docgid.ru

Что такое анатомическое мертвое пространство. Анатомическое и альвеолярное мертвое пространство. Вентиляция разных отделов легких

Поговорим, немного о простом, из-за непонимания которого, порой сложно принимать тактические решения.
Итак, анатомическое мертвое пространство (АМП) - это совокупный объем дыхательных путей, не участвующих в газообмене между вдыхаемым и альвеолярным газами. Таким образом, величина анатомического мертвого пространства равна объему проксимальной части дыхательных путей, где состав вдыхаемого газа сохраняется неизменным (носовая и ротовая полость, глотка, гортань, трахея, бронхи и бронхиолы). В условиях нормочастотной вентиляции в среднем у взрослого человека АМП равняется
150-200 ml (2ml/kg).
Альвеолярное мертвое пространство — альвеолы, выключенные из газообмена, например которые вентилируются, но не перфузируются (ТЭЛА).
Аппаратное мертвое пространство является своеобразным искусственным началом анатомического мертвого пространства, включаая объемы интубационной трубки, пространства между куполом лицевой маски и поверхностью лица пациента, адаптера-пробоотборника капнографа и т.д.
Следует помнить, что объем мертвого пространства, связанный с ИВЛ, иногда намного превосходит ожидаемый.

Функциональное мертвое пространство (ФМП) — понимают все те участки дыхательной системы, в которых не происходит газообмена по причине сниженного или отсутствующего кровотока. Суть – общая сумма объемов газовой смеси по тем или иным причинам не участвующая в газообмене.

Методы снижения объема мертвого пространства — трахеостомия и TRIO2 (tracheal insufflation of oxygen, инсуффляция кислорода через катетер параллельно с ИВЛ — фото в конце статьи).

Теперь, немного о другом, CO2 – газ, в 10 раз более растворимый в крови, элиминирующийся во время выдоха. Нормальные показатели paCO2 35-45 mmHg. У пациентов с ХОБЛ регистрируется постоянная умеренная гиперкапния. Вообще говоря, об максимально допустимом уровне углекислого газа конкретную цифру привести невозможно. Однако, стоит понимать, что накопление углекислоты приводит к пропорциональному снижению рН артериальной крови:
СО2 + Н2О -> Н2СО3 -> Н+ + НСО3-
Необходимо поддерживать параметры ИВЛ, которые бы не способствовали снижению рН ниже 7,2 (иначе неизбежны неприятные последствия – сдвиг кривой диссоциации оксигемоглобина вправо, расширение сосудов головного мозга, рост ВЧД и т.д.). Применение таких параметров ИВЛ (при условии поддержания адекватной оксигенации) не сопровождалось развитием осложнений и приводило к снижению летальности. Исходя из этого, давайте считать пермиссивной (допустимой) гиперкапнию до 65 mmHg.
Понятие «carbon dioxide narcosis» подразумевает под собой развитие нарушений сознания вплоть до комы, судорожных припадков при повышении paCO2 до 70 mmHg, у пациентов устойчивых к гиперкапнии симптоматика может развиться при больших значениях paCO2.
Существуют работы, показывающие, что при ИВЛ у пациентов с ОРДС на вентиляцию мертвого пространства может уходить до 50-80 % дыхательного объема, а через безвоздушные зоны легких шунтируется более половины минутного объема кровообращения.

ИВЛ при септическом ОРДС часто сталкивается с одной и той же проблемой. При тяжелом ресриктивном поражении легких (РИ<100) все способы повлиять на оксигенацию (использование вентиляции по давлению, увеличение времени вдоха, вплоть до инверсии I:E), не использование больших дыхательных объемов при высоких показателях PEEP – все это ведет к гиперкапнии. Особенно на фоне гиперпродукции CO2 при септическом процессе.

Термин «физиологическое мертвое пространство» употребляется для обозначения всего воздуха в дыхательных путях, который не участвует в газообмене. Он включает анатомическое мертвое пространство плюс объем альвеол, в которых кровь не входит в соприкосновение с воздухом. Таким образом, эти альвеолы с неполным капиллярным кровоснабжением (например, при тромбозе легочных артерий) или растянутые и содержащие поэтому избыток воздуха (например, при эмфиземе) включаются в физиологическое мертвое пространство при условии, если они сохраняют вентиляцию при избыточной перфузии. Следует отметить, что буллы часто гиповентилируемы.

Анатомическое мертвое пространство определяется непрерывным анализом концентрации азота в выдыхаемом воздухе с одновременным измерением объемной скорости выдоха. Азот применяется потому, что он не участвует в газообмене. С помощью нитрометра регистрируются данные после одиночного вдоха чистого кислорода (рис. 5). Первая часть записи в начале выдоха относится к газу собственно мертвого пространства, в котором нет азота, затем следует короткая фаза быстрого повышения концентрации азота, которая относится к смешанному воздуху мертвого пространства и альвеол, и, наконец, данные о собственно альвеолах, которые отражают степень разведения альвеолярного азота кислородом. Если бы не происходило смешивания альвеолярного газа и газа мертвого пространства, то повышение концентрации азота возникало бы скачком, прямым фронтом, и объем анатомического мертвого пространства был бы равен объему, выдыхаемому до момента появления альвеолярного газа. Эта гипотетическая ситуация прямого фронта может быть оценена методом Fowler, при котором восходящий отрезок кривой делят на две равные части и получают анатомическое мертвое пространство.

Рис. 5. Определение мертвого пространства методом одиночного вдоха. Модифицирован Comroe и др.

Физиологическое мертвое пространство можно рассчитать по уравнению Bohr, основанному на том, что выдыхаемый газ является суммой газов в анатомическом мертвом пространстве и в альвеолах. Альвеолярный газ может исходить из альвеол с достаточной вентиляцией и перфузией, а также из тех, в которых соотношение вентиляция - перфузия нарушено:

где PaCO 2 - парциальное давление углекислоты в артериальной крови (предполагается, что оно равно «идеальному» альвеолярному давлению CO 2); РЕCO 2 - давление углекислоты в смешанном выдыхаемом воздухе; YT - дыхательный объем. Такой метод требует простого анализа выдыхаемого воздуха в артериальной крови. Он выражает отношение мертвого пространства (Vd) к дыхательному объему (Vt), как если бы легкое физиологически состояло из двух частей: одной, нормальной в отношении вентиляции и перфузии, и другой, с неопределенной вентиляцией и без перфузии.

Анатомическим мертвым пространством называют объем проводящих воздухоносных путей. В норме он составляет около 150 мл, возрастая при глубоком вдохе, так как бронхи растягиваются окружающей их паренхимой легких. Объем мертвого пространства зависит также от размеров.тела и позы. Существует приближенное правило, согласно которому у сидящего человека он примерно равен в миллилитрах массе тела в фунтах (1 фунт — 453,6 г).

А. После вдоха из емкости с чистым кислородом обследуемый делает выдох, и концентрация N 2 в выдыхаемом воздухе вначале повышается, а потом остается почти постоянной (кривая при этом практически выходит на плато, соответствующее чистому альвеолярному воздуху). Б. Зависимость концентрации от выдыхаемого объема. Объем мертвого пространства определяется точкой пересечения оси абсцисс с вертикальной пунктирной линией, проведенной таким образом, что площади Л и Б равны.

Объем анатомического мертвого пространства можно измерить по методу Фаулера. При этом обследуемый дышит через систему клапанов и непрерывно измеряется содержание азота с помощью быстродействующего анализатора, забирающего воздух из трубки, начинающейся у рта. Когда после вдыхания 100 % O 2 человек делает выдох, содержание N 2 постепенно увеличивается по мере замены воздуха мертвого пространства альвеолярным.

В конце выдоха регистрируется практически постоянная концентрация азота, что соответствует чистому альвеолярному воздуху. Этот участок кривой часто называют альвеолярным «плато», хотя даже у здоровых людей он не совсем горизонтальный, а у больных с поражениями легких может круто идти вверх. При данном методе записывается также объем выдыхаемого воздуха.

Для определения объема мертвого пространства строят график, связывающий содержание N 2 с выдыхаемым объемом. Затем на этом графике проводят вертикальную линию таким образом, чтобы площадь А была равна площади Б. Объем мертвого пространства соответствует точке пересечения этой линии с осью абсцисс. Фактически этот метод дает объем проводящих воздухоносных путей до «средней точки» перехода от мертвого пространства к альвеолярному воздуху.

«Физиология дыхания», Дж. Уэст

В этой и следующих двух главах рассмотрено, каким образом вдыхаемый воздух поступает в альвеолы, как газы переходят через альвеолярно-капиллярный барьер и как они удаляются из легких с током крови. Эти три процесса обеспечиваются соответственно вентиляцией, диффузией и кровотоком. Приведены типичные значения объемов и расходов воздуха и крови. На практике эти величины существенно варьируют (по J….

Перед тем как перейти к динамическим показателям вентиляции, полезно коротко рассмотреть «статические» легочные объемы. Некоторые из них можно измерить с помощью спирометра. Во время выдоха колокол спирометра поднимается, а перо самописца опускается. Амплитуда колебаний, записываемых при спокойном дыхании, соответствует дыхательному объему. Если же обследуемый делает максимально глубокий вдох, а затем — как можно более глубокий…

Функциональную остаточную емкость (ФОЕ) можно измерить также с помощью общего плетизмографа. Он представляет собой крупную герметичную камеру, напоминающую кабинку телефона-автомата, с обследуемым внутри. В конце нормального выдоха с помоагью заглушки перекрывается мундштук, через который дышит обследуемый, и его просят сделать несколько дыхательных движений. При попытке вдоха газовая смесь в его легких расширяется, объем их увеличивается,…

text_fields

text_fields

arrow_upward

Воздухопроводящие пути, легочная паренхи­ма, плевра, костно-мышечный каркас грудной клетки и диафрагма составляют единый рабочий орган, посредством которого осущест­вляется вентиляция легких .

Вентиляцией легких называют процесс обновления газового соста­ва альвеолярного воздуха, обеспечивающего поступление в них кис­лорода и выведение избыточного количества углекислого газа .

Ин­тенсивность вентиляции определяется глубиной вдоха и частотой дыхания .
Наиболее информативным показателем вентиляции легких служит минутный объем дыхания , определяемый как произведение дыхательного объема на число дыханий в минуту.
У взрослого муж­чины в спокойном состоянии минутный объем дыхания составляет 6- 10 л/мин,
при работе - от 30 до 100 л/мин.
Частота дыхательных движения в покое 12-16 в 1 мин.
Для оценки потенциальных воз­можностей спортсменов и лиц специальных профессий используют пробу с произвольной максимальной вентиляцией легких, которая у этих людей может достигать 180 л/мин.

Вентиляция разных отделов легких

text_fields

text_fields

arrow_upward

Разные отделы легких человека вентилируются неодинаково, в зависимости от положения тела . При вертикальном положении че­ловека нижние отделы легких вентилируются лучше, чем верхние. Если человек лежит на спине, то разница в вентиляции верхушеч­ных и нижних отделов легких исчезает, однако, при этом задние (дорсальные) их участки начинают вентилироваться лучше, чем пе­редние (вентральные). В положении лежа на боку лучше вентили­руется легкое, находящееся снизу. Неравномерность вентиляции верхних и нижних участков легкого при вертикальном положении человека связана с тем, что транспульмональное давление (разность давления в легких и плевральной полости) как сила, определяющая объем легких и его изменения, у этих участков легкого не одина­ково. Поскольку легкие обладают весом, у их основании транспуль­мональное давление меньше, чем у верхушек. В связи с этим ниж­ние отделы легких в конце спокойного выдоха более сдавлены, однако, при вдохе они расправляются лучше, чем верхушки. Этим объясняется и более интенсивная вентиляция отделов легких, ока­завшихся снизу, если человек лежит на спине или на боку.

Дыхательное мертвое пространство

text_fields

text_fields

arrow_upward

В конце выдоха объем газов в легких равен сумме остаточного объема и резервного объема выдоха, т.е. представляет собой так называемую (ФОЕ). В конце вдоха этот объем увеличивается на величину дыхательного объема, т.е. того объема воздуха, который поступает в легкие во время вдоха и удаляется из них во время выдоха.

Поступающий в легкие во время вдоха воздух заполняет дыха­тельные пути, и часть его достигает альвеол, где смешивается с альвеолярным воздухом. Остальная, обычно меньшая, часть остается в дыхательных путях, в которых обмен газов между содержащимся в них воздухом и кровью не происходит, т.е. в так называемом мертвом пространстве.

Дыхательное мертвое пространство - объем дыхательных путей, в котором не происходят процессы газообмена между воздухом и кровью.
Различают анатомическое и физиологическое (или функци­ональное) мертвое пространство .

Анатомическое дыхательное мер­ твое пространство представляет собой объем воздухоносных путей, начиная от отверстий носа и рта и кончая дыхательными бронхиолами легкого.

Под функциональным (физиологическим) мертвым пространством понимают все те участки дыхательной системы, в которых не происходит газообмена. К функциональному мертвому пространству в отличие от анатомического относятся не только воздухоносные пути, но также альвеолы, которые вентилируются, но не перфузируются кровью. В таких альвеолах газообмен невозможен, хотя их вентиляция и происходит.

У человека среднего возраста объем анатомического мертвого пространства равен 140-150 мл или примерно 1/3 дыхательного объема при спокойном дыхании. В альвеолах к концу спокойного выдоха находится около 2500 мл воздуха (функциональная остаточ­ная емкость), поэтому при каждом спокойном вдохе обновляется лишь 1/7 часть альвеолярного воздуха.

Суть вентиляции легких

text_fields

text_fields

arrow_upward

Таким образом, вентиляция обеспечивает поступление наружного воздуха в легкие и части его в альвеолы и удаление вместо него смеси газов (выдыхаемого воздуха), состоящей из альвеолярного воз­духа и той части наружного воздуха, которая заполняет мертвое пространство в конце вдоха и удаляется первой в начале выдоха. Поскольку альвеолярный воздух содержит меньше кислорода и боль­ше углекислого газа, чем наружный, суть вентиляции легких сво­дится к доставке в альвеолы кислорода (возмещающего убыль кис­лорода, переходящего из альвеол в кровь легочных капилляров) и удалению из них углекислого газа (поступающего в альвеолы из крови легочных капилляров). Между уровнем тканевого метаболизма (скорость потребления тканями кислорода и образования в них уг­лекислоты) и вентиляцией легких существует зависимость, близкая к прямой пропорциональности. Соответствие легочной и, главное, альвеолярной вентиляции уровню метаболизма обеспечивается сис­темой регуляции внешнего дыхания и проявляется в виде увеличе­ния минутного объема дыхания (как за счет увеличения дыхатель­ного объема, так и частоты дыхания) при увеличении скорости потребления кислорода и образования углекислоты в тканях.

Вентиляция легких происходит , благодаря активному физиологи­ческому процессу (дыхательным движениям), который обуславливает механическое перемещение воздушных масс по трахеобронхиальным путям объемными потоками. В отличие от конвективного переме­щения газов из окружающей среды в бронхиальное пространство дальнейший транспорт газов (переход кислорода из бронхиол в альвеолы и, соответственно, углекислого газа из альвеол в бронхио­лы) осуществляется, главным образом, путем диффузии.

Поэтому различают понятие «легочная вентиляция» и «альвеолярная вентиляция».

Альвеолярная вентиляция

text_fields

text_fields

arrow_upward

Альвеолярную вентиляцию не удается объяснить только за счет создаваемых активным вдохом конвективных потоков воздуха в лег­ких. Суммарный объем трахеи и первых 16 генераций бронхов и бронхиол составляет 175 мл, последующих трех (17-19) генераций бронхиол - еще 200 мл. Если все это пространство, в котором почти отсутствует газообмен, «промывалось» бы конвективными по­токами наружного воздуха, то дыхательное мертвое пространство должно было бы составлять почти 400 мл. Если вдыхаемый воздух поступает в альвеолы через альвеолярные ходы и мешочки (объем которых равен 1300 мл) также путем конвективных потоков, то кислород атмосферного воздуха может достигнуть альвеол лишь при объеме вдоха не менее 1500 мл, тогда как обычный дыхательный объем составляет у человека 400- 500 мл.

В условиях спокойного дыхания (частота дыхания 15 а мин, продолжительность вдоха 2 с, средняя объемная скорость вдоха 250 мл/с), во время вдоха (дыхательный объем 500 мл) наружный воздух заполняет всю проводящую (объем 175 мл) и переходную (объем 200 мл) зоны бронхиального дерева. Лишь небольшая его часть (менее 1/3) поступает в альвеолярные ходы, объем которых в несколько раз превышает эту часть дыхательного объема. При таком вдохе линей­ная скорость потока вдыхаемого воздуха в трахее и главных бронхах равна примерно 100 см/с. В связи с последовательным делением бронхов на все более меньшие по диаметру, при одновременном увеличении их числа и суммарного просвета каждой последующей генерации, движение по ним вдыхаемого воздуха замедляется. На границе проводящей и переходной зон трахеобронхиального пути линейная скорость потока составляет всего около 1 см/с, в дыха­тельных бронхиолах она снижается до 0.2 см/с, а в альвеолярных ходах и мешочках - до 0.02 см/с.

Таким образом, скорость конвективных потоков воздуха, возника­ющих во время активного вдоха и обусловленных разностью между давлением воздуха в окружающей среде и давлением в альвеолах, в дистальных отделах трахеобронхиального дерева весьма мала, а в альвеолы из альвеолярных ходов и альвеолярных мешочков воздух поступает путем конвекции с небольшой линейной скоростью. Од­нако, суммарная площадь поперечного сечения не только альве­олярных ходов (тысячи см 2), но и дыхательных бронхиол, образу­ющих переходную зону (сотни см 2), достаточно велика для того, чтобы обеспечить диффузионный перенос кислорода из дистальных отделов бронхиального дерева в альвеолы, а углекислого газа - в обратном направлении.

Благодаря диффузии, состав воздуха в воз­духоносных путях респираторной и переходной зоны приближается по составу к альвеолярному. Следовательно , диффузионное переме­щение газов увеличивает объем альвеолярного и уменьшает объем мертвого пространства. Кроме большой площади диффузии, этот процесс обеспечивается также значительным градиентом парциаль­ных давлений: во вдыхаемом воздухе парциальное давление кисло­рода на 6.7 кПа (50 мм рт.ст.) больше, чем в альвеолах, а парци­альное давление углекислого газа в альвеолах на 5.3 кПа (40 мм рт.ст.) больше, чем во вдыхаемом воздухе. В течение одной секунды за счет диффузии концентрация кислорода и углекислоты в альве­олах и ближайших структурах (альвеолярные мешочки и альвеоляр­ные ходы) практически выравниваются.

Следовательно , начиная с 20-й генерации, альвеолярная вентиля­ция обеспечивается исключительно за счет диффузии. Благодаря диффузионному механизму перемещения кислорода и углекислого газа, в легких отсутствует постоянная граница между мертвым пространством и альвеолярным пространством. В воздухоносных путях есть зона, в пределах которой происходит процесс диффузии, где парциальное давление кислорода и углекислого газа изменяется, со­ответственно, от 20 кПа (150 мм рт.ст.) и 0 кПа в проксимальной части бронхиального дерева до 13.3 кПа (100 мм рт.ст.) и 5.3 кПа (40 мм рт.ст.) в дистальной его части. Таким образом, по ходу бронхиальных путей существует послойная неравномерность состава воздуха от атмосферного до альвеолярного (рис.8.4).

Рис.8.4. Схема альвеолярной вентиляции.
«а» - по устаревшим и
«б» - по современным представлениям.МП - мертвое пространство;
АП - альвеолярное пространство;
Т - трахея;
Б - бронхи;
ДБ - дыхательные бронхиолы;
АХ - альвеолярные ходы;
AM - альвеолярные мешочки;
А - альвеолы.
Стрелками обозначены конвективные потоки воздуха, точками - область диффузионного обмена газов.

Эта зона сме­щается в зависимости от режима дыхания и, в первую очередь, от скорости вдоха; чем больше скорость вдоха (т.е. в итоге, чем боль­ше минутный объем дыхания), тем дистальнее по ходу бронхиаль­ного дерева выражены конвективные потоки со скоростью, прева­лирующей над скоростью диффузии. В результате с увеличением минутного объема дыхания увеличивается мертвое пространство, а граница между мертвым пространством и альвеолярным простран­ством сдвигается в дистальном направлении.

Следовательно , анато­мическое мертвое пространство (если его определять числом гене­раций бронхиального дерева, в которых диффузия еще не имеет значения) изменяется так же, как и функциональное мертвое про­странство - в зависимости от объема дыхания.


Анатомическое мертвое пространство. Анатомическим мертвым пространством называют объем воздухоносных путей, потому что в них не происходит газообмена. Это пространство включает носовую и ротовую полости, глотку, гортань, трахею, бронхи и бронхиолы. Объем мертвого пространства зависит от роста и положения тела. Приближенно можно считать, что у сидящего человека объем мертвого пространства (в миллилитрах) равен удвоенной массе тела (в килограммах). Таким образом, у взрослых он равен около 150 мл. При глубоком дыхании он возрастает, так как при расправлении грудной клетки расширяются и бронхи с бронхиолами.

Измерение объема мертвого пространства. Экспираторный (дыхательный) объем (V д) состоит из двух компонентов-объема воздуха, поступающего из мертвого пространства (V МП), и объема воздуха из альвеолярного пространства (V a) 1) :

Для изучения функции легких важно измерить оба этих компонента отдельно. Как и для определения функциональной остаточной емкости, здесь используют непрямые методы. Они основаны на том, что содержание дыхательных газов (О 2 и СО 2) в воздухе из мертвого и из альвеолярного пространства различно. Содержание газов в воздухе мертвого пространства аналогично таковому в воздухе, поступившем при вдохе (инспирации) (F И). Содер-

1) Показатели, относящиеся к альвеолярному воздуху, обозначают также с помощью прописной буквы (А) в нижнем индексе, чтобы отличить их от аналогичных показателей артериальной крови (см. Дж. Уэст «Физиология дыхания. Основы». - М.: Мир, 1988).~ Прим. перев.


ГЛАВА 21. ЛЕГОЧНОЕ ДЫХАНИЕ 575


жание же газов в воздухе из альвеолярного пространства такое же, как и в самой альвеолярной газовой смеси (F a). Если выразить парциальный объем газа в виде произведения общего объема газовой смеси V и концентрации этого газа F, то для любого дыхательного газа будет справедливо равенство

Подставляя выражение для V B из уравнения (4) и сделав преобразования, получаем

Это равенство, называемое уравнением Бора , справедливо для любого дыхательного газа. Однако для СО 2 его можно упростить, так как содержание этого газа во вдыхаемом воздухе () близко к нулю

(7)

Отношение объема мертвого пространства к экспираторному объему можно вычислить с помощью уравнений (6) и (7). Значения содержания газов для фракций, представленных в правой части уравнения, можно определить путем газового анализа (при определении газов в альвеолярном воздухе возникают некоторые трудности; см. с. 586). Пусть газовый анализ дал следующие величины: =

0,056 мл СО 2 и = 0,04 мл СО 2 на 1 мл

смеси. Тогда = 0,3, т. е. объем мертвого

пространства составляет 30% экспираторного объема.

Функциональное мертвое пространство. Под функциональным (физиологическим) мертвым пространством понимают все те участки дыхательной системы, в которых не происходит газообмена. К функциональному мертвому пространству в отличие от анатомического относятся не только воздухоносные пути, но также и те альвеолы, которые вентилируются, но не перфузируются кровью. В таких альвеолах газообмен невозможен, хотя их вентиляция и происходит. В здоровых легких количество подобных альвеол невелико, поэтому в норме объемы анатомического и функционального мертвого пространства практически одинаковы. Однако при некоторых нарушениях функции легких, когда легкие вентилируются и снабжаются кровью неравномерно, объем второго может оказаться значительно больше объема первого.

Загрузка...