизводными и спиртами.

    Загрузка...