docgid.ru

Происхождение, классификация горных пород. Органогенные осадочные горные породы

В класс карбонатных пород входят известняки, доломиты, мергели и сидиритовые породы. Между первыми двумя типами существует сравнительно небольшое количество переходных пород.

Классификация пород, переходных между чистыми известняками и доломитами, производится по содержанию в них кальцита и доломита. К группе известняков или доломитов относятся породы, сложенные более чем на 50% одним из этих минералов.

Среди пород, переходных между чистыми известняками и доломитами, выделяют доломитистые и доломитовые известняки, известковые и известковистые доломиты.

В карбонатных породах обычно наблюдается значительная примесь песчаных и глинистых частиц. Чистые известняки и доломиты содержат примесь других минералов в количестве не более 5%.

Некоторые доломиты содержат значительную примесь гипса и ангидрита. Такие породы обычно называются сульфатно-доломитовыми. Наблюдается также переходы между карбонатными и кремнистыми породами.

Породы промежуточные между глинами и чистыми карбонатными породами, называются мергелями.

Схема классификации карбонатно-глинистых пород по С.Г Вишнякову иллюстрируется рисунком.

Глины: 1- некарбонатные, 2- известковисто-доломитистые (или доломитисто-известковистые).

Глинистые мергели: 3 - глинистый мергель, 4 - доломитистый глинистый мергель, 5 - известковисто-доломитовый глинистый мергель, 6 - доломитовый глинистый мергель.

Мергели: 7 - типичный, 8 - доломитистый, 9 - известковисто-доломитовый, 10 - доломитовый.

Известняки: 11 - глинистый, 12 - доломитисто-глинистый, 13 - доломитово-глинистый, 14 - чистый, 15 - доломитистый, 16 - доломитовый.

Доломиты: 17 - известково-глинистый, 18 - известковисто-глинистый, 19 - глинистый, 20 - известковый, 21 - известковистый, 22 - чистый.

Минералогический и химический состав

Главными минералами, слагающими карбонатные породы, являются: кальцит, кристаллизующийся в тригональной сингонии, арагонит - ромбическая разновидность СаСО3 и доломит, представляющий собой двойную углекислотную соль кальция и магния (СаСО 3 *MgCO 3). В современных осадках встречаются также порошковатые и коллоидальные разновидности кальцита (дрюит или надсонит, бюглеит и др.).

Определение минерального и химического состава карбонатных пород производится в шлифах, а также при помощи термического и химического анализов и по методу Щербины.

В полевых условиях определяется по реакции с разбавленной HCl. Доломиты вскипают только в порошке.

Теоретический химический состав кальцита и известняка ~ СаО - 56%, СО 2 - 44%, в доломитах - 22-30% СаО и 14-21% MgO.

Естественно, что если в породах присутствует обломочный материал, то резко будет увеличиваться содержание SiO 2 (иногда до 26%).

Главные типы пород

Известняки - окраска известняков разнообразна и определяется, в первую очередь, характером примесей. Чистые известняки окрашены в белый, желтоватый, серый, темно-серый, а иногда и черный цвета.

Важной особенностью известняков является их излом, характер которого определяется строением породы. Очень мелкозернистые известковые породы при слабой связности зерен (например - мел) обладают землистым изломом. Крупнокристаллические - обладают сверкающим изломом, м/з породы - сахаровидным изломом и т.д.

Для известняков можно выделить следующие главные типы структур:

Кристаллическая зернистая структура, среди которой различают несколько разновидностей в зависимости от поперечников зерен: крупнозернистые (размер зерен в поперечнике 0,5мм), среднезернистые (от 0,5 до 0,1мм), мелкозернистые (от 0,10 до 0,05мм), тонкозернистые (от0,05 до 0,01мм) и микрозернистую (меньше 0,01мм) структуры.

Органогенная структура, в которой выделяют три наиболее существенные разновидности:

а). собственно органогенная, когда порода состоит из известковых органических остатков (без признаков их переноса), вкрапленных в т/з карбонатный материал;

б). органогенно-обломочная, когда в породе присутствуют раздробленные и часто окатанные органические остатки, находящиеся среди т/з карбонатного материала;

в). детритусовая, когда порода сложена только раздробленными органическими остатками без заметного количества т/з карбонатных частиц.

Обломочная структура, наблюдается в известняках, образованных путем скопления обломков, возникающих за счет разрушения более древних карбонатных пород. Здесь, также как и в некоторых органических известняках, кроме обломков отчетливо видна известковая цементирующая масса.

Оолитовая структура, характеризующаяся наличием концентрически сложенных оолитов, обычно часто присутствуют обломочные зерна.

Иногда оолиты приобретают радиально-лучистое строение.

Наблюдаются также инкрустационная и крустификационная структуры. В первом случае характерно наличие корок концентрического строения, заполняющих прежние крупные пустоты. Во втором случае наблюдаются нарастания удлиненных кристаллов карбонатов, радиально расположенных относительно обломков или органических остатков, слагающих породу.

В процессе перехода из осадка в породу и окаменения многие известняки подвергаются существенным изменениям. Эти изменения проявляются, в частности, в перекристаллизации, окаменении, доломитизации, ожелезнении и частичном растворении с образованием стиллолитов.

Разновидности известняков

Органогенные известняки

Это одна из наиболее широко распространенных разновидностей. Они сложены раковинами бентонных криноидей, водорослей, кораллов и других донных организмов. Значительно реже известняки возникают за счет скопления раковинок планктонных форм.

Типичными представителями органогенных известняков являются рифовые (биогермные), известняки, состоящие в значительной части из остатков рифообразующих организмов и живущих в сообществе других форм.

Писчий мел.

Является одним из весьма своеобразных представителей известковых пород, резко выделяющихся по своему внешнему виду. Он характеризуется белым цветом, однородностью строения, малой твердостью и мелкозернистостью. Сложен - главным образом карбонатом кальция (доломит отсутствует) при незначительной примеси глинистых и песчаных частиц.

Органические остатки слагают большую часть мела. Среди них особенно распространены остатки кокколитофорид - одноклеточных известковых водорослей, слагающих мел и мелоподобные мергели на 10-75% в виде мелких (0,002-0,005мм) пластинок, дисков и трубок. Фораминиферы содержатся в мелу обычно в количестве 5-6% (иногда до 40%). Встречаются также раковины моллюсков (главным образом иноцерамов, реже - устриц и пектинид) и немногочисленные белемниты, а местами также раковины аммонитов. Остатки мшанок, морских лилий, ежей, кораллов и трубчатых червей, хотя и наблюдаются, но не служат породообразующими элементами мела.

Известняки химического происхождения.

Этот тип известняков условно отделяется от других типов, т.к. в большинстве известняков всегда присутствует в том или ином количестве кальцит, выпавших из воды чисто химическим путем. Легко и быстро купить чемодан в Москве вы сможете на сайте caseplus.ru. Также здесь вы найдете множество различных сумок и рюкзаков, различные изделия из кожи и просто необходимые аксессуары.

Типичные известняки химического происхождения микрозернисты, лишены органических остатков и залегают в виде пластов, а иногда скоплений конкреций. Часто в них наблюдается система мелких кальцитовых жилок, образующих при уменьшении объема первоначально коллоидных осадков. Нередко присутствуют жеоды с крупными и хорошо образованными кристаллами кальцита.

Обломочные известняки.

Этот вид известняков содержит значительную примесь кварцевых зерен, и обычно ассоциируются с песчаными породами. Обломочным известнякам свойственна косая слоистость.

Обломочные известняки сложены, карбонатными зернами различного размера, поперечник которых измеряется десятыми долями миллиметра, реже несколькими миллиметрами. Встречаются и конгломератовидные известняки, состоящие из крупных обломков. Обломочные карбонатные зерна, как правило, хорошо округлены и близки по размеру.

Вторичные известняки.

К этой группе относятся известняки, залегающие в верхней части соляных куполов, и известняки, возникающие в процессе преобразования доломитов при их выветривании (раздоломичивание или дедоломитизация).

Раздоломиченные породы представляют собой среднее - или крупнозернистые известняки, плотные, но иногда ноздреватые или кавернозные. Залегают они в виде сплошных масс. В некоторых случаях в них встречаются линзовидные включения мелко- и тонкозернистых доломитов, иногда рыхлых и пачкающих пальцы. Реже они образуют включения и ветвящиеся жилы в толще доломитов.

Доломиты

Представляют собой карбонатные породы, состоящие в основном из минерала - доломита. Чистый доломит соответствует формуле CaMg(CO 3) 2 и содержит 30,4% - CaO, 21,8% - MgO и 47,8% - СО 2 или 54,3% СаСО 3 и 45,7% MgCO 3 . Весовое соотношение СаО:Mg - 1,39.

В доломитах обычно присутствует меньшее количество примесей обломочных частиц, чем в известняках. Характерно также присутствие минералов выпавших чисто химическим путем во время образования осадка или возникших во время его диагенеза (кальцит, гипс, ангидрит, целестин, родохрозит, магнезит, окислы железа, реже кремнезем в виде опала и халцедона, органическое вещество и пр.). В некоторых случаях наблюдается присутствие псевдоморфоз по кристаллам разнообразных солей.

По внешнему виду многие доломиты очень похожи на известняки, с которыми их сближают цвет и невозможность невооруженным глазом отличить кальцит от доломита в мелкокристаллическом состоянии.

Среди доломитов встречаются совершенно однородные разновидности от микрозернистых (фарфоровидных), иногда пачкающих руки и обладающих раковистым изломом, до мелко- и крупнозернистых разновидностей, сложенных из ромбоидов доломита примерно одной и той же величины (обычно 0,25-0,05 мм). Выщелоченные разновидности этих пород по своему внешнему виду несколько напоминают песчаники.

Для доломитов иногда типична кавернозность, в частности за счет выщелачивания раковин, пористость (в особенности в естественных обнажениях) и трещиноватость. Некоторые доломиты обладают способностью к самопроизвольному растрескиванию. Хорошо сохранившиеся органические остатки в доломитах встречаются редко. Окрашены доломиты большей частью в светлые оттенки желтоватого, розоватого, красноватого, зеленоватого и других тонов. Некоторые доломиты по своей окраске и блеску несколько напоминают перламутр.

Для доломитов характерна кристаллическая зернистая (мозаичная) структура, обычная также для известняков, и разного рода реликтовые структуры, вызванные замещением известковых органических остатков, оолитов или карбонатных обломков во время доломитизации. Наблюдается иногда оолитовая, а также инкрустационная структура, образованная в результате разнообразных полостей, обычно в рифовых массивах.

Для пород, переходных от известняков к доломитам, типична порфирообразная структура, когда на фоне мелкокристаллической кальцитовой массы присутствуют отдельные крупные ромбоэдры доломита.

Разновидности доломитов

По происхождению доломиты подразделяются на первично-осадочные, сингенетические, диагенетические и эпигенетические. Три первых типа часто объединены под названием первичных доломитов, а эпигенетические доломиты называют также вторичными.

Первично-осадочные доломиты.

Эти доломиты возникали в морских заливах и лагунах с водой повышенной солености за счет непосредственного выпадения доломита из воды. Эти породы залегают в виде хорошо выдержанных пластов, в пределах которых иногда ясно выражена тонкая слоистость. Первичная кавернозность и пористость, так же как и органические остатки, отсутствуют. Часто наблюдается переслаивание подобных доломитов с гипсом. Контакты слоев ровные, слабоволнистые или постепенные. Иногда встречаются включения гипса или ангидрита.

Структура первично-осадочных доломитов равномерно микрозернистая. Преобладающий размер зерен ~ 0,01 мм. Кальцит встречается лишь в виде незначительной примеси. Иногда наблюдается окаменение, местами интенсивное.

Сингенетические и диагенетические доломиты.

К их числу относится преобладающая часть доломитов. Различить их можно не всегда. Они возникают за счет преобразования известкового ила.

Эти доломиты залегают в виде пластов и линзовидных залежей. Представляют собой крепкие с неровными, шероховатым изломом породы, обычно с неясной слоистостью. Структура сингенетических доломитов чаще равномерно микрозернистая. Для диагенетических более типична неравномерно зернистая (поперечники зерен их меняются от 0,1 до 0,01 мм). Характерна для диагенетических доломитов и неправильно ромбоэдрическая, или овальная форма зерен доломита, часто имеющих концентрически зональное строение. В центральной части зерен имеются темные пылевидные скопления.

В некоторых случаях происходит огипсование породы. При этом замещению гипсом легче всего подвергались наиболее проницаемые для растворов участки карбонатной породы (в частности, органические остатки), а также скопления пелитоморфного доломита.

Вторичные (эпигенетические) доломиты.

Этот тип доломитов образуется в процессе замещения при помощи растворов уже твердых известняков, вполне сформировавшихся как горные породы. Эпигенетические доломиты залегают обычно в виде линз среди неизменных известняков или содержат в себе участки остаточного известняка.

Эпигенетические доломиты характеризуются массивностью или неясной слоистостью, неравномерно-зернистой и неоднородной структурой. Они крупно- и неоднородно пористые. Рядом с участками, полностью доломитизированными, присутствуют участки, почти не затронутые этим процессом. Граница между такими участками извилистая, неровная и проходит иногда посредине раковин.

Мергели

Под мергелями понимаются породы, переходные между карбонатными и глинистыми, содержащие 25-95% CaCO 3 . Наиболее карбонатные их разновидности (75-95% CaCO 3), в случае значительного уплотнения породы, называются глинистыми известняками.

Мергели подразделяются на три основные группы:

1. Собственно мергели, с содержанием CaCO 3 50-70%,

2. Известковые мергели, у которых содержание CaCO 3 изменяется в пределах 75-95%,

3. Глинистые мергели с содержанием CaCO 3 от 25 до 50%.

Типичные мергели представляют собой однородную по структуре очень м/з породу, состоящую из смеси глинистых и карбонатных частиц и часто обладающую во влажном состоянии известной пластичностью. Обычно мергели окрашены в светлые тона, но встречаются и ярко окрашенные разновидности - красные, коричневого, фиолетового цвета (особенно в красноцветных толщах). Тонкая слоистость для мергелей не типична, но многие из них залегают в виде тонких слоев. Некоторые мергели образуют закономерные ритмичные переслаивания с тонкими глинистыми и песчаными прослоями.

В качестве примеси в мергелях присутствуют органические остатки, обломочные зерна кварца и других минералов, сульфаты, окислы железа, глауконит и др.

Сидеритовые породы

Химическая формула сидерита FeCO 3 , при чем железа содержится 48,2%. Само название минерала происходит от греческого "сидерос" - железо.

Сидеритовые породы представляют собой скопление зернистых или землистых агрегатов, плотных, иногда представляющих собой шаровидные конкреции (сферосидерит).

Цвет их буровато-желтый, бурый. Сидерит легко разлагается в HCl, капля при этом желтеет от образования FeCl 3 .

Происхождение.

1. Гидротермальное - встречается в полиметаллических месторождениях как жильный минерал. 2. При замещении известняков образует метасоматические залежи. 3. Сидериты могут быть и осадочного происхождения, они имеют, как правило, оолитовое строение. 4. Встречается сидерит метаморфического происхождения, образующийся при метаморфизме осадочных месторождений железа. В зоне окисления он легко разлагается и переходит в гидраты окислов железа, образуя железные шляпы.

ОРГАНОГЕННЫЕ ГОРНЫЕ ПОРОДЫ (от греч. organon — орган и -genes — рождающий, рождённый, биогенные горные породы * а. organogenic rocks, biogenic rocks; и. organogene Gesteine; ф. roches organogenes, roches biogenes; И. rocas organogenicas) - осадочные горные породы , состоящие из остатков животных и растений и продуктов их жизнедеятельности. Организмы обладают способностью концентрировать определённые вещества, не достигающие насыщения в природных водах , образуя скелеты или ткани, которые сохраняются в ископаемом состоянии.

По вещественному составу среди органогенных горных пород можно выделить карбонатные, кремнистые, некоторые фосфатные породы, а также угли (см. ), Горючие сланцы , нефть , твёрдые битумы. Органогенные горные породы карбонатные () состоят из раковин фораминифер, кораллов, мшанок, брахиопод, моллюсков, водорослей и других организмов.

Своеобразными их представителями являются рифовые известняки , слагающие атоллы, барьерные рифы и другие, а также писчий мел. К органогенным горным породам кремнистым относятся: диатомит , спонголит, радиолярит и др. Диатомиты состоят из опаловых скелетов диатомовых водорослей, а также спикул кремнёвых губок и радиолярий. Спонголиты — породы, содержащие обычно более 50% спикул кремнёвых губок. Цемент у них кремнистый, из опаловых округлых телец, или глинистый, слегка известковистый, нередко включает вторичный халцедон . Радиоляриты — кремнистые породы , более чем на 50% состоящие из скелетов радиолярий, которые в современных океанах образуют радиоляриевый ил . Помимо радиолярий в них входят спикулы губок, редкие скорлупки диатомовых водорослей, кокколитофориды, опаловые и глинистые частицы. Многие яшмы имеют основу из радиолярий.

Органогенные горные породы фосфатные не имеют большого распространения. К ним относятся ракушечники из фосфатных раковин силурийских брахиопод — оболид, скопления костей ископаемых позвоночных (костяные брекчии), известные в отложениях разного возраста, а также гуано . Органогенные горные породы углеродистые — ископаемые угли и горючие сланцы — встречаются часто, но масса их в земной коре невелика по сравнению с карбонатными породами . Нефть и твёрдые битумы — своеобразные породы, основным материалом для образования которых послужил фитопланктон.

По условиям образования (главным образом применительно к карбонатным породам) можно различать биогермы — скопление остатков организмов в прижизненном положении, танато- и тафроценозы — совместное захоронение мёртвых организмов, живших здесь же или перенесённых волнами и течениями; породы, возникшие из планктонных организмов, называются планктоногенными (например, диатомит, мел, фораминиферовый известняк).

Если органические остатки подвергаются раздроблению в результате действия волн и прибоя, образуются органогенно-обломочные породы, состоящие из обломков (детрита) раковин и скелетов, скреплённых каким-либо минеральным веществом (например, ).

Классификация осадочных обломочных (терригенных) пород

Тема лекции: Вводная. Геология, содержание, задачи, разделы и методы. Краткая история развития нефтяной геологии.

Конспект лекционных занятий

Геология – наука о Земле (от греч. «гео» - Земля, «логос» - знание, наука). Земля представляет собой сложно построенное тело, занимающее определенное положение во Вселенной, характеризующееся определенным физическим состоянием и химическим составом и непрерывно развивающееся во времени. В силу этого изучением Земли, кроме геологии занимаются и другие науки – геофизика, геохимия. Геофизика изучает внутреннее строение Земли, физическое состояние ее недр, ее физические поля - гравитационное (поле силы тяжести), магнитное, тепловое, электрическое. В задачу геохимии входит изучение химического состава Земли и ее отдельных оболочек, судьбы атомов химических элементов и их изотопов. Предметом исследования геологии является в основном верхняя каменная оболочка Земли – земная кора, а точнее, литосфера, охватывающая кроме коры верхнюю часть мантии. Геология ставит своей целью восстановление и объяснение истории развития Земли, на основе исследования ее вещественного состава, строения и процессов, изменяющих внутренние состояние земного шара и земную поверхность.

Геология изучает состав, строения и развитие Земли под действием процессов протекающих в ее внешних и внутренних сферах, а также закономерности и процессы формирования земной коры, слагающих ее минералов, горных пород, полезных ископаемых и историю развития жизни на Земле. В общем, геологические знания – это необходимое и важное звено научного мировоззрения.

Значение геологической науки для хозяйственной деятельности человека неуклонно возрастало по мере вовлечения в эту деятельность новых видов полезных ископаемых – от угля до урановой руды и редких элементов. Другая крупная задача прикладной геологии – изучение геологических условий мест, предназначенных для возведения различных инженерных сооружений–гидроэлектростанций, атомных электростанций, каналов и т.п. в целях обеспечения их устойчивости. Еще одно важная роль геологии предупреждение и учет возможных последствий природных катастрофических явлений – землетрясений, вулканических извержений, оползней и т.д. Относительно недавно человечество осознало необходимость сохранения окружающей природной среды и оценка направленности ее естественного изменения и экология – наука об окружающей среде заняло видное место среди других наук, а в ее составе оформился раздел, относящийся к геологической компоненте этой среды – геоэкология.


Практическое значение геологии, прежде всего состоит в разработке методов обнаружения полезных ископаемых. Среди полезных ископаемых различают рудные, или металлические (из них добывают различные металлы), нерудные (из них добывают фосфор, калий–для удобрений, каменную соль, серу и другие), строительные материалы, драгоценные (алмаз, рубин, сапфир и другие), полудрагоценные (аметист, яшма, малахит и другие) камни, горючие (уголь, нефть, горючий газ).

К настоящему времени геология выработала надежные критерии прогнозирования различных полезных ископаемых, в первую очередь таких, как нефть, природный газ, уголь, руды черных и цветных металлов. Таким образом, современная геологическая наука служит теоретической основой для поисков, разведки и разработки всех видов полезных ископаемых. Современная индустрия в значительной мере базируется на использовании минеральных ресурсов Земли – нефти, газа, угля, руд черных и цветных металлов, строительных материалов, подземных вод, солей и т.д. Особенно большую роль играет геология при поисках и разведке месторождений энергетического и химического сырья – нефти и газа.

На сегодняшний день геология представляет собой совокупность многих геологических дисциплин, выделившихся из нее в результате углубленной разработке отдельных отраслей геологических знаний и совершенствования методов геологического исследования. В этой связи можно выделить несколько основных разделов геологии:

1) науки, изучающие вещественный состав Земли (геохимический цикл); 2) науки, изучающие процессы, протекающие в недрах Земли и на ее поверхности (динамическая геология); 3) науки, изучающие историю Земли (историческая геология); 4) науки, направленные на практическое использование недр Земли (прикладная геология).

К геохимическому циклу относятся кристаллография, минералогия, петрология, литология, собственно геохимия. Кристаллография – наука о кристаллах, их внешней форме и внутренней структуре. Минералогия – наука о минералах природных химических соединениях, слагающие горные породы или встречающихся отдельно. Минералогия рассматривает химический состав минералов, особенности их структуры, физические свойства, условия залегания, взаимосвязи и происхождение. Петрология – наука о горных породах, изучает минералогический и химический состав горных пород, их свойства, строение, условия залегания, а также изучает их происхождение и изменения, испытываемые горными породами под воздействие различных факторов. Особый класс горных пород – осадочные породы – является предметом изучения литологии (греч. «литос» - камень). Геохимия – наука о химическом составе Земли, изучает химические элементы, устанавливает закономерности распределения, сочетания и перемещения отдельных химических элементов в недрах Земли и на ее поверхности. Геохимия оперирует атомами, минералогия изучает сочетания атомом (минералы), петрология – сочетания минералов (горные породы).

Динамическая геология изучает геологические процессы протекающие в недрах литосферы и на ее поверхности. В зависимости от источника энергии они подразделяется на экзогенные (рожденные внешними причинами) и эндогенные (рожденные внутренними причинами). Экзогенные процессы протекают под действием солнечной энергии в сочетании с гравитационной (силой тяжести); эндогенные – под действием внутренней энергии, внутреннего тепла Земли, также в сочетании с гравитационной энергией.

Историческая геология изучает историю земной коры в связи с развитием Земли как планеты в целом. Она в свою очередь подразделяется на ряд наук. Стратиграфия – учение о слоях осадочных пород и последовательности их залегания. Палеонтология – наука об ископаемых остатках организмов. Изучение захороненных в слоях остатков древних, вымерших организмов, набор которых был характерен для определенных эпох истории Земли помогает в установлении относительного возраста осадочных горных пород.

Следующий раздел геологии, стоящий ближе всего к прикладной геологии, - это региональная геология. Она занимается описанием геологического строения – возрастной последовательности горных пород, образуемых ими структурных форм, а также истории развития отдельных участков (регионов) земной коры, от небольших до очень крупных – континентов и океанов. Строение земной коры обычно изображается на геологических картах разного масштаба, на которых отражено распространение на поверхности Земли горных пород разного типа, состава и возраста. Геологические карты и производные от них разновидности – тектонические и другие карты – служат основой для поисков и разведки полезных ископаемых.

Основным методом геологических исследований является изучение естественных выходов (обнажений) горных пород, начиная с описания их состава, типа, условий залегания и взаимоотношений. Для более точного определения состава и типа минералов, пород, полезных ископаемых берутся пробы (образцы) которые подвергаются лабораторному анализу – химическому, минералогическому и другие. В осадочных породах ведутся поиски органических остатков, по которым можно определить относительный возраст породы палеонтологическим методом, широко применяется и различные физические методы определения возраста горных пород. Для изучения пород, залегающих на большой глубине используют данные буровых скважин, шахт и других горных выработок. Для изучения глубинных частей земного шара применяется геофизические и геохимические методы. Геофизические методы основаны на том, что горные породы разного состава обладают разными физическими свойствами. В отличие большинства естественных наук, широко использующих лабораторный опыт в геологии экспериментальный метод имеет ограниченное значение. Основная трудность заключается в несоизмеримости масштаба времени геологических процессов с длительностью человеческой жизни. Однако. в настоящее время успешно проводятся работы по применению эксперимента (физического моделирования) в различных областях исследований. Так, например, в тектонике – воспроизведения деформации горных пород, минералогии – синтез минералов, в том числе алмаза, петрологии – плавление и синтез горных пород, в инженерной геологии и других отраслях геологической науки.

Основное значение при геологических исследованиях имеет наблюдения. При этом используются разнообразные методы, разработанные на базе других наук. За стадией наблюдения и сбора материалов следует стадия обобщений и выводов, с которой связано установление закономерности явлений и построение научных гипотез или теорий. В дальнейшем необходима проверка полученных выводов. В геологических исследованиях она заключается в повторном наблюдении, сопоставлением более широкого круга фактов и подтверждении экспериментальными данными. Одним из важнейших методов геологических обобщений, касающихся природы геологических процессов, является метод актуализма. Наиболее краткую его формулировку дал знаменитый британский геолог XIX века Ч. Лайель: «Настоящее есть ключ к познанию прошлого». Сущность метода заключается в понимании прошлого путем изучения современных геологических процессов и сравнение их результатов с результатами геологических процессов далекого прошлого может указать правильный путь к пониманию последних. Успешное решение теоретических задач геологии связано с разрешением одной из важных практических задач – прогноза поисков, необходимых для народного хозяйства минеральных ресурсов.

Геология нефти и газа изучает происхождение, условия миграции и формирования скоплений и историю этих полезных ископаемых, а также изучает залежи и месторождения нефти и газа в естественном состоянии и в процессе разработки для определения их значения и рационального использования недр.

Целью геологической службы является получение сведений о вещественном составе пород, их возрасте и строении, о характере насыщения флюидами, а также о физико-химических свойствах нефтей, газов, подземных вод.

Нефть, природный газ и их производные – горючие полезные ископаемые – природные образования, которые могут быть источником тепловой энергии. Горючие полезные ископаемые служат ценнейшим топливом, а чтобы вещество являлось таковым, оно должно обладать достаточно высокой теплотой сгорания, быть распространенным, продукты его сгорания должны быть летучими, чтобы не затруднять процесс горения и не быть вредными и ядовитыми для людей.

Горючие ископаемые также являются ценным сырьем для химической промышленности, это в первую очередь касается нефти.

Нефтяная промышленность мира насчитывает около 150 лет. Зарождение ее в разных странах мира происходило почти одновременно.

В 1859 году американский предприниматель Дрейк (Пенсильвания) из пробуренной им скважины получил промышленный приток нефти, чем положил начало нефтяной промышленности США. Спустя 5 лет (1864 г.) полковником в отставке Новосильцевым в России из скважины, пробуренной на речке Кудако (левый приток реки Кубань, северо-западный склон Кавказа), был получен фонтан нефти. Этот факт свидетельствует о начале нефтяной промышленности России. В районе Баку (Азербайджан) первая промышленная нефть была получена в 1871 году из скважины, пробуренной предпринимателем Мирзоевым. Нефтяной фонтан дебитом 32 т/сутки забил здесь с глубины всего 40-45 метров.

Первая нефть Казахстана была получена в 1899 году на площади Карашунгул в скважине 7 с глубины всего 40 м из палеогеновых отложений. Суточный дебит скважины достигал 25т/сутки. Но, по мнению многих геологов, фактически нефтяная промышленность Казахстана берет отсчёт с Доссора, когда 29 апреля 1911 года в урочище Доссор на одноименной солянокупольной структуре (90 км северо-восточнее Атырау) была пробурена скважина 3, из которой (интервал 225-226 метров, средняя юра) ударил мощный фонтан нефти, выбросивший за несколько последующих дней 16000 тонн высококачественной бессернистой, маслянистой нефти. Эту дату многие нефтяники считают фактическим началом нефтяной промышленности Казахстана по следующим причинам. Нефть Карашунгула мигрировала в палеогеновые отложения из нижележащих нижнемеловых и юрских залежей, поэтому запасы ее оказались весьма скромными и в больших масштабах она так и не была использована. А вот доссорская нефть сразу же, в этом же 1911 году начала добываться в сравнительно больших объемах и интенсивно использоваться в экономике.

С зарождением нефтяной промышленности мира окончательно оформилась и геология нефти и газа, как обособленная прикладная наука геологического цикла. С развитием нефтяной промышленности добыча нефти бурно растет. Так, в России за всю историю существования нефтяной промышленности (начиная с 1864 г.) было добыто более 4 млрд. т нефти.

Если для первого млрд.тонн потребовалось 90 лет, то для второго семь, для третьего всего четыре с половиной года и для четвертого – менее двух лет. Глубины нефтяных скважин также стремительно растут с 50-100 метров до 5-7 км в настоящее время.

Нефтяная геология с первых дней своего становления оформилась в самостоятельную науку геологического цикла и рассматривает широкий круг вопросов. Она опирается на науки геологического, химического, физического и биологического циклов.

Нефть и газ возникают и образуют скопления в основном в породах осадочного слоя. Весьма редко нефть и газ скапливаются и в гранито-гнейсовом слое земной коры. Следовательно, их дальнейшая консервация и сохранение на длительное геологическое время связано с земной корой, развитие которой подчиняется общим геологическим закономерностям.

Нефть, в меньшей степени, и природный углеводородный газ – сложные химические соединения, поэтому чтобы определить их состав и строение необходимо знать и уметь применять законы общей и органической химии (науки химического цикла).

Нефтяная наука исследует специфическое, жидкое и газообразное полезное ископаемое, которое способно передвигаться (мигрировать) в земной коре. Следовательно, при изучении условий образования скоплений углеводородов (УВ) и закономерностей их залегания, а также их физических свойств геолог-нефтяник использует физические законы (науки физического цикла).

Подавляющее большинство геологов придерживается органической теории образования нефти и газа, поэтому биология и биохимия служат опорой не только при решении проблемы происхождения углеводородов, формирования их скоплений, но и их разрушения, в том числе и биологическим путем (науки биологического цикла).

Нефтяная геология дает ответы на две основные группы вопросов: как образовались и что представляют из себя нефть и газ; где искать эти ценнейшие полезные ископаемые. Другими словами нефтяная геология дает ответы на следующие вопросы: как и где залегают нефть и газ в недрах земной коры, как образуются и сохраняются миллионы лет их скопления, каковы закономерности размещения их по площади земного шара, как возникли нефть и газ в природе в таких больших объемах.

Основной задачей курса является изучение форм скоплений нефти и газа в недрах (типы залежей, месторождений), закономерностей их размещения, условий их возникновения, преобразования и разрушения (генерация, аккумуляция, консервация).

Основная литература: 4, 5,

Дополнительная литература 14

Контрольные вопросы:

1. Назовите дату начала нефтяной промышленности мира.

2. Назовите дату начала нефтяной промышленности Казахстана

3. На каких науках базируется нефтяная геология?

4. Какие вопросы изучает геология нефти и газа

2. Тема лекции: Cтроение и состав Земли. Земля в космическом пространстве. Форма и размеры Земли. Внутреннее строение Земли. Химический и минеральный состав недр Земли. Физические поля Земли. Строение и состав земной коры. Вещественный состав земной коры. Минералы. Горные породы.

Земля является одним из бесчисленных небесных тел, рассеянных в безграничном пространстве Вселенной. Общее представление о положении Земли в мировом пространстве и отношении ее с другими космическими телами необходимы и для курса геологии, так как многие процессы, совершающиеся на поверхности и в глубоких недрах земного шара, тесным образом связаны с влиянием внешней среды, окружающей нашу планету. Познание Вселенной, изучение состояния различных тел и протекающих на них процессов проливает свет на проблемы происхождения Земли и ранние стадии ее развития. Вселенная – это весь мир, безграничный во времени и пространстве и бесконечно разнообразный по формам, которые принимает материя в своем развитии. Вселенная состоит из бесчисленного множества тел, весьма различных по своему строению и размеру. Различают следующие основные формы космических тел: звезды, планеты, межзвездная материя. Звезды представляет собой крупные активны.е космические тела. Радиус крупных звезд может достигать миллиарда километров, а температура даже на поверхности – многих десятков тысяч градусов. Планеты – сравнительно небольшие по размеру космические тела, как правило, холодные и обычно являющийся спутниками звезд. Пространство между космическими телами заполнены межзвездной материей (газы, пыль). Космические тела группируется в системы, в пределах которых они связаны между собой силами тяготения. Простейшая система – Земля со своим спутником Луной, образует систему более высокого порядка – Солнечную систему. Еще более сложным строением характеризуется скопления космических тел высшего порядка – галактики. Примером такой системы может служить галактика Млечный путь, в состав который входит Солнечная система. По форме наша галактика напоминает двояковыпуклую линзу, а в плане представляет собой яркое сгущение звезд в ядре со спиралевидными звездными потоками.

Строение Солнечной системы. Наша Солнечная система включает, кроме центрального светила – Солнца, девять планет, их спутники, астероиды и кометы. Солнце – звезда, раскаленный плазменный шар, типичный «желтый карлик», находящийся на средней стадии звездной эволюции. Расположено Солнце в пределах одной из спиральных ветвей нашей Галактики и обращается вокруг центра Галактик с периодом около 200 миллион лет. Температура внутри Солнца достигает нескольких миллионов лет. Источником энергии Солнца является термоядерные превращения водорода в гелий. Спектральное изучение Солнца позволило выделить в его составе 70 элементов, известных на Земле. Солнце состоит на 70 % из водорода, 27% из гелия, на долю остальных элементов остается около 3 %. В Солнце сосредоточено 99,886 % всей массы Солнечней системы. Солнце оказывает огромное влияние на Землю, на земную жизнь, ее геологическое развитие. Наша планета – Земля отстоит от Солнца на 149600000 км. Планеты вокруг Солнца располагаются в следующем порядке: четыре внутренних - Меркурий, Венера, Земля и Марс (планеты земной группы) и пять внешних – Юпитер, Сатурн, Уран, Нептун, Плутон. Между Марсом и Юпитером находится пояс астероидов – несколько тысяч мелких твердых тел. Для геологов представляют интерес четыре внутренние планеты, которые характеризуются небольшими размерами, высокой плотностью, небольшой массой. Эти планеты по размерам, составу и внутреннему строению наиболее близки нашей Земле. По современным представлениям тела Солнечной системы формировались из первично холодной космической твердой и газообразной материи путем уплотнения и сгущения до образования Солнца из центральной части. Из частиц окружающей газово-пылевой материи в результате аккреции сформировались планеты обращающиеся по орбитам вокруг Солнца.

Общая характеристика Земли. Форма и размеры Земли. Под фигурой, или формой Земли, понимают форму ее твердого тела, образованную поверхностью материков и дном морей и океанов Геодезические измерения показали, что упрощенная форма Земли приближается к эллипсоиду вращения (сфероиду). Действительное форма Земли является более сложной, так как на ее поверхности имеется много неровностей. Наиболее близкой к современной фигуре Земли является фигура, по отношению к поверхности которой сила тяжести повсеместно направлено перпендикулярно. Она названа геоидом, что дословно означает «землеподобный». Поверхность геоида в морях и океанах соответствует поверхности воды, а на континентах – уровню воды в воображаемых каналах, пересекающих все материки и сообщающихся с Мировым океаном. Поверхность геоида приближается к поверхности сфероида, отклонясь от него примерно на 100м, на материках она немного повышается по отношению к поверхности сфероида, а в океанах - понижается. Измерения размеров Земли показали следующее: экваториальный радиус-6378,2км; полярный радиус-6356,8км; средний радиус Земли-6371км; полярное сжатие- 1/298; площадь поверхности- 510 млн. км кв; объем Земли-1, 083млрд. км куб; масса Земли-6*10 21 т; средняя плотность-5, 52 г/см 3

Физические свойства Земли. Земля обладает определенными физическими свойствами. В результате их изучения выявлены общие особенности строения Земли и можно установить в ее недрах наличие полезных ископаемых. К физическим свойствам Земли относятся сила тяжести, плотность, давление, магнитные, тепловые, упругие, электрические и другие свойства. Сила тяжести, плотность, давление. На Земле постоянно действуют сила притяжения и центробежная сила. Равнодействующая этих сил определяет силу тяжести. Сила тяжести меняется как по горизонтали, увеличиваясь от экватора к полюсам, так и по вертикали, уменьшаясь с высотой. В связи с неравномерным распределением вещества земной коре действительное значение силы тяжести отклоняются от нормальной. Эти отклонения получали название аномалий силы тяжести. Они бывают положительными (при наличии более плотных горных пород) или отрицательными (при распространении менее плотных пород). Изучение аномалий сил тяжести ведется с помощью гравиметров. Отрасль прикладной геофизики, которая изучает аномалии силы тяжести с целью выявления в недрах полезных ископаемых или благоприятных геологических структур называется гравиразведкой. По гравиметрическим данным, средняя плотность Земли составляет 5,52 г/см 3 .Плотность пород, слагающих земную кору, от 2,0 до 3,0 г/см 3 .Средняя плотность земной коры 2,8 г/см 3 . Различие между средней плотностью Земли и земной коры указывает на более плотное состояние вещества во внутренних частях Земли, достигая в ядре порядка 12,0 г/см 3 . Одновременно с увеличением плотности в направлении к центру Земли возрастает и давление. В центре Земли давление достигает 3,5 млн.атм. Магнетизм Земли. Земля представляет собой гигантский магнит с силовым полем вокруг. Магнитные полюса Земли в настоящее время расположены вблизи географических полюсов, но не совпадает с ними. Различают магнитное склонение и магнитное наклонение. Магнитным склонением называется угол отклонения магнитной стрелки компаса от географического меридиана. Склонение может быть западным и восточным. Магнитное наклонение определяется углом наклона магнитной стрелки к горизонту. Наибольшее наклонение наблюдается в районе магнитных полюсов. На общий фон магнитного поля накладывается влияние горных пород, содержащих ферромагнитные минералы (магнетит и некоторые другие), в результате чего на поверхности Земли возникают магнитные аномалии. Выявлением таких аномалий с целью поисков железных руд занимается магниторазведка. Исследования показали, что горные породы содержащие ферромагнитные минералы, обладают остаточный намагниченностью сохраняющей направление магнитного поля времени и места их образования. Палеомагнитные данные используются для восстановления особенностей магнитного поля древних эпох, а также для решения задач геохронологии, стратиграфии, палеогеографии. Они оказали большое влияние на разработку теории тектоники литосферных плит.

Тепло Земли. Тепловой режим Земли обусловлены двумя источниками: тепло, полученное от Солнца; тепло, выделяемое из недр Земли. На поверхности Земли основным источником тепла является Солнце. Прогревание Солнцем распространяется на незначительную глубину не превышающую 30 м. На некоторой глубине от поверхности располагается пояс постоянной температуры, равный среднегодовой температуре данной местности. В окрестностях Москвы на глубине 20 м от поверхности наблюдается постоянная температура, равная +4,2 0 . Ниже пояса постоянной температуры установлено увеличение температуры с глубиной, связанное с тепловым потоком, поступающим из внутренних частей Земли. Нарастание температуры в градусах Цельсия на единицу глубины называется геотермическим градиентом, а интервал глубины в метрах, на котором температура повышается на 1 0 , называется геотермической ступенью. Величина геотермической ступени меняется в широких пределах: на Кавказе 12 м, в Эмбенском районе 33м, Карагандинском бассейне 62 м, на Камчатке 2-3 м. В среднем геотермический градиент принимается около 30 0 С на 1км и соответствующее ему геотермическая ступень около 33м. Считают, что геотермическая ступень сохраняется до глубины 20км. Ниже рост температуры замедляется. По расчетом ученых на глубине 100 км температура, видимо достигает 1300 0 С. На глубине 400км – 1700 0 С, 2900км – 3500 0 С. Источниками внутреннего тепла Земли считают радиоактивный распад элементов, в процессе которого выделяется огромное количество тепла, энергию гравитационной дифференциации вещества, а также остаточное тепло, сохранившееся со времен формирования планеты.

Строение Земли. Земля характеризуется оболочным строением. Оболочки Земли, или геосферы, различаются составом, физическими свойствами, состоянием вещества и подразделяются на внешние, доступные для непосредственного изучения, и внутренние, исследуемые главным образом косвенными методами (геологическими, геофизическими, геохимическими). Внешние сферы Земли – атмосфера, гидросфера и биосфера составляют характерную особенность строения нашей планеты и играют важную роль в формировании и развитии земной коры.Атмосфера – газовая оболочка Земли, играет одну из главных ролей в развитии жизни на Земле и определяет интенсивность геологических процессов на поверхности планеты. Воздушная оболочка нашей планеты, общая масса которой оценивается в 5,3*10 15 m представляет смесь различных газов: азота (78,09%) , кислорода (20,95%), аргона (0,93%) . Кроме того, присутствует углекислый газ (0,03%) , водород, гелий, неон и другие газы, а также водяной пар (до 4%) , частицы вулканической, эоловой и космической пыли. Кислород воздуха обеспечивает процессы окисления различных веществ, а также дыхание организмов. В атмосфере имеется озон на высоте 20-30 км. Наличие озона обеспечивает защиту Земли от губительного для жизни воздействия ультрафиолетовых и других излучении Солнце. Углекислый газ и водяные пары служат регулятором температуры, так как конденсирует получаемое Землей тепло. Углекислый газ поступает в воздух в результате разложения организмов и их дыхания, а также при вулканических процессах, расходуется же для питания растений. Воздушные массы атмосферы находятся в постоянном движении под воздействием неравномерного нагревания поверхности Земли в различных широтах, неравномерного нагревания материков и океанов. Воздушные потоки переносят влагу, твердые частицы - пыль, существенно влияют на температуру различных областей Земли. Атмосферу подразделяют на пять основных слоев: тропосферу, стратосферу, мезосферу, ионосферу и экзосферу. Для геологии наибольшей интерес представляет тропосфера, непосредственно соприкасающаяся с земной поверхностью и оказывающая на нее существенное влияние. Тропосфера характеризуется большой плотностью, постоянным присутствием водяного пара, углекислоты и пыли, постепенным понижением температуры с высотой и существованием вертикальной и горизонтальной циркуляции воздуха.

Гидросфера - прерывистая оболочка Земли, включающая воды океанов, морей, озер и рек, подземные воды и воды, собранные в виде вечных снегов и льда. Основная часть гидросферы-Мировой океан, объединяющий все океаны, окраинные и связанные с ними внутриконтинентальные моря. Количество океанических вод суши 4млн.км 3 , материковых льдов около 22 млн.км 3 , подземных вод 196 млн. км 3 . Гидросфера занимает 70,8% земной поверхности (361 млн.км 2).средняя глубина составляет 3750 м, максимальная глубина приурочена к Марианскому желобу(11022м). Океанические и морские воды характеризуются определенным химическим составом и соленостью. Нормальная соленость вод Мирового океана составляет 3,5% (35 г солей на 1 л воды). Воды океана содержат почти все известные химические элементы. Подсчитано, что общее количество солей растворенных в воде Мирового океана, составляет 5*10 16 m. Карбонаты, кремнезем широко извлекаются из воды морскими организмами на построение скелетных частей. Поэтому солевой состав океанических вод резко отличается от состава речных вод. В океанических водах преобладают хлориды (88,7%) - NaCl, MgCl 2 и сульфаты (10,8%) , а в речных водах карбонаты (60,1%) - CaCO 3 и сульфаты(9,9%). Кроме солей в воде растворены и некоторые газы –главным образом азот, кислород, углекислый газ. Воды гидросферы совместно с растворенными в ней веществами активно участвует в химических реакциях, протекающих в гидросфере, а также при взаимодействии с атмосферой, земной корой и биосферой. Гидросфера, как и атмосфера, является действующей силой и средой экзогенных геологических процессов. Мировой океан играет огромную роль в жизни, как всей планеты, так и человечества. В океане и в его недрах находятся огромные запасы минеральных ресурсов, которые во все большем объеме привлекаются для нужд человечества (нефть, химическое сырье и др). Воды океанов подвергаются загрязнению нефтью и нефтепродуктами, радиоактивными и бытовыми отходами. Это обстоятельство приобретает угрожающие размеры и требует безотлагательного решения.

Биосфера. Биосферой называют область распространения жизни на Земле. Современная биосфера включает в себе всю гидросферу, верхнюю часть атмосферы (тропосферу). Ниже почвенного слоя живые организмы встречаются в глубоких трещинах, подземных водах, иногда в нефтеносных слоях на глубине в тысячи метров. В состав живых организмов входят не менее 60 элементов и главными из них являются C, O, H, S, P, K, Fe и некоторые другие. Живая масса биосферы в пересчете на сухое вещество составляет около 10 15 т. Основная масса живого вещества сосредоточена в зеленых растениях, способных аккумулировать солнечную энергию благодаря фотосинтезу. С химической точки зрения фотосинтез – окислительно- восстановительная реакция CO 2 + H 2 O->CH 2 O + O 2 , в результате который за счет поглощения углекислоты и воды синтезируется органическое вещество и выделяется свободный кислород. Биосфере принадлежит большая роль в энергетике Земли. За миллионы лет биосфера накопила в недрах колоссальные запасы энергии – в толщах углей, нефть, скопления горючего газа. Организмы являются важными породообразовательными земной коры.

Внутренние строение Земли. Изучение глубинного строения Земли - одно из главных задач современной геологии. Непосредственному наблюдению доступны лишь самые верхние (до глубин 12 – 15км) горизонты земной коры, выходящие на поверхность или вскрытые рудниками шахтами и буровыми скважинами.

Представления о строении более глубоких зон Земли, основывается главным образом на данных комплексах геофизических методов. Из них особое значение имеет сейсмический (греч. «сейсма» - сотрясения) метод, основанный на регистрации скорости распространения в теле Земли волн, вызываемых землетрясениями или искусственным взрывами. В очагах землетрясений возникают продольные сейсмические волны, которые рассматриваются как реакция среды на изменения объема, и поперечные волны, представляющие собой реакцию среды на изменения формы и поэтому распространяющиеся только в твердых телах. В настоящее время имеющиеся данные подтверждают сферически – симметричное строение недр Земли. Еще в 1897 г. профессор Геттингенского университета Э. Вихерт высказал мысль об оболочечном строением Земли, которая состоит из железного ядра, каменной мантии и земной коры. В 1910 г. югославский геофизик А. Мохоровичич, изучая особенности распространения сейсмических волн при землетрясении в районе города Загреб, установил на глубине 50 км поверхность раздела между корой и мантией. В дальнейшем эта поверхность была выявлена на различных глубинах, но всегда прослеживались четко. Ей дали название «поверхность Мохоровичича», или Мохо (М). 1914 г немецкий геофизик Б. Гуттенберг установил границу раздела ядра и мантии на глубине 2900км. Она получила название поверхности Вихерта – Гуттенберга. Датский ученный И. Леман в 1936г. обосновала существование внутреннего ядра Земли радиусом 1250км. Весь комплекс современных геолого-геофизических данных подтверждает идею об оболочечном строением Земли. Чтобы правильно понять главнейшие особенности этого строения, геофизики строят специальные модели. Известный геофизик В.Н. Жарков характеризует модель Земли: это «как бы разрез нашей планеты, на котором показано, как меняется с глубиной такие важнейшие ее параметры, как плотность, давление, ускорение силы тяжести, скорости сейсмических волн, температура, электропроводность и другие» (Жарков, 1983, с. 153). Наиболее распространена модель Буллена – Гуттенберга.

Земная кора – твердая верхняя оболочка Земли. Ее толщина изменяется от 5-12 км под водами океанов, до 30-40 км в равнинных областях и до 50-750км в горных районах. Мантия Земли распространяется до глубины 2900 км. Она подразделяется на две части: верхнюю до глубины 670 км и нижнюю до 2900 км. Сейсмическим методом в верхней мантии установлен слой в катором наблюдается понижение скорости сейсмических волн, особенно поперечных, и повышение электропроводности, что свидетельствует о состоянии вещества, отличающегося от выше- и нижележащих слоев. Особенности этого слоя, получившего название астеносфера (греч.астянос-слабый) объясняется его плавлением в пределах 1-2 до 10%, происходящим в результате более быстрого повышения температуры с глубиной, чем повышения давления. Астеносферный слой расположен блихе всего к поверхности под океанами, от 10-20 км до 80-200км, от 80 до 400 км под континентами. Земная кора и часть верхней мантии над астеносферой носит название литосфера. Литосфера холодная, поэтому она жесткая и может выдержать большие нагрузки. Нижняя мантия характеризуется дальнейшим увеличением плотности вещества и плавным нарастанием скорости сейсмических волн. Ядро занимает центральную часть Земли. В его составе выделяют внешнее ядро, переходную оболочку и внутреннее ядро. Внешнее ядро состоит из вещества нахлдящегося в расплавлено-жидком состоянии. Внутреннее ядро занимает сердцевину нашей планеты. В пределах внутреннего ядра скорости продольных и поперечных волн возрастает, что свидетельствует о твердом состоянии вещества. Внутреннее ядро состоит из сплава железа с никелем.

Состав и строение земной коры. Наиболее достоверные сведения имеются о химическом составе самой верхней части земной коры, доступной для непосредственного анализа(до глубины 16-20 км). Первые цифры о химическом составе земной коры были опубликованы в 1889 г. американским ученым Ф.Кларком. Впоследствии А.Е.Ферсман предложил называть процентное содержание элемента в земной коре кларком этого элемента. По данным А.Б.Ронова и А.А.Ярошевского (1976 г.), в составе земной коры наиболее распространены восемь элементов (в весовых %), составляющих в сумме свыше 98 %: кислород-46,50; кремний-25,70; алюминий-7,65; железо-6,24; кальций-5,79; магний-3,23; натрий-1,81; калий-1,34. По особеннстям геологического строения, геофизической характеристике и составу земная кора делится на три основных типа: континентальную, океанскую и промежуточную. Континентальная состоит из осадочного слоя толщиной 20-25 км, гранитного (гранитно-метаморфического) толщиной до 30 км и базальтового толщиной до 40 км. Океанская кора состоит из первого осадочного слоя толщиной до 1 км, второй-базальтовый толщиной 1,5-2,0 км и третий-габбро-серпентинитовый толщиной 5-6 км. Вещество земной коры состоит из минералов и горных пород. Горные породы состоят из минералов или продуктов их разрушения. Горные породы, содержащие полезные компоненты и отдельные минералы, извлечениекоторых экономически целесообразно, называют полезными ископаемыми.

Основная литература: 1

Контрольные вопросы:

1 Происхождение Солнечной системы.

2 Форма и размеры Земли.

3 Физические поля Земли.

4 Внутреннее строение Земли.

5 Строение и состав земной коры.

3 Тема лекции: Горные породы как вместилище нефти и газа . Горная порода – это природное, чаще всего, твердое тело, состоящее из одного (известняк, ангидрит) или нескольких минералов (песчаник полимиктовый, гранит). Иными словами это естественная природная ассоциация минералов. Все горные породы по происхождению (генезису) подразделяются на три больших класса: магматические, метаморфические и осадочные.

Магматические горные породы образовались в результате внедрения магмы (силикатного расплава) в земную кору и затвердевания последней в ней (интрузивные магматические горные породы) или излияния лавы (силикатного расплава) на дно морей, океанов или земную поверхность (эффузивные магматические горные породы). И лава и магма изначально – это силикатные расплавы внутренних сфер Земли. Магма, внедрясь в земную кору, затвердевает в ней неизмененной, а лава, изливаясь на поверхность Земли или на дно морей и океанов, теряет растворенные в ней газы, пары воды и некоторые другие компоненты. В силу этого интрузивные магматические горные породы по своему составу, структуре и текстуре резко отличаются от эффузивных. Примером наиболее распространенных магматических горных пород могут служить гранит (интрузивная порода) и базальт (эффузивная порода).

Метаморфические горные породы образовались в результате коренного преобразования (метаморфизма) всех других ранее существовавших горных пород под влиянием высоких температур, давлений и нередко с привносом в них или выносом из них отдельных химических элементов. Типичными представителями метаморфических горных пород являются мрамор (образовавшийся из известняка), различные сланцы и гнейсы (образовавшиеся из глинистых осадочных пород).

Осадочные горные породы образовались за счет разрушения других, ранее слагавших земную поверхность, пород и осаждения этих минеральных веществ в основном в водной, реже воздушной среде в результате проявления экзогенных (поверхностных) геологических процессов. Осадочные горные породы по способу (условиям) их образования подразделяются на три группы: осадочные обломочные (терригенные), органогенные и хемогенные.

Осадочные обломочные (терригенные) горные породы сложены обломками ранее существовавших минералов и горных пород (таблица 1). Органогенные горные породы состоят из остатков (скелетов) живых организмов и продуктов их жизнедеятельности (биологический путь образования) Хемогенные осадочные горные породы сформировались в результате выпадения химических элементов или минералов из водных растворов (таблица 2). Типичными представителями осадочных обломочных пород являются песчаники и алевролиты, осадочных органогенных - различного типа органогенные известняки, мел, угли, горючие сланцы, нефть, осадочных хемогенных - каменная соль, гипс, ангидрит. Для геолога-нефтяника осадочные горные породы выступают главенствующими, так как они не только вмещают 99,9% мировых запасов нефти и газа, а и согласно органической теории происхождения нефти и газа, являются генераторами этих углеводородов. Осадочные горные породы слагают верхний осадочный слой земной коры, который распространен по площади Земли не повсеместно, а только в пределах, так называемых, плит, которые входят в состав платформ – крупных стабильных участков земной коры, межгорных впадин и предгорных прогибов. Толщина осадочных пород колеблется в широких пределах от первых метров до 22-24 км в центре Прикаспийской впадины, расположенной в Западном Казахстане. Осадочный слой в нефтяной геологии принято называть осадочным чехлом. Под осадочным чехлом располагается нижний структурный этаж, именуемый фундаментом. Фундамент сложен магматическими и метаморфическими горными породами. Породы фундамента содержат всего 0,1 % мировых запасов нефти и газа. Нефть и газ в земной коре заполняют мельчайшие и мелкие поры, трещины, каверны горной породы, подобно тому как вода насыщает губку. Следовательно, чтобы порода содержала нефть, газ и воду она должна быть качественно отличной от пород не содержащих флюидов, т.е. она должна иметь поры, трещины или каверны, должна быть пористой. В настоящее время чаще всего промышленные скопления нефти и газа содержат осадочные обломочные (терригенные) горные породы, затем идут карбонатные породы органогенного генезиса и, наконец, карбонаты хемогенные (оолитовые и трещиноватые известняки и мергели). В земной коре пористые горные породы, вмещающие нефть и газ, должны переслаиваться с качественно иными породами, которые не содержат флюидов, а выполняют функцию изоляторов нефтегазонасыщенных тел. В таблицах 1 и 2 показаны литофации горных пород, вмещающих нефть и газ и служащих флюидоупорами.

Химические осадочные породы образуются путем выпадения из водных растворов химических осадков. К этим породам относятся: различные известняки, известковый туф, доломит, ангидрит, гипс, каменная соль и др. Общей особенностью являются их растворимость в воде и трещиноватость.

Органогенные осадочные породы образуются в результате накопления и преобразования остатков животного мира и растений, отличаются значительной пористостью, растворяются в воде. К органогенным породам относятся: известняк-ракушечник, диатомит и др.

Подавляющее большинство пород этих двух групп имеют смешанное (биохимическое) происхождение.

Группы химических и органогенных пород обычно делятся на подгруппы по составу:

    карбонатные,

    кремнистые,

    железистые,

    галоидные,

    сернокислые,

    фосфатные и др.

Особо выделяются горючие породы, или каустобиолиты .

Карбонатные породы

Известняк – порода, состоящая из минерала кальцита. Он определяется по бурно протекающей реакции с HСl. Цвет белый, желтоватый, серый, черный. Известняки бывают органогенного и химического происхождения.

Органогенные известняки состоят из остатков организмов, которые редко сохраняются полностью, чаще они раздроблены а также изменены последующими процессами. Если известняк состоит из целых раковин, его называют известняк-ракушечник, а если из битых – детритусовый известняк.

Разновидностью органогенного известняка является мел , состоящий главным образом из мельчайших раковин фораминифер, порошковатого кальцита и панцирей простейших микроскопических морских водорослей. Мел – белая землистая порода, широко использующаяся в качестве сырья для портландцемента, побелочного материала и пишущего мела.

Известняки химического происхождения встречаются в виде плотных тонкозернистых масс:

    оолитовые известняки – скопления мелких шариков скорлуповатого или радиально-лучистого строения, соединенных известковым цементом;

    известковый туф (травертин) – сильнопористая порода, образующаяся в местах выхода на земную поверхность богатых растворенной двууглекислой известью подземных вод, из которых при улетучивании углекислоты или при остывании воды быстро выпадает избыток растворенного углекислого кальция;

Натечные образования кальцита – сталактиты, сталагмиты (рис. 9).

Известняки применяются в качестве строительного материала, удобрения, в цементной промышленности, в металлургии (в качестве флюса).

Доломит CaMg(CO 3) 2 состоит из минерала того же названия. Внешне похож на известняк, отличается от него реакцией с соляной кислотой (реагирует в порошке), желтовато-белым, иногда буроватым цветом, большей твердостью (3,4–4). Доломиты образуются в морских бассейнах главным образом как вторичные продукты за счет известняков: растворенный в воде магний взаимодействует и вступает в соединение с кальцитом известняка. Этот процесс, называемый доломитизацией, ведет к полному уничтожению органических остатков. Для доломитов не типична тонкая слоистость; они часто слагают мощные скальные утесы. Доломиты применяются в качестве флюса, огнеупора и для удобрений.

Мергель – известково-глинистая порода, состоящая из кальцита и глинистых частиц (30–50 %). Цвет ее палево-желтый, коричневато-желтый, белый, серый. Внешне мергель мало отличим от известняка; распознается он по характеру реакции с соляной кислотой, от капли которой на поверхности мергеля остается грязно-сырое или обеленное пятно, обусловленное концентрацией на ме­сте реакции глинистых частиц. Образуется мергель в морях и озерах (рис. 10).

Kpe мнистые породы

Они могут быть и химического (кремнистый туф), и органогенного происхождения (кремень, диатомит, опока).

Кремнистый туф (гейзерит) состоит из пористой (реже плотной) массы опала. Цвет породы светлый, иногда пестрый. Образуется туф при выходе на поверхность горячих источников, в воде которых растворен кремнезем.

Кремень – тонкозернистый пятнистый или полосчатый агрегат халцедона, скрытокристаллической разновидности кварца. Образуется из распавшихся скелетных остатков кремневых организмов, то есть из геля кремнезема, который, постепенно теряя воду и уплотняясь, превращается в опал и затем в халцедон. Часто содержит включения органических остатков. Цвет преимущественно серый до черного или бурый, встречается в виде конкреций (желваков) в меловых известняках, никогда не образуя связных пластов . В каменном веке кремень благодаря высокой твердости (равной 7) служил важным материалом для изготовления оружия и орудий труда. В настоящее время используется как шлифовальный и полировальный материал.

Диатомит – пористая, легкая, белая, светло-желтая рыхлая или сцементированная порода, легко растирается в тонкий порошок, жадно поглощает воду. Состоит из мельчайших опаловых скорлупок диатомовых водорослей, скелетов радиолярий и игл губок, встречаются зерна кварца, глауконита, глинистых минералов. Применяется как фильтрующий материал и для получения жидкого стекла. Образуется диатомит из диатомового ила, находящегося на дне озер и морей.

Опока кремнистая, пористая порода белого, серого, черного цвета, обладающая часто раковистым изломом. Наиболее твердые ее разновидности при ударе раскалываются с характерным звенящим звуком. Она состоит из зернышек опала и незначительной примеси остатков кремневых скелетов организмов, сцементированных кремнистым веществом.

Железистые породы

Среди пород этой подгруппы наиболее распространены сидерит (FeCO 3 – железный шпат) и лимонит.

Лимонит – механическая смесь гидроокисла железа с песчаным или глинистым материалом. По внешнему виду это чаще всего бобовые (оолитовые) или натечные массы. Цвет желтый, бурый, накапливается в болотах и озерах, поэтому часто называется болотной или озерной рудой.

Галоидные породы

Из галоидных пород наиболее распространена каменная соль , состоящая из минерала галита (NaCl), в природе она обычно окрашена в серый, рыже-желтоватый или красноватый цвет. Каменная соль обычно залегает слоями, имеет крупнозернистую структуру и блестит на солнце. Треть всей добываемой соли идет в пищу людям и животным, остальная часть используется в промышленности, для технических целей. В месторождении слои каменной соли нередко чередуются со слоями сильвина (KCl).

Сернокислые породы

Наиболее широко распространены гипс и ангидрит . Они образуются при выпадении из водных растворов в мелководных озерах, лагунах засушливых зон, где благодаря интенсивному испарению возникают перенасыщенные растворы.

Галоидные и сернокислые соли залегают обычно в виде пластов среди глинистых пород; последние их предохраняют от растворения подземными водами.

Гипс (CaSO 4 ∙ 2H 2 O) белого цвета или слегка тонированный; крупнозернистый или волокнистый, с шелковистым блеском. От сходного ангидрита, имеющего твердость 3–4, отличается более низкой твердостью, равной 1,5–2. Широко применяется в строительстве. Путем обжига гипса из него удаляется 75 % кристаллизационной воды, но если к обожженному строительному гипсу добавить воду, то он быстро вновь поглощает ее, восстанавливая свое первоначальное водосодержание, что сопровождается увеличением объема. На этом основывается техническое использование гипса в качестве цемента и вяжущего материала.

Ангидрит (CaSO 4) – так называется как сама соляная порода, так и минерал, слагающий ее, похожа на каменную соль, белесовато-серого, желтоватого, голубоватого цвета, но имеет мелкозернистую структуру и не обладает соленым вкусом. Применяется в производстве минеральных удобрений и в строительстве. Ангидритовые слои представляют опасность при строительстве туннелей, так как при поступлении воды они чрезвычайно сильно разбухают и вследствие этого могут сдавить стены туннеля.

Фосфатные породы

К ним относятся многие осадочные породы, обогащенные кальциевыми солями фосфорной кислоты с содержанием Р 2 О 5 до 12–40 % и более. Фосфаты кальция представлены чаще апатитом .

В составе фосфоритов наблюдаются примеси кварца, кальцита, глауконита, остатки радиолярий, диатомей и других органических веществ. Фосфатные породы встречаются в виде конкреций и пластов. Образуются они как хемогенным, так и биогенным путем в морях и на континентах (в озерах, болотах, пещерах). В морях фосфориты возникают при выпадении химического осадка на глубинах от 50 до 150 м. Цвет фосфоритов серый, темно-серый, черный. Применяются как сырье для удобрения (суперфосфат) и получения фосфора.

Каустобиолиты

Это большая группа горючих углеродистых пород органического состава и органогенного происхождения, и потому, согласно строгому определению, не являются настоящими горными породами. Но, с другой стороны, они представляют собой составную часть твердой земной коры и частично бывают изменены в такой степени, что их органическую природу уже невозможно установить, а потому их причисляют к осадочным породам.

Каустобиолиты возникают путем углефикации скоплений растительного материала. Процесс углефикации состоит в постепенном повышении относительного содержания углерода в органическом веществе вследствие его обеднения кислородом (и в меньшей мере водородом). Повышенные давления и температуры, связанные с горообразующими и вулканическими процессами, вызывают диагенетические и метаморфические преобразования углей.

Каустобиолиты бывают твердыми (торф, бурый уголь, каменный уголь, антрацит, графит, горючие сланцы, асфальт, озокерит), жидкими (нефть) и газообразными (горючие газы). Свойства твердых каустобиолитов приведены в табл. 8.

Таблица 8

Свойства твердых каустобиолитов

Каустобиолиты

Плотность, г/см 3

Теплотворная

способность

(без блеска)

1500–2000 кал

(6280–8374 Дж)

Бурый уголь

Буровато-черный

2000–7000 кал

(8374–29 308 Дж)

Каменный уголь

7000–8500 кал

(29308–35588 Дж)

Антрацит

металловидный

8500–9000 кал

(35588–37681 Дж)

Металлический

Торф состоит из полуразложившихся болотных и древесных растительных остатков, содержащих в своем составе углерод (35–59 %), водород (6 %), кислород (33 %), азот (2,3 %). Торф – рыхлая, буровато-коричневая или черная порода. В зависимости от того, из каких растительных остатков состоит торф, различают сфагновый, осоковый и тростниковый торф. В сыром виде торф содержит до 85–90 % воды, при высушивании его до воздушно-сухого состояния в нем остается еще до 25 % воды. Торф используется для приготовления удобрений и технического воска.

Бурый уголь содержит 67–78 % углерода, 5 % водорода и 17–26 % кислорода. Это плотная темно-бурая или черная масса с землистым изломом, матовым блеском, черта темно-бурая. Твердость 1–1,5; плотность 1,2 г/см 3 . В составе бурых углей имеются примеси глинистых минералов, обусловливающие их высокую зольность.

Каменный уголь содержит углерода до 82–85 %. Порода черного цвета, плотная, блеск матовый, черта черная. Твердость от 0,5 до 2,5; плотность 1,1–1,8 г/см 3 .

Антрацит содержит углерода 92–97 %. Это твердая хрупкая порода серовато-черного цвета с сильным полуметаллическим блеском. Излом зернистый, раковистый. Твердость 2,0–2,5; плотность антрацита 1,3–1,7 г/см 3 . Цвет черты светло-черный. Образуется при высоких давлении и температуре (не ниже 300 °С).

Графит – кристаллический углерод; это высокометаморфизованный уголь, но он может иметь и неорганическое происхождение.

Горючие сланцы – сланцеватые, глинистые или мергелистые породы, в состав которых входит органическое вещество в виде рассеянного сапропеля (гнилостного ила). Горючие сланцы тонкослоисты, обладают темно-серым или бурым цветом; образовались они в процессе накопления отмерших микроводорослей и планктона. Применяются в качестве местного топлива и для получения жидких и газообразных летучих веществ, из которых получают нефтепродукты, газ, серу, олифу, дубильные экстракты, краски, ядохимикаты для защиты растений.

Нефть представляет собой смесь жидких и газообразных углеводородов. На долю других элементов (азота, кислорода, серы и др.) приходится 1–2 %. По внешнему виду это маслянистая жидкость, цвет изменяется от почти белого, желтого до темно-коричневого; соответственно меняется и плотность – от 0,76 до 1,0 г/см 3 . Лишь асфальтовые нефти имеют несколько большую плотность.

Янтарь (C 10 H 16 О) – затвердевшая смола хвойных деревьев, произраставших 25–30 млн. лет назад. Янтарь аморфен. Цвет его белый, желтый, коричневатый. Твердость 2–2,5. Прозрачен или просвечивает. Блеск жирный или матовый. Плотность 1,05–1,1 г/см 3 , плавится при температуре 300 °С. Горит, выделяя приятный запах. При трении легко электризуется. Встречается в виде глыб среди песчаных пород. Применяется в ювелирной промышленности и в отдельных медицинских препарата.

Основные осадочные породы органического и химического происхождения приведены в табл. 9.

Таблица 9

Основные породы органического и химического происхождения

Название

подгрупп

Органогенные породы

Хемогенные породы

Карбонатные

известняк коралловый, изве­стняк-ракушечник, известняк детритусовый, мел, мергель

известняк плотный, известняк оолитовый, известковый туф, натечный известняк, доломит, сидерит, мергель

Кремнистые

диатомит, опока

трепел, кремнистые туфы, кремень

Железистые

Галоидные

каменная соль

Сернокислые

гипс, ангидрит

Алюминиевые

Фосфатные

фосфориты

Каустобиолиты

торф, ископаемые угли, горючие сланцы, нефть, асфальт, озокерит, янтарь

Главнейшие осадочные породы органического и химического происхождения

Классификация осадочных обломочных (терригенных) пород

Тема лекции: Cтроение и состав Земли. Земля в космическом пространстве. Форма и размеры Земли. Внутреннее строение Земли. Химический и минœеральный состав недр Земли. Физические поля Земли. Строение и состав земной коры. Вещественный состав земной коры. Минœералы. Горные породы.

Земля является одним из бесчисленных небесных тел, рассеянных в безграничном пространстве Вселœенной. Общее представление о положении Земли в мировом пространстве и отношении ее с другими космическими телами необходимы и для курса геологии, так как многие процессы, совершающиеся на поверхности и в глубоких недрах земного шара, тесным образом связаны с влиянием внешней среды, окружающей нашу планету. Познание Вселœенной, изучение состояния различных тел и протекающих на них процессов проливает свет на проблемы происхождения Земли и ранние стадии ее развития. Вселœенная - ϶ᴛᴏ весь мир, безграничный во времени и пространстве и бесконечно разнообразный по формам, которые принимает материя в своем развитии. Вселœенная состоит из бесчисленного множества тел, весьма различных по своему строению и размеру. Различают следующие основные формы космических тел: звезды, планеты, межзвездная материя. Звезды представляет собой крупные активны.е космические тела. Радиус крупных звезд может достигать миллиарда километров, а температура даже на поверхности – многих десятков тысяч градусов. Планеты – сравнительно небольшие по размеру космические тела, как правило, холодные и обычно являющийся спутниками звезд. Пространство между космическими телами заполнены межзвездной материей (газы, пыль). Космические тела группируется в системы, в пределах которых они связаны между собой силами тяготения. Простейшая система – Земля со своим спутником Луной, образует систему более высокого порядка – Солнечную систему. Еще более сложным строением характеризуется скопления космических тел высшего порядка – галактики. Примером такой системы может служить галактика Млечный путь, в состав который входит Солнечная система. По форме наша галактика напоминает двояковыпуклую линзу, а в плане представляет собой яркое сгущение звезд в ядре со спиралевидными звездными потоками.

Строение Солнечной системы. Наша Солнечная система включает, кроме центрального светила – Солнца, девять планет, их спутники, астероиды и кометы. Солнце – звезда, раскаленный плазменный шар, типичный ʼʼжелтый карликʼʼ, находящийся на средней стадии звездной эволюции. Расположено Солнце в пределах одной из спиральных ветвей нашей Галактики и обращается вокруг центра Галактик с периодом около 200 миллион лет. Температура внутри Солнца достигает нескольких миллионов лет. Источником энергии Солнца является термоядерные превращения водорода в гелий. Спектральное изучение Солнца позволило выделить в его составе 70 элементов, известных на Земле. Солнце состоит на 70 % из водорода, 27% из гелия, на долю остальных элементов остается около 3 %. В Солнце сосредоточено 99,886 % всœей массы Солнечней системы. Солнце оказывает огромное влияние на Землю, на земную жизнь, ее геологическое развитие. Наша планета – Земля отстоит от Солнца на 149600000 км. Планеты вокруг Солнца располагаются в следующем порядке: четыре внутренних - Меркурий, Венера, Земля и Марс (планеты земной группы) и пять внешних – Юпитер, Сатурн, Уран, Нептун, Плутон. Между Марсом и Юпитером находится пояс астероидов – несколько тысяч мелких твердых тел. Для геологов представляют интерес четыре внутренние планеты, которые характеризуются небольшими размерами, высокой плотностью, небольшой массой. Эти планеты по размерам, составу и внутреннему строению наиболее близки нашей Земле. По современным представлениям тела Солнечной системы формировались из первично холодной космической твердой и газообразной материи путем уплотнения и сгущения до образования Солнца из центральной части. Из частиц окружающей газово-пылевой материи в результате аккреции сформировались планеты обращающиеся по орбитам вокруг Солнца.

Общая характеристика Земли. Форма и размеры Земли. Под фигурой, или формой Земли, понимают форму ее твердого тела, образованную поверхностью материков и дном морей и океанов Геодезические измерения показали, что упрощенная форма Земли приближается к эллипсоиду вращения (сфероиду). Действительное форма Земли является более сложной, так как на ее поверхности имеется много неровностей. Наиболее близкой к современной фигуре Земли является фигура, по отношению к поверхности которой сила тяжести повсœеместно направлено перпендикулярно. Она названа геоидом, что дословно означает ʼʼземлеподобныйʼʼ. Поверхность геоида в морях и океанах соответствует поверхности воды, а на континœентах – уровню воды в воображаемых каналах, пересекающих всœе материки и сообщающихся с Мировым океаном. Поверхность геоида приближается к поверхности сфероида, отклонясь от него примерно на 100м, на материках она немного повышается по отношению к поверхности сфероида, а в океанах - понижается. Измерения размеров Земли показали следующее: экваториальный радиус-6378,2км; полярный радиус-6356,8км; средний радиус Земли-6371км; полярное сжатие- 1/298; площадь поверхности- 510 млн. км кв; объём Земли-1, 083млрд. км куб; масса Земли-6*10 21 т; средняя плотность-5, 52 г/см 3

Физические свойства Земли. Земля обладает определœенными физическими свойствами. В результате их изучения выявлены общие особенности строения Земли и можно установить в ее недрах наличие полезных ископаемых. К физическим свойствам Земли относятся сила тяжести, плотность, давление, магнитные, тепловые, упругие, электрические и другие свойства. Сила тяжести, плотность, давление. На Земле постоянно действуют сила притяжения и центробежная сила. Равнодействующая этих сил определяет силу тяжести. Сила тяжести меняется как по горизонтали, увеличиваясь от экватора к полюсам, так и по вертикали, уменьшаясь с высотой. В связи с неравномерным распределœением вещества земной коре действительное значение силы тяжести отклоняются от нормальной. Эти отклонения получали название аномалий силы тяжести. Οʜᴎ бывают положительными (при наличии более плотных горных пород) или отрицательными (при распространении менее плотных пород). Изучение аномалий сил тяжести ведется с помощью гравиметров. Отрасль прикладной геофизики, которая изучает аномалии силы тяжести с целью выявления в недрах полезных ископаемых или благоприятных геологических структур принято называть гравиразведкой. По гравиметрическим данным, средняя плотность Земли составляет 5,52 г/см 3 .Плотность пород, слагающих земную кору, от 2,0 до 3,0 г/см 3 .Средняя плотность земной коры 2,8 г/см 3 . Различие между средней плотностью Земли и земной коры указывает на более плотное состояние вещества во внутренних частях Земли, достигая в ядре порядка 12,0 г/см 3 . Одновременно с увеличением плотности в направлении к центру Земли возрастает и давление. В центре Земли давление достигает 3,5 млн.атм. Магнетизм Земли. Земля представляет собой гигантский магнит с силовым полем вокруᴦ. Магнитные полюса Земли в настоящее время расположены вблизи географических полюсов, но не совпадает с ними. Различают магнитное склонение и магнитное наклонение. Магнитным склонением принято называть угол отклонения магнитной стрелки компаса от географического меридиана. Склонение должна быть западным и восточным. Магнитное наклонение определяется углом наклона магнитной стрелки к горизонту. Наибольшее наклонение наблюдается в районе магнитных полюсов. На общий фон магнитного поля накладывается влияние горных пород, содержащих ферромагнитные минœералы (магнетит и некоторые другие), благодаря чему на поверхности Земли возникают магнитные аномалии. Выявлением таких аномалий с целью поисков желœезных руд занимается магниторазведка. Исследования показали, что горные породы содержащие ферромагнитные минœералы, обладают остаточный намагниченностью сохраняющей направление магнитного поля времени и места их образования. Палеомагнитные данные используются для восстановления особенностей магнитного поля древних эпох, а также для решения задач геохронологии, стратиграфии, палеогеографии. Οʜᴎ оказали большое влияние на разработку теории тектоники литосферных плит.

Тепло Земли. Тепловой режим Земли обусловлены двумя источниками: тепло, полученное от Солнца; тепло, выделяемое из недр Земли. На поверхности Земли основным источником тепла является Солнце. Прогревание Солнцем распространяется на незначительную глубину не превышающую 30 м. На некоторой глубинœе от поверхности располагается пояс постоянной температуры, равный среднегодовой температуре данной местности. В окрестностях Москвы на глубинœе 20 м от поверхности наблюдается постоянная температура, равная +4,2 0 . Ниже пояса постоянной температуры установлено увеличение температуры с глубиной, связанное с тепловым потоком, поступающим из внутренних частей Земли. Нарастание температуры в градусах Цельсия на единицу глубины принято называть геотермическим градиентом, а интервал глубины в метрах, на котором температура повышается на 1 0 , принято называть геотермической ступенью. Величина геотермической ступени меняется в широких пределах: на Кавказе 12 м, в Эмбенском районе 33м, Карагандинском бассейне 62 м, на Камчатке 2-3 м. В среднем геотермический градиент принимается около 30 0 С на 1км и соответствующее ему геотермическая ступень около 33м. Считают, что геотермическая ступень сохраняется до глубины 20км. Ниже рост температуры замедляется. По расчетом ученых на глубинœе 100 км температура, видимо достигает 1300 0 С. На глубинœе 400км – 1700 0 С, 2900км – 3500 0 С. Источниками внутреннего тепла Земли считают радиоактивный распад элементов, в процессе которого выделяется огромное количество тепла, энергию гравитационной дифференциации вещества, а также остаточное тепло, сохранившееся со времен формирования планеты.

Строение Земли. Земля характеризуется оболочным строением. Оболочки Земли, или геосферы, различаются составом, физическими свойствами, состоянием вещества и подразделяются на внешние, доступные для непосредственного изучения, и внутренние, исследуемые главным образом косвенными методами (геологическими, геофизическими, геохимическими). Внешние сферы Земли – атмосфера, гидросфера и биосфера составляют характерную особенность строения нашей планеты и играют важную роль в формировании и развитии земной коры.Атмосфера – газовая оболочка Земли, играет одну из главных ролей в развитии жизни на Земле и определяет интенсивность геологических процессов на поверхности планеты. Воздушная оболочка нашей планеты, общая масса которой оценивается в 5,3*10 15 m представляет смесь различных газов: азота (78,09%) , кислорода (20,95%), аргона (0,93%) . Вместе с тем, присутствует углекислый газ (0,03%) , водород, гелий, неон и другие газы, а также водяной пар (до 4%) , частицы вулканической, эоловой и космической пыли. Кислород воздуха обеспечивает процессы окисления различных веществ, а также дыхание организмов. В атмосфере имеется озон на высоте 20-30 км. Наличие озона обеспечивает защиту Земли от губительного для жизни воздействия ультрафиолетовых и других излучении Солнце. Углекислый газ и водяные пары служат регулятором температуры, так как конденсирует получаемое Землей тепло. Углекислый газ поступает в воздух в результате разложения организмов и их дыхания, а также при вулканических процессах, расходуется же для питания растений. Воздушные массы атмосферы находятся в постоянном движении под воздействием неравномерного нагревания поверхности Земли в различных широтах, неравномерного нагревания материков и океанов. Воздушные потоки переносят влагу, твердые частицы - пыль, существенно влияют на температуру различных областей Земли. Атмосферу подразделяют на пять базовых слоев: тропосферу, стратосферу, мезосферу, ионосферу и экзосферу. Для геологии наибольшей интерес представляет тропосфера, непосредственно соприкасающаяся с земной поверхностью и оказывающая на нее существенное влияние. Тропосфера характеризуется большой плотностью, постоянным присутствием водяного пара, углекислоты и пыли, постепенным понижением температуры с высотой и существованием вертикальной и горизонтальной циркуляции воздуха.

Гидросфера - прерывистая оболочка Земли, включающая воды океанов, морей, озер и рек, подземные воды и воды, собранные в виде вечных снегов и льда. Основная часть гидросферы-Мировой океан, объединяющий всœе океаны, окраинные и связанные с ними внутриконтинœентальные моря. Количество океанических вод суши 4млн.км 3 , материковых льдов около 22 млн.км 3 , подземных вод 196 млн. км 3 . Гидросфера занимает 70,8% земной поверхности (361 млн.км 2).средняя глубина составляет 3750 м, максимальная глубина приурочена к Марианскому желобу(11022м). Океанические и морские воды характеризуются определœенным химическим составом и соленостью. Нормальная соленость вод Мирового океана составляет 3,5% (35 г солей на 1 л воды). Воды океана содержат почти всœе известные химические элементы. Подсчитано, что общее количество солей растворенных в воде Мирового океана, составляет 5*10 16 m. Карбонаты, кремнезем широко извлекаются из воды морскими организмами на построение скелœетных частей. По этой причине солевой состав океанических вод резко отличается от состава речных вод. В океанических водах преобладают хлориды (88,7%) - NaCl, MgCl 2 и сульфаты (10,8%) , а в речных водах карбонаты (60,1%) - CaCO 3 и сульфаты(9,9%). Кроме солей в воде растворены и некоторые газы –главным образом азот, кислород, углекислый газ. Воды гидросферы совместно с растворенными в ней веществами активно участвует в химических реакциях, протекающих в гидросфере, а также при взаимодействии с атмосферой, земной корой и биосферой. Гидросфера, как и атмосфера, является действующей силой и средой экзогенных геологических процессов. Мировой океан играет огромную роль в жизни, как всœей планеты, так и человечества. В океане и в его недрах находятся огромные запасы минœеральных ресурсов, которые во всœе большем объёме привлекаются для нужд человечества (нефть, химическое сырье и др). Воды океанов подвергаются загрязнению нефтью и нефтепродуктами, радиоактивными и бытовыми отходами. Это обстоятельство приобретает угрожающие размеры и требует безотлагательного решения.

Биосфера. Биосферой называют область распространения жизни на Земле. Современная биосфера включает в себе всю гидросферу, верхнюю часть атмосферы (тропосферу). Ниже почвенного слоя живые организмы встречаются в глубоких трещинах, подземных водах, иногда в нефтеносных слоях на глубинœе в тысячи метров. В состав живых организмов входят не менее 60 элементов и главными из них являются C, O, H, S, P, K, Fe и некоторые другие. Живая масса биосферы в пересчете на сухое вещество составляет около 10 15 т. Основная масса живого вещества сосредоточена в зелœеных растениях, способных аккумулировать солнечную энергию благодаря фотосинтезу. С химической точки зрения фотосинтез – окислительно- восстановительная реакция CO 2 + H 2 O->CH 2 O + O 2 , в результате который за счёт поглощения углекислоты и воды синтезируется органическое вещество и выделяется свободный кислород. Биосфере принадлежит большая роль в энергетике Земли. За миллионы лет биосфера накопила в недрах колоссальные запасы энергии – в толщах углей, нефть, скопления горючего газа. Организмы являются важными породообразовательными земной коры.

Внутренние строение Земли. Изучение глубинного строения Земли - одно из главных задач современной геологии. Непосредственному наблюдению доступны лишь самые верхние (до глубин 12 – 15км) горизонты земной коры, выходящие на поверхность или вскрытые рудниками шахтами и буровыми скважинами.

Представления о строении более глубоких зон Земли, основывается главным образом на данных комплексах геофизических методов. Из них особое значение имеет сейсмический (греч. ʼʼсейсмаʼʼ - сотрясения) метод, основанный на регистрации скорости распространения в телœе Земли волн, вызываемых землетрясениями или искусственным взрывами. В очагах землетрясений возникают продольные сейсмические волны, которые рассматриваются как реакция среды на изменения объёма, и поперечные волны, представляющие собой реакцию среды на изменения формы и в связи с этим распространяющиеся только в твердых телах. Сегодня имеющиеся данные подтверждают сферически – симметричное строение недр Земли. Еще в 1897 ᴦ. профессор Геттингенского университета Э. Вихерт высказал мысль об оболочечном строением Земли, которая состоит из желœезного ядра, каменной мантии и земной коры. В 1910 ᴦ. югославский геофизик А. Мохоровичич, изучая особенности распространения сейсмических волн при землетрясении в районе города Загреб, установил на глубинœе 50 км поверхность раздела между корой и мантией. В дальнейшем эта поверхность была выявлена на различных глубинах, но всœегда прослеживались четко. Ей дали название ʼʼповерхность Мохоровичичаʼʼ, или Мохо (М). 1914 г немецкий геофизик Б. Гуттенберг установил границу раздела ядра и мантии на глубинœе 2900км. Она получила название поверхности Вихерта – Гуттенберга. Датский ученный И. Леман в 1936ᴦ. обосновала существование внутреннего ядра Земли радиусом 1250км. Весь комплекс современных геолого-геофизических данных подтверждает идею об оболочечном строением Земли. Чтобы правильно понять главнейшие особенности этого строения, геофизики строят специальные модели. Известный геофизик В.Н. Жарков характеризует модель Земли: это ʼʼкак бы разрез нашей планеты, на котором показано, как меняется с глубиной такие важнейшие ее параметры, как плотность, давление, ускорение силы тяжести, скорости сейсмических волн, температура, электропроводность и другиеʼʼ (Жарков, 1983, с. 153). Наиболее распространена модель Буллена – Гуттенберга.

Земная кора – твердая верхняя оболочка Земли. Ее толщина изменяется от 5-12 км под водами океанов, до 30-40 км в равнинных областях и до 50-750км в горных районах. Мантия Земли распространяется до глубины 2900 км. Она подразделяется на две части: верхнюю до глубины 670 км и нижнюю до 2900 км. Сейсмическим методом в верхней мантии установлен слой в катором наблюдается понижение скорости сейсмических волн, особенно поперечных, и повышение электропроводности, что свидетельствует о состоянии вещества, отличающегося от выше- и нижелœежащих слоев. Особенности этого слоя, получившего название астеносфера (греч.астянос-слабый) объясняется его плавлением в пределах 1-2 до 10%, происходящим в результате более быстрого повышения температуры с глубиной, чем повышения давления. Астеносферный слой расположен блихе всœего к поверхности под океанами, от 10-20 км до 80-200км, от 80 до 400 км под континœентами. Земная кора и часть верхней мантии над астеносферой носит название литосфера. Литосфера холодная, в связи с этим она жесткая и может выдержать большие нагрузки. Нижняя мантия характеризуется дальнейшим увеличением плотности вещества и плавным нарастанием скорости сейсмических волн. Ядро занимает центральную часть Земли. В его составе выделяют внешнее ядро, переходную оболочку и внутреннее ядро. Внешнее ядро состоит из вещества нахлдящегося в расплавлено-жидком состоянии. Внутреннее ядро занимает сердцевину нашей планеты. В пределах внутреннего ядра скорости продольных и поперечных волн возрастает, что свидетельствует о твердом состоянии вещества. Внутреннее ядро состоит из сплава желœеза с никелœем.

Состав и строение земной коры. Наиболее достоверные сведения имеются о химическом составе самой верхней части земной коры, доступной для непосредственного анализа(до глубины 16-20 км). Первые цифры о химическом составе земной коры были опубликованы в 1889 ᴦ. американским ученым Ф.Кларком. Впоследствии А.Е.Ферсман предложил называть процентное содержание элемента в земной коре кларком этого элемента. По данным А.Б.Ронова и А.А.Ярошевского (1976 ᴦ.), в составе земной коры наиболее распространены восœемь элементов (в весовых %), составляющих в сумме свыше 98 %: кислород-46,50; кремний-25,70; алюминий-7,65; желœезо-6,24; кальций-5,79; магний-3,23; натрий-1,81; калий-1,34. По особеннстям геологического строения, геофизической характеристике и составу земная кора делится на три базовых типа: континœентальную, океанскую и промежуточную. Континœентальная состоит из осадочного слоя толщиной 20-25 км, гранитного (гранитно-метаморфического) толщиной до 30 км и базальтового толщиной до 40 км. Океанская кора состоит из первого осадочного слоя толщиной до 1 км, второй-базальтовый толщиной 1,5-2,0 км и третий-габбро-серпентинитовый толщиной 5-6 км. Вещество земной коры состоит из минœералов и горных пород. Горные породы состоят из минœералов или продуктов их разрушения. Горные породы, содержащие полезные компоненты и отдельные минœералы, извлечениекоторых экономически целœесообразно, называют полезными ископаемыми.

Основная литература: 1

Контрольные вопросы:

1 Происхождение Солнечной системы.

2 Форма и размеры Земли.

3 Физические поля Земли.

4 Внутреннее строение Земли.

5 Строение и состав земной коры.

3 Тема лекции: Горные породы как вместилище нефти и газа . Горная порода - ϶ᴛᴏ природное, чаще всœего, твердое тело, состоящее из одного (известняк, ангидрит) или нескольких минœералов (песчаник полимиктовый, гранит). Иными словами это естественная природная ассоциация минœералов. Все горные породы по происхождению (генезису) подразделяются на три больших класса: магматические, метаморфические и осадочные.

Магматические горные породы образовались в результате внедрения магмы (силикатного расплава) в земную кору и затвердевания последней в ней (интрузивные магматические горные породы) или излияния лавы (силикатного расплава) на дно морей, океанов или земную поверхность (эффузивные магматические горные породы). И лава и магма изначально - ϶ᴛᴏ силикатные расплавы внутренних сфер Земли. Магма, внедрясь в земную кору, затвердевает в ней неизмененной, а лава, изливаясь на поверхность Земли или на дно морей и океанов, теряет растворенные в ней газы, пары воды и некоторые другие компоненты. В силу этого интрузивные магматические горные породы по своему составу, структуре и текстуре резко отличаются от эффузивных. Примером наиболее распространенных магматических горных пород могут служить гранит (интрузивная порода) и базальт (эффузивная порода).

Метаморфические горные породы образовались в результате коренного преобразования (метаморфизма) всœех других ранее существовавших горных пород под влиянием высоких температур, давлений и нередко с привносом в них или выносом из них отдельных химических элементов. Типичными представителями метаморфических горных пород являются мрамор (образовавшийся из известняка), различные сланцы и гнейсы (образовавшиеся из глинистых осадочных пород).

Осадочные горные породы образовались за счёт разрушения других, ранее слагавших земную поверхность, пород и осаждения этих минœеральных веществ в основном в водной, реже воздушной среде в результате проявления экзогенных (поверхностных) геологических процессов. Осадочные горные породы по способу (условиям) их образования подразделяются на три группы: осадочные обломочные (терригенные), органогенные и хемогенные.

Осадочные обломочные (терригенные) горные породы сложены обломками ранее существовавших минœералов и горных пород (таблица 1). Органогенные горные породы состоят из остатков (скелœетов) живых организмов и продуктов их жизнедеятельности (биологический путь образования) Хемогенные осадочные горные породы сформировались в результате выпадения химических элементов или минœералов из водных растворов (таблица 2). Типичными представителями осадочных обломочных пород являются песчаники и алевролиты, осадочных органогенных - различного типа органогенные известняки, мел, угли, горючие сланцы, нефть, осадочных хемогенных - каменная соль, гипс, ангидрит. Для геолога-нефтяника осадочные горные породы выступают главенствующими, так как они не только вмещают 99,9% мировых запасов нефти и газа, а и согласно органической теории происхождения нефти и газа, являются генераторами этих углеводородов. Осадочные горные породы слагают верхний осадочный слой земной коры, который распространен по площади Земли не повсœеместно, а только в пределах, так называемых, плит, которые входят в состав платформ – крупных стабильных участков земной коры, межгорных впадин и предгорных прогибов. Толщина осадочных пород колеблется в широких пределах от первых метров до 22-24 км в центре Прикаспийской впадины, расположенной в Западном Казахстане. Осадочный слой в нефтяной геологии принято называть осадочным чехлом. Под осадочным чехлом располагается нижний структурный этаж, именуемый фундаментом. Фундамент сложен магматическими и метаморфическими горными породами. Породы фундамента содержат всœего 0,1 % мировых запасов нефти и газа. Нефть и газ в земной коре заполняют мельчайшие и мелкие поры, трещины, каверны горной породы, подобно тому как вода насыщает губку. Следовательно, чтобы порода содержала нефть, газ и воду она должна быть качественно отличной от пород не содержащих флюидов, ᴛ.ᴇ. она должна иметь поры, трещины или каверны, должна быть пористой. Сегодня чаще всœего промышленные скопления нефти и газа содержат осадочные обломочные (терригенные) горные породы, затем идут карбонатные породы органогенного генезиса и, наконец, карбонаты хемогенные (оолитовые и трещиноватые известняки и мергели). В земной коре пористые горные породы, вмещающие нефть и газ, должны переслаиваться с качественно иными породами, которые не содержат флюидов, а выполняют функцию изоляторов нефтегазонасыщенных тел. В таблицах 1 и 2 показаны литофации горных пород, вмещающих нефть и газ и служащих флюидоупорами.

Таблица 1

Группа пород Размеры обломков, мм Рыхлые породы Сцементированные породы
Окатанные Обломки Неокатанные обломки Окатанные обломки Неокатанные обломки
Грубообломочные (псефиты) Крупные > 200 Валуны глыбы валунные конгломераты глыбовые брекчии
Средние 200-10 галька (галечник) щебень галечный конгломерат брекчия
Мелкие 10-2 Гравий бывает нефтегазонасы-щенным дресва бывает нефтегазонасы-щенной гравелиты бывают нефтегазонасыщенные (гравийные конгломераты)
Песчаные (псаммиты) 2-1 Пески грубозернистые очень часто бывают нефтегазонасыщенные Песчаники грубозернистые очень часто бывают нефтегазонасыщенные
1-0,5 Пески крупнозернистые очень часто бывают нефтегазонасыщенные Песчаники крупнозернистые очень часто бывают нефтегазонасыщенные
0,5-0,25 Пески среднезернистые очень часто бывают нефтегазонасыщенные Песчаники среднезернистые очень часто бывают нефтегазонасыщенные
0,25-0,1 Пески мелкозернистые очень часто бывают нефтегазонасыщенные Песчаники мелкозернистые очень часто бывают нефтегазонасыщенные
Алевритовые породы (алевриты) 0,1-0,01 алеврит (лесс, супесь, суглинок) часто бывает нефтегазонасыщенный алевролит часто нефтегазонасыщенный
Глинистые породы (Пелиты) < 0,01 глина (физическая) не бывает нефтегазонасыщенной (флюидоупор) аргиллит не бывает нефтегазонасыщенный (флюидоупор)

Таблица 2.

Группа пород Органогенные породы Хемогенные породы
Карбонатные известняк коралловый – (СaCO 3) (очень часто нефтегазонасыщенный) известняк-ракушечник – (СaCO 3) (очень часто нефтегазонасыщенный) известяк детритусовый – (СaCO 3) (очень часто нефтегазонасыщенный) Мел (как правило, не бывает очень часто нефтегазонасыщенным) Мергель (редко трещиноватый нефтегазонасыщенный) известняк плотный известняк оолитовый (очень часто бывает нефтегазонасыщенным) известковый туф натечный известняк доломит – (СaMgCO 3) 2 (очень часто бывает нефтегазонасыщенным) сидерит мергель (редко трещиноватый бывает нефтегазонасыщенным)
Кремнистые диатомит опока кремнистый туф кремень
Желœезистые - лимонит
Галоидные - каменная соль (самый качественный флюидоупор)
Сернокислые - Гипс CaSO 4 *H 2 O, ангидрит CaSO 4 (как правило флюидоупоры)
Алюминиевые - Боксит
Фосфатные - Фосфорит

Анализ таблицы 1 и 2 показывает, что большинство терригенных пород в природе бывают нефтегазонасыщенными. Следовательно, не случайно то, что впервые нефть и газ были обнаружены в указанных породах и длительный исторический период они добывались из этих пород. И только последние десятилетия двадцатого столетия во многих регионах были обнаружены огромные запасы нефти и газа и в карбонатных толщах. Это, в первую очередь, в коралловых, детритусовых и оолитовых известняках и доломитах. Итак, нефтегазовмещающими породами очень часто бывают следующие литофации обломочных осадочных пород: пески и песчаники, алевролиты и алевриты, гравелиты и гравий. Из группы карбонатных пород нефтегазовмещающими породами служат следующие литофации: известняк коралловый, известняк-ракучешник, детритусовый и оолитовый известняки и доломиты.

Не содержат нефти и газа, а выполняют функцию изоляторов следующие литофации осадочных пород: соль каменная – наиболее качественный флюидоупор, глина, аргиллит (нетрещиноватый), мергель (не трещиноватый), гипс и ангидрит плотные, известняк плотный пелитоморфный, мел и другие крепкие и не трещиноватые горные породы. Отдельные пористые осадочные породы могут содержать промышленные скопления углеводородов только тогда, когда они переслаиваются с породами-изоляторами не содержащими нефти и газа.

Основная литература: 4, 5

Дополнительная литература 11

Контрольные вопросы:

1. Определœение горной породы.

2. На какие группы подразделяются осадочные породы?

3. Какие литофации осадочных пород бывают коллекторами?

4. Какие литофации осадочных пород бывают флюидоупорами?

Главнейшие осадочные породы органического и химического происхождения - понятие и виды. Классификация и особенности категории "Главнейшие осадочные породы органического и химического происхождения" 2017, 2018.

Загрузка...