docgid.ru

Единую систему крови. Физиологические функции крови. Транспортная функция. Функции крови Транспортной функцией крови обладает

Кровь, а также органы, принимающие участие в образовании и разрушении ее клеток, вместе с механизмами регуляции объединяют в единую систему крови.

Физиологические функции крови.

Транспортная функция крови состоит в том, что она переносит газы, питательные вещества, продукты обмена веществ, гормоны, медиаторы, электролиты, ферменты и др

Дыхательная функция заключается в том, что гемоглобин эритроцитов переносит кислород от легких к тканям организма, а углекислый газ от клеток к легким.

Питательная функция — перенос основных питательных веществ от органов пищеварения к тканям организма.

Экскреторная функция (выделительная) осуществляется за счет транспорта конечных продуктов обмена веществ (мочевины, мочевой кислоты и др.) и лишних количеств солей и воды от тканей к местам их выделения (почки, потовые железы, легкие, кишечник).

Водный баланс тканей зависит от концентрации солей и количества белка в крови и тканях, а также от проницаемости сосудистой стенки.

Регуляция температуры тела осуществляется за счет физиологических механизмов, способствующих быстрому перераспределению крови в сосудистом русле. При поступлении крови в капилляры кожи теплоотдача увеличивается, переход же ее в сосуды внутренних органов способствует уменьшению потери тепла.

Защитная функция - кровь является важнейшим фактором иммунитета. Это обусловлено наличием в крови антител, ферментов, специальных белков крови, обладающих бактерицидными свойствами, относящихся к естественным факторам иммунитета.

Одним из важнейших свойств крови является ее способность свертываться , что при травмах предохраняет организм от кровопотери.

Регуляторная функция заключается в том, что поступающие в кровь продукты деятельности желез внутренней секреции, пищеварительные гормоны, соли, ионы водорода и др. через центральную нервную систему и отдельные органы (либо непосредственно, либо рефлекторно) изменяют их деятельность.

Количество крови в организме.

Общее количество крови в организме взрослого человека составляет в среднем 6—8%, или 1/13, массы тела, т. е. приблизительно 5—6 л . У детей количество крови относительно больше: у новорожденных оно составляет в среднем 15% от массы тела, а у детей в возрасте 1 года —11%. В физиологических условиях не вся кровь циркулирует в кровеносных сосудах, часть ее находится в так называемых кровяных депо (печень, селезенка, легкие, сосуды кожи). Общее количество крови в организме сохраняется на относительно постоянном уровне.

Вязкость и относительная плотность (удельный вес) крови.

Вязкость крови обусловлена наличием в ней белков и красных кровяных телец — эритроцитов . Если вязкость воды принять за 1, то вязкость плазмы будет равна 1,7—2,2 , а вязкость цельной крови около 5,1 .

Относительная плотность крови зависит в основном от количества эритроцитов, содержания в них гемоглобина и белкового состава плазмы крови. Относительная плотность крови взрослого человека равна 1,050—1,060 , плазмы —1,029—1,034 .

Состав крови.

Периферическая кровь состоит из жидкой части — плазмы и взвешенных в ней форменных элементов или кровяных клеток (эритроцитов, лейкоцитов, тромбоцитов)

Если дать крови отстояться или провести ее центри фугирование, предварительно смешав с противосвертывающим веществом, то образуются два резко отличающихся друг от друга слоя: верхний — прозрачный, бесцветный или слегка желтоватый — плазма крови; нижний — красного цвета, состоящий из эритроцитов и тромбоцитов. Лейкоциты за счет меньшей относительной плотности располагаются на поверхности нижнего слоя в виде тонкой пленки белого цвета.

Объемные соотношения плазмы и форменных элементов определяют с помощью гематокрита. В периферической крови плазма составляет приблизительно 52—58% объема крови, а форменные элементы 42— 48%.

Плазма крови, ее состав.

В состав плазмы крови входят вода (90—92%) и сухой остаток (8—10%). Сухой остаток состоит из органических и неорганических веществ.

К органическим веществам плазмы крови относятся: 1) белки плазмы — альбумины (около 4,5%), глобулины (2—3,5%), фибриноген (0,2—0,4%). Общее количество белка в плазме составляет 7—8%;

2) небелковые азотсодержащие соединения (аминокислоты, полипептиды, мочевина, мочевая кислота, креатин, креатинин, аммиак). Общее количество небелкового азота в плазме (так называемого остаточного азота ) составляет 11 —15 ммоль/л (30—40 мг%). При нарушении функции почек, выделяющих шлаки из организма, содержание остаточного азота в крови резко возрастает;

3) безазотистые органические вещества: глюкоза — 4,4—6,65 ммоль/л (80—120 мг%), нейтральные жиры, липиды;

4) ферменты и проферменты : некоторые из них участвуют в процессах свертывания крови и фибринолиза, в частности протромбин и профибринолизин. В плазме содержатся также ферменты, расщепляющие гликоген, жиры, белки и др.

Неорганические вещества плазмы крови составляют около 1 % от ее состава. К этим веществам относятся преимущественно катионы — Ка + , Са 2+ , К + , Мg 2+ и анионы Сl, НРO4, НСО3

Из тканей организма в процессе его жизнедеятельности в кровь поступает большое количество продуктов обмена, биологически активных веществ (серотонин, гиста-мин), гормонов; из кишечника всасываются питательные вещества, витамины и т. д. Однако состав плазмы существенно не изменяется . Постоянство состава плазмы обеспечивается регуляторными механизмами, оказывающими влияние на деятельность отдельных органов и систем организма, восстанавливающих состав и свойства его внутренней среды.

Роль белков плазмы.

Белки обусловливают онкотическое давление . В среднем оно равно 26 мм рт.ст.

Белки, обладая буферными свойствами, участвуют в поддержании кислотно-основного равновесия внутренней среды организма

Участвуют в свертывании крови

Гамма-глобулины участвуют в защитных (иммунных ) реакциях организма

Повышают вязкость крови, имеющую важное значение в поддержании АД

Белки (главным образом альбумины) способны образовывать комплексы с гормонами, витаминами, микроэлементами, продуктами обмена веществ и, таким образом, осуществлять их транспорт .

Белки предохраняют эритроциты от агглютинации (склеивание и выпадение в осадок)

Глобулин крови - эритропоэтин - участвует в регуляции эритропоэза

Белки крови являются резервом аминокислот , обеспечивающих синтез тканевых белков

Осмотическое и онкотическое давление крови.

Осмотическое давление обусловлено электролитами и некоторыми неэлектролитами с низкой молекулярной массой (глюкоза и др.). Чем больше концентрация таких веществ в растворе, тем выше осмотическое давление. Осмотическое давление плазмы зависит в основном от содержания в ней минеральных солей и составляет в среднем 768,2 кПа (7,6 атм.). Около 60% всего осмотического давления обусловлено солями натрия.

Онкотическое давление плазмы обусловлено белками . Величина онкотического давления колеблется в пределах от 3,325 кПа до 3,99 кПа (25—30 мм рт. ст.). За счет него жидкость (вода) удерживается в сосудистом русле. Из белков плазмы наибольшее участие в обеспечении величины онкотического давления принимают альбумины ; вследствие малых размеров и высокой гидрофильности они обладают выраженной способностью притягивать к себе воду.

Постоянство коллоидно-осмотического давления крови у высокоорганизованных животных является общим законом, без которого невозможно их нормальное существование.

Если эритроциты поместить в солевой раствор, имеющий одинаковое осмотическое давление с кровью, то они заметным изменениям не подвергаются. В растворе с высоким осмотическим давлением клетки сморщиваются, так как вода начинает выходить из них в окружающую среду. В растворе с низким осмотическим давлением эритроциты набухают и разрушаются. Это происходит потому, что вода из раствора с низким осмотическим давлением начинает поступать в эритроциты, оболочка клетки не выдерживает повышенного давления и лопается .

Солевой раствор, имеющий осмотическое давление, одинаковое с кровью, называют изоосмотическим, или изотоническим (0,85—0,9 % раствор NaCl). Раствор с более высоким осмотическим давлением, чем давление крови, получил название гипертонического , а имеющий более низкое давление — гипотонического .


Заключается в том, что крови играет роль транспортируемой среды в замкнутой цепи сердечно-сосудистой системы. Но говорить о транспортной функции крови, не уточняя что именно транспортируется в этой среде, не имеет смысла. Транспортироваться (передаваться) может вещество, энергия, информация .

Начнем с транспорта веществ.

Транспорт дыхательных газов (кислорода и углекислого газа) от лёгких к клеткам и обратно – дыхательная функция.

Транспорт питательных веществ от кишечника к клеткам – питательная функция.

Транспорт экскретов к выделительным органам – экскреторная функция.

Когда говорят о функции крови по передаче силы, как правило, приводят примеры участия крови в локомоции дождевых червей, разрыве кутикулы при линьке у ракообразных и т.п., забывая, что эту важную функцию кровь выполняет и у человека.

Передача гидростатического давления обеспечивает фильтрацию жидкостей в нутритивных капиллярах, клубочковую фильтрацию в почках, эрекцию полового члена, клитора, …).

Транспорт информационных молекул (гормонов, метаболитов, биологически активных веществ) обеспечивает регуляторную функцию .

Все функции крови связаны между собой и неотделимы друг от друга.

Защитная функция крови

Включает:

1. иммунитет

2. гемостаз

3. реакция буферов

Регуляторная функция крови

Включает:

1. гуморальная регуляция (включая гормональную)

2. гомеостатическая

Состав крови

Всю кровь можно разделить на циркулирующую ~ 5 л и депонированную в селезенке, печени, подкожном сосудистом сплетении и легких ~ 1 л.

Состав крови можно представить в виде схемы, представленной на рис. 711171750.

Рис. 711171750. Состав крови.


Плазмаферез

Плазмаферез - процесс выведения плазмы крови из кровообращения.

Изредка используется как метод лечения, однако наиболее часто применяется для сбора донорской плазмы.

В ходе донорского плазмафереза из организма извлекается порция крови (около 300 мл), которая затем центрифугируется с целью отделения плазмы от эритроцитов. Плазма затем переливается в заготовленную ёмкость, а тельца возвращаются донору. Процесс повторяется необходимое число раз.

Стандартная доза извлекаемой плазмы - 600 мл. Для её получения необходимо переработать около 1 л крови. Срок восстановления такого объёма плазмы - около трех недель, что существенно меньше, чем срок восстановления аналогичного объёма крови, так как в этом случае основное время занимает восстановление именно кровяных телец.

Гематокрит

Гематокрит - отношение объёма форменных элементов к объёму крови.

Синонимы: гематокритная величины, гематокритное число, гематокритный показатель[Б57] .

От греч. Haimatos кровь + kritos отдельный, определённый).

Обратите внимание! «... к объёму крови », а не плазмы. «Объёма форменных элементов к...», а не эритроцитов. Да, гематокрит в основном определяется количеством эритроцитов, и, тем не менее, речь идет об относительном содержании всех форменных элементов в крови[Б58] . Поэтому неправильно отождествлять понятия «общий объём эритроцитов» и «гематокритная величина» ++176++[Б59] .

Гематокрит определяется в условиях предотвращения свёртывания крови с помощью антикоагулянтов и после центрифугирования (раньше в микроцентрифуге Шкляра) .

У здоровых мужчин гематокрит венозной и капиллярной крови равен 40-48 %, женщин – 36-42 [Б60] %. У новорождённых гематокритное число достигает 60-62 %, затем оно уменьшается, а с 6 месяцев начинает повышаться, достигая цифр, характерных для взрослых, к 14 годам [++346[Б61] +].

Венозный гематокрит существенно ниже артериального. Общий телесный гематокрит (ОТГкр) также меньше определяемого венозного (ВГкр) и вычисляется по формуле: ОТГкр = 0,92·ВГкр.

Динамический гематокрит

Измерив гематокрит цельной крови, находящейся в резервуаре, и гематокрит той же крови, вытекаю­щей из него по трубке, мы обнаружим, что в трубке он ниже. Это явление известно давно[Б62] . Наблюдаемое снижение гематокрита обусловлено наличием свободного от клеток слоя, ибо взвешенные в плазме эритроциты движутся вместе с ней в центральной части трубки с относительно большой скоростью, а плазма движется не только вместе с эрит­роцитами, но и у стенки, где скорость ее перемещения мала. Это явление имеет место независимо от вида профиля скорости. В ре­зультате среднее время прохождения данного отрезка трубки для эритроцитов оказывается меньшим, чем для плазмы. Если бы ве­личина динамического гематокрита была такой же, как его статическая величина на входе в трубку, то на конце трубки концент­рация эритроцитов должна бы была увеличиваться! В действи­тельности динамический гематокрит, измеренный в любой доста­точно узкой трубке, всегда меньше статического. Поэтому, хотя время прохождения через трубку отдельного эритроцита меньше, чем время прохождения плазмы, общее число эритроцитов, прохо­дящих через трубку за определенное время, поддерживается на соответствующем уровне.

Заключается в переносе кровью различных веществ. Специфической особенностью крови является транспорт О 2 и СО 2 . Транспорт газов осуществляется эритроцитами и плазмой.

Характеристика эритроцитов. (Эр).

Форма: 85% Эр – двояковогнутый диск, легко деформируется, что необходимо для прохождения его через капилляр. Диаметр эритроцита = 7,2 – 7,5 мкм.

Больше 8 мкм – макроциты.

Меньше 6 мкм – микроциты.

Количество :

М – 4,5 – 5,0 ∙ 10 12/л. . - эритроцитоз.

Ж – 4,0 – 4,5 ∙ 10 12/л. ↓ - эритропения.

Мембрана Эр легко проницаема для анионов НСО 3 – Cl, а также для О 2 , СО 2 , Н + , ОН - .

Малопроницаема для К + , Na + (в 1млн раз ниже, чем для анионов).

Свойства эритроцитов.

1) Пластичность – способность к обратимой деформации. По мере старения эта способность снижается.

Превращение Эр в сфероциты приводит к тому, что они не могут пройти через капилляр и задерживаются в селезенке, фагоцитируются.

Пластичность зависит от свойств мембраны и свойств гемоглобина, от соотношения различных фракций липидов в мембране. Особенно важно соотношение фосфолипидов и холестерина, которые определяют текучесть мембран.

Данное соотношение выражается в виде липолитического коэффициента (ЛК):

В норме ЛК = холестерин / лецитин = 0,9

↓ холестерина → ↓ стойкость мембран, меняется свойство текучесть.

Лецитина → проницаемость мембраны эритроцита.

2) Осмотическая устойчивость эритроцита.

Р осм. в эритроците выше, чем в плазме, что обеспечивает тургор клетки. Создается высокой внутриклеточной концентрацией белков, больше чем в плазме. В гипотоническом растворе Эр набухают, в гипертоническом сморщиваются.

3) Обеспечение креаторных связей.

На эритроците переносятся различные вещества. Это обеспечивает межклеточное взаимодействие.

Показано, что при повреждении печени эритроциты начинают усиленно транспортировать из костного мозга в печень нуклеотиды, пептиды, аминокислоты способствуя восстановление структуры органа.

4) Способность эритроцитов к оседанию.

Альбумины – лиофильные коллоиды, создают вокруг эритроцита гидратную оболочку и держат их во взвешенном состоянии.

Глобулины лиофобные коллоиды – уменьшают гидратную оболочку и отрицательный поверхностный заряд мембраны, что способствует усилению агрегации эритроцитов.

Соотношение альбуминов и глобулинов - это белковый коэффициент БК. В норме

БК = альбумины / глобулины = 1,5 – 1,7

При нормальном белковом коэффициенте СОЭ у мужчин 2 – 10мм/час; у женщин 2 – 15 мм/час.

5) Агрегация эритроцитов.

При замедлении кровотока и повышении вязкости крови эритроциты образуют агрегаты, которые приводят к реологическим расстройствам. Это бывает:

1) при травматическом шоке;

2) постинфарктном коллапсе;

3) перитоните;

4) острой кишечной непроходимости;

5) ожогах;

5) остром панкреатите и других состояниях.

6) Деструкция эритроцитов.

Продолжительность жизни эритроцита в русле ~ 120 дней. В этот период развивается физиологическое старение клетки. Около 10% эритроцитов разрушаются в норме в сосудистом русле, остальные в печени, селезенке.

Функции эритроцитов.

1) Транспорт О 2 , СО 2 , АК, пептидов, нуклеотидов к различным органам для регенеративных процессов.

2) Способность адсорбировать токсичные продукты эндогенного и экзогенного, бактериального и не бактериального происхождения и их инактивировать.

3) Участие в регуляции рН крови за счет гемоглобинового буфера.

4) Эр. принимают участие в свертывании крови и фибринолизе, сорбируя на всей поверхности факторы свертывающей и противосвертывающей систем.

5) Эр. участвуют в иммунологических реакциях, например агглютинации, т. к. в их мембранах есть антигены – агглютиногены.

Функции гемоглобина.

Содержится в эритроците. На долю гемоглобина приходится 34% общей и 90 – 95% сухой массы эритроцита. Он обеспечивает транспорт О 2 и СО 2 . Это хромопротеид. Состоит из 4 х железосодержащих групп гема и белкового остатка глобина. Железо Fe 2+ .

М. от 130 до 160 г/л (ср. 145г/л).

Ж. от 120 до 140г/л.

Синтез Нв начинается в нормоцитах. По мере созревания эритроидной клетки снижается синтез Нв. Зрелые эритроциты Нв не синтезируют.

Процесс синтеза Нв при эритропоэзе связан с потреблением эндогенного железа.

При разрушении эритроцитов из гемоглобина образуется желчный пигмент билирубин, который в кишечнике превращается в стеркобилин, а в почках – в уробилин и выводится с калом и мочой.

Виды гемоглобина.

7 – 12 неделя внутриутробного развития - Нв Р (примитивный). На 9 ой неделе – Нв F (фетальный). К моменту рождения – появляется Нв А.

В течение первого года жизни Нв F полностью заменяется на Нв А.

Нв Р и Нв F имеют более высокое сродство к О 2 , чем Нв А, т. е. способность насыщаться О 2 при меньшем его содержании в крови.

Сродство определяют глобины.

Соединения гемоглобина с газами.

Соединения гемоглобина с кислородом называется оксигемоглобином (HbO 2), обеспечивает алый цвет артериальной крови.

Кислородная емкость крови (КЕК).

Это количество кислорода, которое может связать 100г крови. Известно, что один г. гемоглобина связывает 1,34 мл О 2 . КЕК = Hb∙1,34 . Для артериальной крови кек = 18 – 20 об% или 180 – 200 мл/л крови.

Кислородная емкость зависит от:

1) количества гемоглобина.

2) температуры крови (при нагревании крови снижается)

3) рН (при закислении снижается)

Патологические соединения гемоглобина с кислородом.

При действии сильных окислителей Fe 2+ переходит в Fe 3+ - это прочное соединение метгемоглобин. При накоплении его в крови наступает смерть.

Соединения гемоглобина с СО 2

называется карбгемоглобин HBCO 2 . В артериальной крови его содержится 52об% или 520 мл/л. В венозной – 58об% или 580 мл/л.

Патологическое соединение гемоглобина с СО называется карбоксигемоглобин (HbCO ). Присутствие в воздухе даже 0,1% СО превращает 80% гемоглобина в карбоксигемоглобин. Соединение стойкое. При обычных условиях распадается очень медленно.

Помощь при отравлении угарным газом.

1)обеспечить доступ кислорода

2) вдыхание чистого кислорода увеличивает скорость распада карбоксигемоглобина в 20 раз.

Миоглобин.

Это гемоглобин, содержащийся в мышцах и миокарде. Обеспечивает потребности в кислороде при сокращении с прекращением кровотока (статические напряжение скелетных мышц).

Эритрокинетика.

Под этим понимают развитие эритроцитов, функционирование их в сосудистом русле и разрушение.

Эритропоэз

Гемоцитопоэз и эритропоэз происходит в миелоидной ткани. Развитие всех форменных элементов идет из полипотентной стволовой клетки.

КПЛ → СК → КОЕ ─ГЭММ

КПТ- л КПВ- л Н Э Б

Факторы, влияющие на дифференцировку стволовой клетки.

1. Лимфокины. Выделяются лейкоцитами. Много лимфокинов – снижение дифференцировки в сторону эритроидного ряда. Снижение содержания лимфокинов – повышение образования эритроцитов.

2.Главным стимулятором эритропоэза является содержание кислорода в крови. Снижение содержания О 2 , хронический дефицит О 2 являются системообразующим фактором, который воспринимается хеморецепторами центральными и периферическими. Имеет значение хеморецептор юкстагломерулярного комплекса почки (ЮГКП). Он стимулирует образование эритропоэтина, который увеличивает:

1)дифференцировку стволовой клетки.

2)ускоряет созревание эритроцитов.

3)ускоряет выход эритроцитов из депо костного мозга

В этом случае возникает истинный (абсолютный ) эритроцитоз. Количество эритроцитов в организме увеличивается.

Ложный эритроцитоз возникает при временном снижении кислорода в крови

(например, при физической работе). В этом случае эритроциты выходят из депо и их количество растет только в единице объема крови но не в организме.

Эритропоэз

Образование эритроцитов протекает при взаимодействии эритроидных клеток с макрофагами костного мозга. Эти клеточные ассоциации получили название эритробластических островков (ЭО).

Макрофаги ЭО влияют на пролиферацию и созревание эритроцитов путем:

1) фагоцитоза вытолкнутых клеткой ядер;

2) поступления из макрофага в эритробласты ферритина и других пластических материалов;

3) секреции эритропоэтинактивных веществ;

4) создания благоприятных условий для развития эритробластов.

Образование эритроцитов

В сутки образуется 200 – 250 млрд. эритроцитов

проэритробласт (удвоение).

2

базофильные

базофильных эритробластаI порядка.

4 базофильных ЭБ II порядка.

8полихроматфильных эритробластаI порядка.

полихроматофильные

16 полихроматофильных эритробласта II порядка.

32 ПХФ нормобластов.

3

оксифильные

2 оксифильных нормобласта, выталкивание ядра.

32 ретикулоцита.

32 эритроцита.

Факторы, необходимые для образования эритроцита.

1) Железо нужно для синтеза гемма. 95% суточной потребности получает организм из разрушающихся эритроцитов. Ежесуточно требуется 20 – 25 мг Fe.

Депо железа.

1) Ферритин – в макрофагах в печени, слизистой кишечника.

2) Гемосидерин – в костном мозге, печени, селезенке.

Запасы железа нужны для экстренного изменения синтеза эритроцитов. Fe в организме 4 – 5г, из них ¼ резервное Fe, остальное функциональное. 62 – 70% из него находится в составе эритроцитов, 5 – 10% в миоглобине, остальное в тканях, где участвует во многих метаболических процессах.

В костном мозге Fe захватывается преимущественно базофильными и полихроматофильными пронормобластами.

Железо доставляется к эритробластам в комплексе с белком плазмы – трансферрином.

В ЖКТ железо лучше всасывается в 2 х валентном состоянии. Это состояние поддерживает аскорбиновая кислота, фруктоза, АК – цистеин, метионин.

Железо, входящее в состав гемма (в мясных продуктах, кровяных колбасах) лучше всасывается в кишечнике, чем железо из растительных продуктов.1мкг всасывается ежедневно.

Роль витаминов.

В 12 – внешний фактор кроветворения (для синтеза нуклеопротеидов, созревания и деления ядер клеток).

При дефиците В 12 образуются мегалобласты, из них мегалоциты с коротким сроком жизни. Результат – анемия. Причина В 12 – дефицита – отсутствие внутреннего фактора Кастла (гликопротеин, связывающий В 12 , предохраняет В 12 от расщепления пищеварительными ферментами). Дефицит фактора Кастла связан с атрофией слизистой желудка, особенно у стариков. Запасы В 12 на 1 – 5 лет, но его истощение приводит к заболеванию.

В 12 содержится в печени, почках, яйцах. Суточная потребность 5мкг.

Фолиевая кислота ДНК, глобин (поддерживает синтез ДНК в клетках костного мозга и синтез глобина).

Суточная потребность 500 – 700мкг, есть резерв 5 – 10мг, треть его в печени.

Недостаток В 9 – анемия связанная с ускоренным разрушением эритроцитов.

Содержится в овощах (шпинат), дрожжах, молоке.

В 6 – пиридоксин – для образования гемма.

В 2 – для образования стромы , дефицит вызывает анемию гипорегенеративного типа.

Пантотеновая кислота – синтез фосфолипидов.

Витамин С – поддерживает основные этапы эритропоэза: метаболизм фолиевой кислоты, железа, (синтез гемма).

Витамин Е – защищает фосфолипиды мембраны эритроцита от перекисного окисления, усиливающего гемолиз эритроцитов.

РР – тоже.

Микроэлементы Ni, Со, селен сотрудничает с витамином Е, Zn – 75% его находится в эритроцитах в составе карбоангидразы.

Анемия:

1) вследствие снижения числа эритроцитов;

2) снижение содержания гемоглобина;

3) обе причины вместе.

Стимуляция эритропоэза происходит под влиянием АКТГ, глюкокортикоидов, ТТГ,

катехоламинов через β – АР, андрогенов, простагландинов (ПГЕ, ПГЕ 2), симпатической системы.

Тормозит ингибитор эритропоэза при беременности.

Анемия

1) вследствие снижения числа эритроцитов

2)снижение количества гемоглобина

3)обе причины вместе.

Функционирование эритроцитов в сосудистом русле

Качество функционирования эритроцитов зависит от:

1) размера эритроцита

2) формы эритроцита

3) вида гемоглобина в эритроцитах

4) количества гемоглобина в эритроцитах

4) количества эритроцитов в периферической крови. Это связано с работой депо.

Разрушение эритроцитов

Живут максимально 120 дней, в среднем 60 - 90.

При старении в ходе метаболизма глюкозы уменьшается образование АТФ. Это приводит:

1) к нарушению ионного состава содержимого эритроцита. В результате - осмотический гемолиз в сосуде;

2) Недостаток АТФ приводит к нарушению эластичности мембраны эритроцита и вызывает механический гемолиз в сосуде;

При внутрисосудистом гемолизе гемоглобин освобождается в плазму, связывается с гаптоглобином плазмы и покидает плазму, поглощаясь паренхимой печени.

Суть этой функции сводится к следующему процессу: в случае повреждения среднего или тонкого кровеносного сосуда (при сдавливании или надрезе ткани) и возникновения наружного или внутреннего кровотечения на месте разрушения сосуда образуется сгусток крови. Именно он препятствует значительной кровопотере. Под воздействием высвобождаемых нервных импульсов и химических веществ просвет сосуда сокращается. Если так случилось, что была повреждена эндотелиальная выстилка кровеносных сосудов, расположенный под эндотелием коллаген обнажается. На него достаточно быстро налипают тромбоциты, которые циркулируют в крови.

Гомеостатическая и защитная функции

Изучая кровь, ее состав и функции, стоит обратить внимание на процесс гомеостаза. Суть его сводится к сохранению водно-солевого и ионного баланса (следствие осмотического давления), и поддержанию pH внутренней среды организма.

Что касается защитной функции, то ее суть заключается в защите организма посредством иммунных антител, фагоцитарной активности лейкоцитов и антибактериальных веществ.

Система крови

К можно отнести сердце и сосуды: кровеносные и лимфатические. Ключевая задача системы крови - это своевременное и полноценное снабжение органов и тканей всеми необходимыми для жизнедеятельности элементами. Движение крови по системе сосудов обеспечивается посредством нагнетательной деятельности сердца. Углубляясь в тему: «Значение, состав и функции крови» стоит определить тот факт, что непосредственно сама кровь двигается по сосудам непрерывно и поэтому способна поддерживать все жизненно важные функции, о которых шла речь выше (транспортная, защитная и др.).

Ключевым органом в системе крови является сердце. Оно имеет структуру полого мышечного органа и посредством вертикальной цельной перегородки делится на левую и правую половины. Есть еще одна перегородка - горизонтальная. Ее задача сводится к разделению сердца на 2 верхние полости (предсердия) и 2 нижние (желудочки).

Изучая состав и функции крови человека, важно понимать принцип действия кругов кровообращения. В системе крови функционируют два круга движения: большой и малый. Это означает, что кровь внутри организма двигается по двум замкнутым системам сосудов, которые соединяются с сердцем.

В качестве начальной точки большого круга выступает аорта, отходящая от левого желудочка. Именно она дает начало мелким, средним и крупным артериям. Они (артерии), в свою очередь, разветвляются на артериолы, завершающиеся капиллярами. Непосредственно сами капилляры образуют широкую сеть, которая пронизывает все ткани и органы. Именно в этой сети происходит отдача питательных веществ и кислорода клеткам, равно как и процесс получения продуктов метаболизма (углекислого газа в том числе).

От нижней части туловища кровь поступает в от верхней, соответственно, в верхнюю. Именно эти две полые вены и завершают большой круг кровообращения, попадая в правое предсердие.

Касаясь малого круга кровообращения, стоит отметить, что он начинается легочным стволом, отходящим от правого желудочка и несущим в легкие венозную кровь. Сам легочный ствол разделяется на две ветви, которые идут к правому и левому артерии делятся на более мелкие артериолы и капилляры, переходящие впоследствии в венулы, образующие вены. Ключевая задача малого круга кровообращения заключается в обеспечении регенерации газового состава в легких.

Изучая состав крови и функции крови, нетрудно прийти к выводу, что она имеет крайне важное значение для тканей и внутренних органов. Поэтому в случае серьёзной кровопотери или нарушения кровотока появляется реальная угроза жизни человека.

Заключается в переносе кровью различных веществ. Специфической особенностью крови является транспорт О 2 и СО 2 . Транспорт газов осуществляется эритроцитами и плазмой.

Характеристика эритроцитов. (Эр).

Форма: 85% Эр – двояковогнутый диск, легко деформируется, что необходимо для прохождения его через капилляр. Диаметр эритроцита = 7,2 – 7,5 мкм.

Больше 8 мкм – макроциты.

Меньше 6 мкм – микроциты.

Количество :

М – 4,5 – 5,0 ∙ 10 12/л. . - эритроцитоз.

Ж – 4,0 – 4,5 ∙ 10 12/л. ↓ - эритропения.

Мембрана Эр легко проницаема для анионов НСО 3 – Cl, а также для О 2 , СО 2 , Н + , ОН - .

Малопроницаема для К + , Na + (в 1млн раз ниже, чем для анионов).

Свойства эритроцитов.

1) Пластичность – способность к обратимой деформации. По мере старения эта способность снижается.

Превращение Эр в сфероциты приводит к тому, что они не могут пройти через капилляр и задерживаются в селезенке, фагоцитируются.

Пластичность зависит от свойств мембраны и свойств гемоглобина, от соотношения различных фракций липидов в мембране. Особенно важно соотношение фосфолипидов и холестерина, которые определяют текучесть мембран.

Данное соотношение выражается в виде липолитического коэффициента (ЛК):

В норме ЛК = холестерин / лецитин = 0,9

↓ холестерина → ↓ стойкость мембран, меняется свойство текучесть.

Лецитина → проницаемость мембраны эритроцита.

2) Осмотическая устойчивость эритроцита.

Р осм. в эритроците выше, чем в плазме, что обеспечивает тургор клетки. Создается высокой внутриклеточной концентрацией белков, больше чем в плазме. В гипотоническом растворе Эр набухают, в гипертоническом сморщиваются.

3) Обеспечение креаторных связей.

На эритроците переносятся различные вещества. Это обеспечивает межклеточное взаимодействие.

Показано, что при повреждении печени эритроциты начинают усиленно транспортировать из костного мозга в печень нуклеотиды, пептиды, аминокислоты способствуя восстановление структуры органа.

4) Способность эритроцитов к оседанию.

Альбумины – лиофильные коллоиды, создают вокруг эритроцита гидратную оболочку и держат их во взвешенном состоянии.

Глобулины лиофобные коллоиды – уменьшают гидратную оболочку и отрицательный поверхностный заряд мембраны, что способствует усилению агрегации эритроцитов.

Соотношение альбуминов и глобулинов - это белковый коэффициент БК. В норме

БК = альбумины / глобулины = 1,5 – 1,7

При нормальном белковом коэффициенте СОЭ у мужчин 2 – 10мм/час; у женщин 2 – 15 мм/час.

5) Агрегация эритроцитов.

При замедлении кровотока и повышении вязкости крови эритроциты образуют агрегаты, которые приводят к реологическим расстройствам. Это бывает:

1) при травматическом шоке;

2) постинфарктном коллапсе;

3) перитоните;

4) острой кишечной непроходимости;

5) ожогах;

5) остром панкреатите и других состояниях.

6) Деструкция эритроцитов.

Продолжительность жизни эритроцита в русле ~ 120 дней. В этот период развивается физиологическое старение клетки. Около 10% эритроцитов разрушаются в норме в сосудистом русле, остальные в печени, селезенке.

Функции эритроцитов.

1) Транспорт О 2 , СО 2 , АК, пептидов, нуклеотидов к различным органам для регенеративных процессов.

2) Способность адсорбировать токсичные продукты эндогенного и экзогенного, бактериального и не бактериального происхождения и их инактивировать.

3) Участие в регуляции рН крови за счет гемоглобинового буфера.

4) Эр. принимают участие в свертывании крови и фибринолизе, сорбируя на всей поверхности факторы свертывающей и противосвертывающей систем.

5) Эр. участвуют в иммунологических реакциях, например агглютинации, т. к. в их мембранах есть антигены – агглютиногены.

Функции гемоглобина.

Содержится в эритроците. На долю гемоглобина приходится 34% общей и 90 – 95% сухой массы эритроцита. Он обеспечивает транспорт О 2 и СО 2 . Это хромопротеид. Состоит из 4 х железосодержащих групп гема и белкового остатка глобина. Железо Fe 2+ .

М. от 130 до 160 г/л (ср. 145г/л).

Ж. от 120 до 140г/л.

Синтез Нв начинается в нормоцитах. По мере созревания эритроидной клетки снижается синтез Нв. Зрелые эритроциты Нв не синтезируют.

Процесс синтеза Нв при эритропоэзе связан с потреблением эндогенного железа.

При разрушении эритроцитов из гемоглобина образуется желчный пигмент билирубин, который в кишечнике превращается в стеркобилин, а в почках – в уробилин и выводится с калом и мочой.

Виды гемоглобина.

7 – 12 неделя внутриутробного развития - Нв Р (примитивный). На 9 ой неделе – Нв F (фетальный). К моменту рождения – появляется Нв А.

В течение первого года жизни Нв F полностью заменяется на Нв А.

Нв Р и Нв F имеют более высокое сродство к О 2 , чем Нв А, т. е. способность насыщаться О 2 при меньшем его содержании в крови.

Сродство определяют глобины.

Соединения гемоглобина с газами.

Соединения гемоглобина с кислородом называется оксигемоглобином (HbO 2), обеспечивает алый цвет артериальной крови.

Кислородная емкость крови (КЕК).

Это количество кислорода, которое может связать 100г крови. Известно, что один г. гемоглобина связывает 1,34 мл О 2 . КЕК = Hb∙1,34 . Для артериальной крови кек = 18 – 20 об% или 180 – 200 мл/л крови.

Кислородная емкость зависит от:

1) количества гемоглобина.

2) температуры крови (при нагревании крови снижается)

3) рН (при закислении снижается)

Патологические соединения гемоглобина с кислородом.

При действии сильных окислителей Fe 2+ переходит в Fe 3+ - это прочное соединение метгемоглобин. При накоплении его в крови наступает смерть.

Соединения гемоглобина с СО 2

называется карбгемоглобин HBCO 2 . В артериальной крови его содержится 52об% или 520 мл/л. В венозной – 58об% или 580 мл/л.

Патологическое соединение гемоглобина с СО называется карбоксигемоглобин (HbCO ). Присутствие в воздухе даже 0,1% СО превращает 80% гемоглобина в карбоксигемоглобин. Соединение стойкое. При обычных условиях распадается очень медленно.

Помощь при отравлении угарным газом.

1)обеспечить доступ кислорода

2) вдыхание чистого кислорода увеличивает скорость распада карбоксигемоглобина в 20 раз.

Миоглобин.

Это гемоглобин, содержащийся в мышцах и миокарде. Обеспечивает потребности в кислороде при сокращении с прекращением кровотока (статические напряжение скелетных мышц).

Эритрокинетика.

Под этим понимают развитие эритроцитов, функционирование их в сосудистом русле и разрушение.

Эритропоэз

Гемоцитопоэз и эритропоэз происходит в миелоидной ткани. Развитие всех форменных элементов идет из полипотентной стволовой клетки.

КПЛ → СК → КОЕ ─ГЭММ

КПТ- л КПВ- л Н Э Б

Факторы, влияющие на дифференцировку стволовой клетки.

1. Лимфокины. Выделяются лейкоцитами. Много лимфокинов – снижение дифференцировки в сторону эритроидного ряда. Снижение содержания лимфокинов – повышение образования эритроцитов.

2.Главным стимулятором эритропоэза является содержание кислорода в крови. Снижение содержания О 2 , хронический дефицит О 2 являются системообразующим фактором, который воспринимается хеморецепторами центральными и периферическими. Имеет значение хеморецептор юкстагломерулярного комплекса почки (ЮГКП). Он стимулирует образование эритропоэтина, который увеличивает:

1)дифференцировку стволовой клетки.

2)ускоряет созревание эритроцитов.

3)ускоряет выход эритроцитов из депо костного мозга

В этом случае возникает истинный (абсолютный ) эритроцитоз. Количество эритроцитов в организме увеличивается.

Ложный эритроцитоз возникает при временном снижении кислорода в крови

(например, при физической работе). В этом случае эритроциты выходят из депо и их количество растет только в единице объема крови но не в организме.

Эритропоэз

Образование эритроцитов протекает при взаимодействии эритроидных клеток с макрофагами костного мозга. Эти клеточные ассоциации получили название эритробластических островков (ЭО).

Макрофаги ЭО влияют на пролиферацию и созревание эритроцитов путем:

1) фагоцитоза вытолкнутых клеткой ядер;

2) поступления из макрофага в эритробласты ферритина и других пластических материалов;

3) секреции эритропоэтинактивных веществ;

4) создания благоприятных условий для развития эритробластов.

Образование эритроцитов

В сутки образуется 200 – 250 млрд. эритроцитов

проэритробласт (удвоение).

2

базофильные

базофильных эритробластаI порядка.

4 базофильных ЭБ II порядка.

8полихроматфильных эритробластаI порядка.

полихроматофильные

16 полихроматофильных эритробласта II порядка.

32 ПХФ нормобластов.

3

оксифильные

2 оксифильных нормобласта, выталкивание ядра.

32 ретикулоцита.

32 эритроцита.

Факторы, необходимые для образования эритроцита.

1) Железо нужно для синтеза гемма. 95% суточной потребности получает организм из разрушающихся эритроцитов. Ежесуточно требуется 20 – 25 мг Fe.

Депо железа.

1) Ферритин – в макрофагах в печени, слизистой кишечника.

2) Гемосидерин – в костном мозге, печени, селезенке.

Запасы железа нужны для экстренного изменения синтеза эритроцитов. Fe в организме 4 – 5г, из них ¼ резервное Fe, остальное функциональное. 62 – 70% из него находится в составе эритроцитов, 5 – 10% в миоглобине, остальное в тканях, где участвует во многих метаболических процессах.

В костном мозге Fe захватывается преимущественно базофильными и полихроматофильными пронормобластами.

Железо доставляется к эритробластам в комплексе с белком плазмы – трансферрином.

В ЖКТ железо лучше всасывается в 2 х валентном состоянии. Это состояние поддерживает аскорбиновая кислота, фруктоза, АК – цистеин, метионин.

Железо, входящее в состав гемма (в мясных продуктах, кровяных колбасах) лучше всасывается в кишечнике, чем железо из растительных продуктов.1мкг всасывается ежедневно.

Роль витаминов.

В 12 – внешний фактор кроветворения (для синтеза нуклеопротеидов, созревания и деления ядер клеток).

При дефиците В 12 образуются мегалобласты, из них мегалоциты с коротким сроком жизни. Результат – анемия. Причина В 12 – дефицита – отсутствие внутреннего фактора Кастла (гликопротеин, связывающий В 12 , предохраняет В 12 от расщепления пищеварительными ферментами). Дефицит фактора Кастла связан с атрофией слизистой желудка, особенно у стариков. Запасы В 12 на 1 – 5 лет, но его истощение приводит к заболеванию.

В 12 содержится в печени, почках, яйцах. Суточная потребность 5мкг.

Фолиевая кислота ДНК, глобин (поддерживает синтез ДНК в клетках костного мозга и синтез глобина).

Суточная потребность 500 – 700мкг, есть резерв 5 – 10мг, треть его в печени.

Недостаток В 9 – анемия связанная с ускоренным разрушением эритроцитов.

Содержится в овощах (шпинат), дрожжах, молоке.

В 6 – пиридоксин – для образования гемма.

В 2 – для образования стромы , дефицит вызывает анемию гипорегенеративного типа.

Пантотеновая кислота – синтез фосфолипидов.

Витамин С – поддерживает основные этапы эритропоэза: метаболизм фолиевой кислоты, железа, (синтез гемма).

Витамин Е – защищает фосфолипиды мембраны эритроцита от перекисного окисления, усиливающего гемолиз эритроцитов.

РР – тоже.

Микроэлементы Ni, Со, селен сотрудничает с витамином Е, Zn – 75% его находится в эритроцитах в составе карбоангидразы.

Анемия:

1) вследствие снижения числа эритроцитов;

2) снижение содержания гемоглобина;

3) обе причины вместе.

Стимуляция эритропоэза происходит под влиянием АКТГ, глюкокортикоидов, ТТГ,

катехоламинов через β – АР, андрогенов, простагландинов (ПГЕ, ПГЕ 2), симпатической системы.

Тормозит ингибитор эритропоэза при беременности.

Анемия

1) вследствие снижения числа эритроцитов

2)снижение количества гемоглобина

3)обе причины вместе.

Функционирование эритроцитов в сосудистом русле

Качество функционирования эритроцитов зависит от:

1) размера эритроцита

2) формы эритроцита

3) вида гемоглобина в эритроцитах

4) количества гемоглобина в эритроцитах

4) количества эритроцитов в периферической крови. Это связано с работой депо.

Разрушение эритроцитов

Живут максимально 120 дней, в среднем 60 - 90.

При старении в ходе метаболизма глюкозы уменьшается образование АТФ. Это приводит:

1) к нарушению ионного состава содержимого эритроцита. В результате - осмотический гемолиз в сосуде;

2) Недостаток АТФ приводит к нарушению эластичности мембраны эритроцита и вызывает механический гемолиз в сосуде;

При внутрисосудистом гемолизе гемоглобин освобождается в плазму, связывается с гаптоглобином плазмы и покидает плазму, поглощаясь паренхимой печени.

Загрузка...