docgid.ru

Курсовая работа: Ледниковые эпохи в истории Земли. История ледниковых периодов

Детальное изучение ледниковых отложений позволило установить важнейшее свойство оледенений - их периодичность. Практически все континенты нашей планеты в разное время в значительной мере, а иногда и целиком, покрывались мощными ледниками.

В настоящее время в истории Земли выделяется четыре крупных оледенения: докембрийское; позднеордовикское; пермско-каменноугольное; кайнозойское.

Определение абсолютного возраста протерозойских тиллитов показало их резкую разновозрастность - от 2 млрд до 570 млн лет, что дало основание английскому исследователю Г. Янгу говорить по крайней мере о трех самостоятельных оледенениях.

Первое, самое древнее докембрийское оледенение - нижнепротерозойское - произошло около 2,5 млрд лет назад. Следы его сохранились в Канаде, Южной Америке, Южной Африке, Карелии, Индии, Австралии в виде тиллитов, штриховок и отполированного ложа, оставленного движущимися ледниками.

Второе, верхнепротерозойское оледенение (1,5 млрд лет назад) оставило следы в экваториальной и Южной Африке и в Австралии.

В конце протерозоя, в венде (620-650 млн лет назад) произошло третье докембрийское наиболее грандиозное - скандинавское оледенение. Следы его обнаружены почти на всех материках, начиная от Шпицбергена и Гренландии и кончая экваториальной Африкой и Австралией.

В палеозое было два оледенения. Первое оледенение началось в ордовикский период 480 млн лет назад и продолжалось до силура в течение 40 млн лет. Ледниковые отложения этого возраста найдены в Южной Америке, в Африке - на территории Марокко, Ливии, в Испании, Франции и Скандинавии. По результатам реконструкции древнего континента Гондваны, центр оледенения (Южный полюс Земли в те времена) находился вблизи западного побережья центральной Африки, и площадь оледенения составляла более 21 млн км2, что в 1,5 раза превышало площадь современной Антарктиды.

Второе оледенение палеозоя, которое иногда по масштабности охвата огромных территорий (оно охватило почти все страны южного полушария) называют великим - пермско-каменноугольное (или гондванское), началось в карбоне и продолжалось до конца пермского периода. По современным определениям абсолютного возраста, оно длилось около 100 млн лет. Считают, что центр этого оледенения находился на территории Южной Африки. Его следы в виде толщ тиллитов, мощность которых достигает 1000 м, бараньи лбы, штрихованные скалы присутствуют на территории Африки, Южной Америки, Австралии, Индии, Антарктиды, которые входили в состав когда-то единого континента - Гондваны.

Наиболее изученными являются древние четвертичные оледенения. В четвертичный (антропогеновый) период мощные материковые льды покрывали огромные площади на территории России, Западной Европы и Америки. Большинством исследователей признается многократность четвертичных оледенений, общая площадь которых составляла около 45 млн км2 (30% всей суши), т е. почти в три раза больше площади современного оледенения. Изучение характера и состава ледниковых отложений показывает, что эпохи оледенения перемежались с межледниковьями.

На территории Западной Европы лучше всего ледниковые отложения изучены в Альпах. А. Пенк и Э. Брюннер установили там четыре оледенения, и впоследствии некоторые уточнения внес Дж. Брайан. Периодизацией оледенений в Северной Америке занимался Ф. Флинт. Данные сопоставления оледенений и межледниковий приведены в табл. 17.1.

Для европейской части России в настоящее время принята схема периодизации оледенений И.П. Герасимова и К.К. Маркова (см. табл. 17.1). С некоторыми уточнениями других исследователей выделяются пять материковых оледенений: окское (нижний плейстоцен), днепровское и московское (средний плейстоцен) и валдайское, которое подразделяют на два самостоятельных оледенения - калининское и осташковское (рис. 17.13). He исключена возможность выделения еще более древних оледенений, чем окское, в нижнем плейстоцене и плиоцене. Следы такого оледенения, названного литовским, обнаружены на территории Прибалтики. Все ледниковые периоды отделены друг от друга межледниковьями (снизу вверх): лихвинским между окским и днепровским, одинцовским между днепровским и московским, микулинским между московским и калининским; мологошекснинским между калининским и осташковским оледенениями.

Древние четвертичные оледенения охватывали огромные пространства России, Западной Европы, Северной Америки, Антарктиды и других территорий. В Европе центром оледенения была Скандинавия, где толщина ледникового покрова достигала 2,5-3 км. Максимальным по площади распространения было днепровское оледенение, охватившее весь север Западной Европы, а на территории европейской части России ледники спускались по долинам Днепра и Дона южнее Киева, Харькова, Саратова.

Подробно изучены следы плейстоценовых оледенений на территории Северного Прибайкалья и Станового Нагорья. Исследователями Д.-Д.Б. Базаровым и другими приводятся следующие убедительные факты, свидетельствующие о многократности ледниковых эпох плейстоцена: последовательная вложенность трогов; количество конечных и боковых морен (их минимум три); их различная высота и морфологическая выраженность; наползание одних морен на другие; ярусное расположение каров и разная степень их сохранности; глубокий размыв, отделяющий следы одного оледенения от другого, - все это говорит в целом о трех самостоятельных этапах оледенений, разделенных межледниковьем. Первое оледенение было максимальным и относилось к среднему плейстоцену. Его можно сопоставить с самаровским оледенением Западной Сибири. Относительно возраста второго есть разные суждения. Его сопоставляют с тазовским (конец среднего плейстоцена) или зырянским (позднеплейстоценовым) оледенением. Последнее, вероятнее всего произошло в позднем плейстоцене и является аналогом сартанского оледенения.

Факты, подтверждающие оледенение Баргузинского хребта, приводит В.В. Ламакин, описывающий сильно развитые морены побережья Байкала вдоль всей береговой линии. Распространение нижней морены показывает, что ледники образовали на побережье Байкала широкие предгорные щиты, состоящие из целой группы ледников, спускавшихся по соседним долинам Баргузинского хребта. Мощность ледников местами достигала 500 м. По-видимому, от последней эпохи позднеплейстоценового оледенения сохранились небольшие ледники на Байкальском, Баргузинском и Кодарском хребтах.

В истории Земли существовали длительные периоды, когда вся планета была теплой - от экватора до полюсов. Но были и настолько холодные времена, что оледенения достигали тех регионов, которые в настоящее время относятся к умеренным зонам. Скорее всего, смена этих периодов была цикличной. В теплые времена льда могло быть относительно мало, и находился он только в полярных регионах или на вершинах гор. Важная черта ледниковых периодов заключается в том, что они меняют характер земной поверхности: каждое оледенение влияет на внешний вид Земли. Сами по себе эти изменения могут быть маленькими и незначительными, но они носят постоянный характер.

История ледниковых периодов

Мы не знаем точно, сколько ледниковых периодов было на протяжении истории Земли. Нам известно как минимум о пяти, возможно, семи ледниковых периодах, начиная с докембрийского, в частности: 700 миллионов лет назад, 450 миллионов лет назад (ордовикский период), 300 миллионов лет назад - пермо-карбоновое оледенение, один из крупнейших ледниковых периодов, затронувший южные континенты. Под южными континентами подразумевается так называемая Гондвана - древний суперконтинент, включавший в себя Антарктиду, Австралию, Южную Америку, Индию и Африку.

Самое недавнее оледенение относится к периоду, в котором мы живем. Четвертичный период кайнозойской эры начался около 2,5 миллионов лет назад, когда ледники Северного полушария достигли моря. Но первые признаки этого оледенения датируются 50 миллионами лет назад в Антарктике.

Структура каждого ледникового периода периодична: есть относительно короткие теплые эпохи, а есть более длинные периоды обледенения. Естественно, холодные периоды не являются следствием одного лишь оледенения. Оледенение - это наиболее наглядное следствие холодных периодов. Однако существуют достаточно длительные интервалы, которые являются очень холодными, несмотря на отсутствие оледенений. Сегодня примерами таких регионов являются Аляска или Сибирь, где бывает очень холодно зимой, но оледенений нет, так как недостаточно осадков, способных обеспечить достаточное количество воды для образования ледников.

Открытие ледниковых периодов

О том, что на Земле бывают ледниковые периоды, нам известно с середины XIX века. Среди множества имен, связанных с открытием этого феномена, первым обычно называют имя Луи Агассиса, швейцарского геолога, жившего в середине XIX века. Он изучал ледники Альп и осознал, что когда-то они были гораздо более обширными, чем сегодня. Это заметил не только он. В частности, Жан де Шарпантье, еще один швейцарец, также отметил этот факт.

Неудивительно, что эти открытия были сделаны в основном в Швейцарии, так как в Альпах до сих пор существуют ледники, хоть они и достаточно быстро тают. Легко заметить, что когда-то ледники были значительно больше - достаточно посмотреть на швейцарский ландшафт, троги (ледниковые долины) и так далее. Однако именно Агассис первым выдвинул эту теорию в 1840 году, опубликовав ее в книге «Étude sur les glaciers», а позже, в 1844-м, он развил эту идею в книге «Système glaciare». Несмотря на первоначальный скептицизм, со временем люди стали понимать, что это действительно правда.

С появлением геологического картирования, особенно в Северной Европе, стало понятно, что раньше ледники имели огромный масштаб. Тогда шли обширные дискуссии на тему того, как эта информация соотносится с Всемирным потопом, потому что возник конфликт между геологическими доказательствами и библейскими учениями. Изначально ледниковые отложения называли делювиальными, потому что их считали доказательством Всемирного потопа. Только потом стало известно, что такое объяснение не подходит: эти отложения были доказательством холодного климата и обширных оледенений. К началу ХХ века стало понятно, что оледенений было множество, а не одно, и с того момента начала развиваться эта область науки.

Исследования ледниковых периодов

Известны геологические подтверждения ледниковых периодов. Основные доказательства оледенений происходят из характерных отложений, сформированных ледниками. Они сохраняются в геологическом срезе в форме толстых упорядоченных слоев особых наносов (седиментов) - диамиктона. Это просто ледниковые накопления, но они включают в себя не только отложения ледника, но и наносы талой воды, сформированные ее потоками, ледниковыми озерами или ледниками, двигающимися в море.

Существует несколько форм ледниковых озер. Их основное отличие заключается в том, что они представляют собой водное тело, огражденное льдом. Например, если у нас есть ледник, который поднимается в долину реки, то он блокирует долину, как пробка в бутылке. Естественно, когда лед блокирует долину, река все еще будет течь, а уровень воды будет повышаться до тех пор, пока не перельется через края. Таким образом, ледниковое озеро формируется через прямой контакт со льдом. Существуют определенные отложения, которые содержатся в таких озерах и которые мы можем выявить.

Из-за того, как тают ледники, что зависит от сезонных изменений температуры, происходит ежегодный сход льда. Это приводит к ежегодному приросту незначительных отложений, попадающих из-под льда в озеро. Если мы потом посмотрим в озеро, мы увидим там слоистость (ритмичные слоистые осадки), которые также известны под шведским названием «варвы» (varve), что означает «ежегодные накопления». Таким образом, мы действительно можем увидеть ежегодную слоистость в ледниковых озерах. Мы можем даже сосчитать эти варвы и узнать, как долго существовало это озеро. В целом при помощи этого материала мы можем получить очень много информации.

В Антарктике мы можем увидеть огромного размера шельфовые ледники, которые сходят с земли в море. И естественно, лед плавуч, поэтому он держится на воде. По мере того как он плывет, он несет с собой гальку и незначительные отложения. Из-за теплового воздействия воды лед тает и сбрасывает этот материал. Это приводит к формированию процесса так называемого рафтинга пород, которые уходят в океан. Когда мы видим ископаемые отложения этого периода, мы можем узнать, где был ледник, как далеко он протянулся и так далее.

Причины оледенений

Исследователи полагают, что ледниковые периоды возникают потому, что климат Земли зависит от неравномерного прогрева ее поверхности Солнцем. Так, например, экваториальные регионы, где Солнце находится практически вертикально над головой, являются самыми теплыми зонами, а полярные регионы, где оно находится под большим углом к поверхности, - самыми холодными. Это означает, что различие в обогреве разных участков поверхности Земли управляет океанно-атмосферной машиной, которая постоянно пытается перенести тепло с экваториальных регионов к полюсам.

Если бы Земля была обычным шаром, этот перенос был бы очень эффективным, а контраст между экватором и полюсами очень мал. Так было в прошлом. Но так как сейчас есть континенты, они становятся на пути этой циркуляции, и структура ее потоков становится очень сложной. Простые потоки сдерживаются и изменяются - во многом из-за гор, что приводит к тем схемам циркуляции, которые мы видим сегодня и которые управляют пассатами и океаническими течениями. Например, одна из теорий о том, почему ледниковый период начался 2,5 миллиона лет назад, связывает это явление с возникновением Гималайских гор. Гималаи все еще очень быстро растут, и оказывается, что существование этих гор в очень теплой части Земли управляет такими вещами, как система муссонов. Начало четвертичного ледникового периода также ассоциируется с закрытием Панамского перешейка, который соединяет север и юг Америки, что предотвратило перенос тепла с экваториальной зоны Тихого океана в Атлантический.

Если бы расположение континентов относительно друг друга и относительно экватора позволяло циркуляции эффективно работать, то на полюсах было бы тепло, а относительно теплые условия сохранялись бы по всей земной поверхности. Количество тепла, получаемого Землей, было бы постоянно и лишь немного варьировалось. Но так как наши континенты создают серьезные преграды циркуляции между севером и югом, мы имеем ярко выраженные климатические зоны. Это означает, что полюса относительно холодные, а экваториальные регионы - теплые. Когда все происходит так, как сейчас, Земля может меняться под влиянием вариаций в количестве солнечного тепла, которое она получает.

Эти вариации практически полностью постоянны. Причина этого состоит в том, что со временем земная ось меняется, как меняется и земная орбита. С учетом такого сложного климатического зонирования изменение орбиты может поспособствовать долгосрочным изменениям в климате, что приводит к колебанию климата. Из-за этого мы имеем не сплошное обледенение, а периоды обледенений, прерывающиеся теплыми периодами. Это происходит под влиянием орбитальных изменений. Последние орбитальные изменения рассматриваются как три отдельных явления: одно длиной в 20 тысяч лет, второе - в 40 тысяч лет, а третье - в 100 тысяч лет.

Это привело к отклонениям в схеме циклических изменений климата во время ледникового периода. Обледенение, скорее всего, возникло во время этого циклического периода в 100 тысяч лет. Последняя межледниковая эпоха, которая была такой же теплой, как нынешняя, длилась около 125 тысяч лет, а затем наступила длительная ледниковая эпоха, которая заняла около 100 тысяч лет. Сейчас мы живем в очередную межледниковую эпоху. Этот период не будет длиться вечно, поэтому в будущем нас ждет очередная ледниковая эпоха.

Почему завершаются ледниковые периоды

Орбитальные изменения меняют климат, и оказывается, что ледниковые периоды характеризуются чередованиями холодных периодов, которые могут длиться до 100 тысяч лет, и теплых периодов. Мы называем их ледниковой (гляциал) и межледниковой (интергляциал) эпохами. Межледниковая эпоха обычно характеризуется примерно такими же условиями, что мы наблюдаем и сегодня: высокий уровень моря, ограниченные территории обледенения и так далее. Естественно, и сейчас существуют оледенения в Антарктиде, Гренландии и других подобных местах. Но в целом климатические условия относительно теплые. В этом суть интергляциала: высокий уровень моря, теплые температурные условия и в целом достаточно ровный климат.

Но во время ледниковой эпохи среднегодовая температура значительно меняется, вегетативные пояса вынуждены сместиться на север или юг в зависимости от полушария. Регионы вроде Москвы или Кембриджа становятся необитаемыми, по крайней мере зимой. Хотя они могут быть обитаемыми летом из-за сильно выраженного контраста между сезонами. Но что на самом деле происходит: холодные зоны существенно расширяются, среднегодовая температура снижается, и общие климатические условия становятся очень холодными. В то время как самые большие ледниковые события относительно ограничены по времени (возможно, около 10 тысяч лет), весь длинный холодный период может длиться 100 тысяч лет или даже больше. Так выглядит ледниково-межледниковая цикличность.

Из-за длительности каждого периода трудно сказать, когда мы выйдем из текущей эпохи. Это обусловлено тектоникой плит, расположением континентов на поверхности Земли. В настоящее время Северный полюс и Южный полюс изолированы: Антарктика находится на Южном полюсе, а Северный Ледовитый океан на севере. Из-за этого существует проблема с циркуляцией тепла. До тех пор пока не изменится расположение континентов, этот ледниковый период будет продолжаться. В соответствии с долгосрочными тектоническими изменениями можно предположить, что это займет еще 50 миллионов лет в будущем, пока не произойдут существенные изменения, которые позволят Земле выйти из ледникового периода.

Геологические последствия

Это высвобождает огромные участки континентального шельфа, которые сегодня затоплены. Это будет означать, например, что однажды можно будет пройти пешком из Британии во Францию, из Новой Гвинеи в Юго-Восточную Азию. Одно из самых критических мест - это Берингов пролив, связывающий Аляску с Восточной Сибирью. Он достаточно мелкий, около 40 метров, так что если уровень моря опустится до ста метров, то этот участок станет сушей. Это важно также потому, что растения и животные смогут мигрировать через эти места и попадать в регионы, куда сегодня попасть не могут. Таким образом, колонизация Северной Америки зависит от так называемой Берингии.

Животные и ледниковый период

Важно помнить, что мы сами являемся «продуктами» ледникового периода: мы эволюционировали в течение него, поэтому мы можем его пережить. Однако дело не в отдельных индивидах - это вопрос всей популяции. Проблемой сегодня является то, что нас слишком много и наша деятельность существенно изменила естественные условия. В естественных условиях многие животные и растения, которых мы видим сегодня, имеют длинную историю и отлично переживают ледниковый период, хотя есть и те, что эволюционируют незначительно. Они мигрируют, адаптируются. Существуют зоны, в которых животные и растения пережили ледниковый период. Эти так называемые рефугиумы располагались дальше на север или юг от их сегодняшнего места распространения.

Но в результате человеческой деятельности часть видов погибла или вымерла. Это происходило на всех континентах, - возможно, за исключением Африки. Огромное количество больших позвоночных, а именно млекопитающих, а также сумчатых в Австралии, было истреблено человеком. Это было вызвано либо непосредственно нашей деятельностью, например охотой, либо косвенно - разрушением среды их обитания. Животные, обитающие в северных широтах сегодня, в прошлом жили в Средиземноморье. Мы разрушили этот регион настолько, что этим животным и растениям, скорее всего, будет очень сложно вновь его колонизировать.

Последствия глобального потепления

В нормальных условиях по геологическим меркам мы бы достаточно скоро вернулись в ледниковый период. Но из-за глобального потепления, которое является последствием человеческой активности, мы отсрочиваем его. Мы не сможем совсем его предотвратить, так как причины, вызвавшие его в прошлом, существуют и сейчас. Деятельность человека, непредусмотренный природой элемент, влияет на атмосферное потепление, которое уже, возможно, вызвало задержку следующего гляциала.

Сегодня изменения климата - это очень актуальный и волнующий вопрос. Если Гренландский ледяной щит растает, то уровень моря поднимется на шесть метров. В прошлом, во время предыдущей межледниковой эпохи, которая была примерно 125 тысяч лет назад, Гренландский ледяной щит обильно таял, а уровень моря стал на 4–6 метров выше сегодняшнего. Это, конечно, еще не конец света, но и не временная сложность. В конце концов, Земля оправлялась от катастроф и раньше, она сможет пережить и эту.

Долгосрочный прогноз для планеты неплох, но для людей это другой вопрос. Чем больше мы проводим исследований, чем лучше понимаем, как Земля меняется и к чему это ведет, тем лучше мы понимаем планету, на которой живем. Это важно, потому что люди наконец стали задумываться об изменении уровня моря, глобальном потеплении и влиянии всех этих вещей на сельское хозяйство и население. Многое из этого связано с изучением ледниковых периодов. При помощи этих исследований мы узнаем механизмы оледенений, и мы можем использовать это знание с упреждением, пытаясь смягчить некоторые из этих изменений, которые сами и вызываем. Это и есть один из основных результатов и одна из целей исследований ледниковых периодов.
Конечно, главное следствие ледникового периода - это огромные ледниковые щиты. Откуда берется вода? Конечно, из океанов. А что происходит во время ледниковых периодов? Ледники формируются как следствие осадков на суше. Из-за того, что вода не возвращается в океан, уровень моря падает. Во времена наиболее сильных оледенений уровень моря может упасть больше чем на сто метров.

Иногда можно слышать утверждение, что ледниковый период уже позади и человеку в дальнейшем не придется сталкиваться с этим явлением. Это было бы справедливо, если бы мы были уверены в том, что современное оледенение на земном шаре — всего лишь остаток Великого четвертичного оледенения Земли и неминуемо вскоре должно исчезнуть. На самом деле ледники продолжают оставаться одним из ведущих компонентов окружающей среды и вносят важный вклад в жизнь нашей планеты.

Образование горных ледников

По мере подъема в горы воздух становится все холоднее. На некоторой высоте зимний снег не успевает стаять за лето; из года в год он накапливается и дает начало ледникам. Ледник — это масса многолетнего льда преимущественно атмосферного происхождения, которая движется под действием силы тяжести и принимает форму потока, купола или плавучей плиты (если речь идет о покровных и шельфовых ледниках).

В верхней части ледника находится область аккумуляции, где идет накопление осадков, которые постепенно преобразуются в лед. Постоянное пополнение запасов снега, его уплотнение, перекристаллизация приводят к тому, что он превращается в крупнозернистую массу ледяных зерен — фирн, а затем под давлением выше лежащих слоев — в массивный глетчерный лед.

Из области аккумуляции лед перетекает в нижнюю часть — так называемую область абляции, где он расходуется преимущественно путем таяния. Верхняя часть горного ледника обычно представляет собой фирновый бассейн. Он занимает кар (или цирк — расширенное верховье долины) и имеет вогнутую поверхность. При выходе из цирка ледник нередко пересекает высокую устьевую ступень — ригель; здесь лед рассекают глубокие поперечные трещины и возникает ледопад. Дальше ледник сравнительно узким языком спускается вниз по долине. Жизнь ледника во многом определяется балансом его массы. При положительном балансе, когда приход вещества на леднике превышает его расход, масса льда увеличивается, ледник становится более активным, продвигается вперед, захватывает новые площади. При отрицательном — становится пассивным, отступает, освобождая из-подо льда долину и склоны.

Вечное движение

Величественные и спокойные, ледники в действительности находятся в непрестанном движении. Медленно текут вниз по склонам так называемые каровые и долинные ледники, растекаются от центра к периферии ледниковые щиты и купола. Это движение определяется силой тяжести и становится возможным благодаря свойству льда деформироваться под напряжением, Хрупкий в отдельных фрагментах, в обширных массивах лед приобретает пластические свойства, подобно застывшему вару, который колется, если по нему ударить, но медленно стекается по поверхности, будучи «сгруженным» в одном месте. Нередки и такие случаи, когда лед почти всей своей массой скользит по ложу или по другим слоям льда — это так называемое глыбовое скольжение ледников. Трещины формируются на одниx и тex же местах ледника, но так как в этом процессе участвуют каждый раз все новыe ледяные массы, то старые трещины, по мере перемещения льда от места их образования, постепенно «залечиваются», то есть смыкаются. Отдельные трещины протягиваются но леднике от нескольких десятков до многих сотен метров, их глубина достигает 20—30, а порой 50 метров и более.

Перемещение тысячетонных ледяных масс хоть и очень медленно, но производит огромную работу — за многие тысячи лет оно неузнаваемо преображает лик планеты. Сантиметр за сантиметром проползает лед по твердым каменным породам, оставляя на них борозды и шрамы, разламывая и унося их с собой. С поверхности Антарктического материка ледники ежегодно сносят слои горных пород толщиной в среднем 0,05 мм. Эта кажущаяся микроскопической величина вырастает уже до 50 м, если принять во внимание весь миллион лет четвертичного периода, когда Антарктический континент был наверняка покрыт льдом. У многих ледников Альп и Кавказа скорость движения льда — около 100 м в год. В более крупных ледниках Тянь-Шаня и Памира лед перемещается за год на 150—300 м, а на некоторых гималайских — до 1 км, то есть по 2—3 м за сутки.

Ледники имеют самые разные размеры: от 1 км в длину — у небольших каровых ледников, до десятков километров — у крупных долинных. Крупнейший в Азии ледник Федченко достигает в длину 77 км. В своем движении ледники переносят на многие десятки, а то и на сотни километров глыбы горных пород, упавших с горных склонов на их поверхность. Подобные глыбы носят название эрратических, то есть «блуждающих», валунов, состав которых отличается oт местных горных пород.

Такие валуны тысячами находят на равнинах Европы и Северной Америки, в долинах на выходе их из гор. Объем некоторых из них достигает нескольких тысяч кубометров. Известен, например, гигантский Ермоловский камень в русле Терека, на выходе из Дарьяльского ущелья Кавказа. Длина камня превышает 28 м, а высота -— около 1 7 м. Источником их появления служат места, где соответствующие породы выходят на поверхность. В Америке это Кордильеры и Лабрадор, в Европе — Скандинавия, Финляндия, Карелия. И принесены они сюда издалека, оттуда, где когда-то существовали огромные ледниковые покровы, напоминанием о которых служит современный ледниковый щит Антарктиды.

Загадка их пульсации

В середине XX века люди столкнулись с еще одной проблемой — пульсирующими ледниками, отличающимися внезапными продвижениями своих концов, вне видимой связи с изменениями климата. Сейчас известны сотни пульсирующих ледников во многих ледниковых районах. Больше всего их на Аляске, в Исландии и на Шпицбергене, в горах Центральной Азии, на Памире.

Общей причиной ледниковых подвижек служит накопление льда в условиях, когда расход его затруднен узостью долины, моренным покровом, взаимным подпруживанием основного ствола и боковых притоков и т.п. Такое накопление создает условия неустойчивости, вызывающие сток льда: большие сколы, разогрев льда с выделением воды в процессе внутреннего таяния, появление водной и водно-глинистой смазки на ложе и сколах. 20 сентября 2002 года в долине реки Геналдон в Северной Осетии произошла катастрофа. Из верховьев долины вырвались огромные массы льда, смешанного с водой и каменным материалом, стремительно пронеслись вниз по долине, уничтожая все на своем пути, и образовали завал, распластавшись на всей Кармадонской котловине перед грядой Скалистого хребта. Виновником катастрофы стал пульсирующий ледник Колка, подвижки которого неоднократно происходили и в прошлом.

У ледника Колка, как и у многих других пульсирующих ледников, затруднен сток льда. В течение многих лет лед накапливается перед препятствием, наращивает массу до определенного критического объема и, когда тормозящие силы не могут противостоять сдвигающим, происходит резкая разрядка напряжения, ледник наступает. В прошлом подвижки ледника Колка происходили около 1835-го, в 1902 и 1969 годах. Они возникали, когда на леднике наращивалась масса в 1—1,3 млн. тонн. Геналдонская катастрофа 1902 гида произошла 3 июля, в разгар жаркого лета. Температура воздуха в этот период превышала норму на 2,7°, прошли сильные ливни. Превратившись в пульпу из льда, воды и морены, ледяной выброс преобразовался в сокрушительный скоростной сель, промчавшийся в считанные минуты. Подвижка 1969 года развивалась постепенно, достигнув наибольшего развития в зимнее время, когда количество талой воды в бассейне было минимальным. Это и определило относительно спокойный ход событий. В 2002 году в леднике накопилось огромное количество воды, ставшей спусковым механизмом подвижки. Очевидно, вода «оторвала» ледник от ложа и сформировался мощный водно-ледово-каменный сель. То, что подвижка была спровоцирована раньше времени и достигла колоссального масштаба, было обусловлено сложившимся комплексом факторов: неустойчивым динамическим состоянием ледника, уже накопившего массу, близкую к критической; мощным скоплением воды в леднике и под ледником; обвалами льда и горной породы, создавшими перегрузку в тыловой части ледника.

Мир без ледников

Общий объем льда на Земле составляет почти 26 млн. км 3 , или около 2% всей земной воды. Эта масса льда равна стоку всех рек земного шара за 700 лет.

Если существующий лед равномерно распределить по поверхности нашей планеты, он покроет ее слоем толщиной 53 м. А если бы этот лед внезапно растаял, то уровень Мирового океана повысился бы на 64 м. При этом оказались бы затопленными густонаселенные плодородные прибрежные равнины на площади около 15 млн. км 2 2 . Такое внезапное таяние произойти не может, но на протяжении геологических эпох, когда ледниковые покровы возникали, а затем постепенно стаивали, колебания уровня моря были еще большими.

Прямая зависимость

Огромно влияние ледников на климат Земли. В зимнее время В полярные области солнечной радиации приходит чрезвычайно мало, так как Солнце не показывается из-за горизонта и здесь господствует полярная ночь. А летом из-за большой продолжительности полярного дня количество поступающей от Солнца лучистой энергии больше, чем даже в районе экватора. Однако температуры остаются по-прежнему низкими, так как до 80% приходящей энергии снежный и ледяной покровы отражают обратно. Совсем иной оказалась бы картина, если бы ледяного покрова не было. В этом случае почти все приходящее летом тепло осваивалось бы и температура в полярных областях отличалась бы от тропической в значительно меньшей cтепени. Так что, не будь вокруг земных полюсов материкового ледникового покрова Антарктиды и ледяного покрова Северного Ледовитого океана, на Земле не было бы привычного нам деления на природные пояса и весь климат был бы гораздо более однообразным. Стоит массивам льда у полюсов растаять, как в полярных областях станет гораздо теплее, а на берегах бывшего Северного Ледовитого океана и на поверхности свободной ото льда Антарктиды появится богатая растительность. Именно так и было на Земле в неогеновом периоде — всего несколько миллионов лет назад на ней был ровный мягкий климат. Впрочем, можно себе представить и другое состояние планеты, когда она целиком покрыта панцирем льда. Ведь, раз образовавшись в определенных условиях, ледники способны разрастаться сами, так как они понижают окружающую температуру и растут в высоту, тем самым распространяясь в более высокие и более холодные слои атмосферы. Откалывающиеся от крупных ледниковых покровов айсберги разносятся по океану, попадают в тропические воды, где их таяние также способствует охлаждению вод и воздуха.

Если образованию ледников ничто не препятствует, то толщина слоя льда могла бы увеличиться до нескольких километров за счет воды из океанов, уровень которых непрерывно бы понижался. Таким путем постепенно все материки оказались бы подо льдом, температура на поверхности Земли понизилась бы примерно до -90°С и органическая жизнь на ней прекратилась бы. К счастью, этого не было на протяжении всей геологической истории Земли, и нет оснований думать, что такое оледенение может произойти в будущем, В настоящее же время Земля переживает состояние частичного оледенения, когда ледниками покрыта лишь десятая часть ее поверхности. Такое состояние отличается неустойчивостью: ледники либо сокращаются, либо увеличиваются в размерах и очень редко остаются неизменными.

Белый покров "голубой планеты"

Если взглянуть на нашу планету из космоса, можно увидеть, что отдельные ее участки выглядят совершенно белыми — это снежный покров, так хорошо знакомый жителям умеренных поясов.

Снег обладает рядом удивительных свойств, делающих его незаменимым компонентом на «кухне» Природы. Снежный покров Земли отражает больше половины лучистой энергии, приходящей к нам от Солнца, тот же, что покрывает полярные ледники (наиболее чистый и сухой), — вообще до 90% солнечных лучей! Впрочем, снег обладает и еще одним феноменальным свойством. Известно, что тепловую энергию излучают все тела, и чем они темнее, тем потери тепла с их поверхности больше. А вот снег, будучи ослепительно белым, способен излучать тепловую энергию почти как абсолютно черное тело. Различия между ними не достигают и 1%. Так что, даже то незначительное тепло, которым обладает снежный покров, быстро излучается в атмосферу. В результате снег еще больше охлаждается, и районы земного шара, покрытые им, становятся источником охлаждения всей планеты.

Особенности шестого континента

Антарктида — самый высокий континент планеты, средняя высота которого равна 2 350 м (средняя высота Европы 340 м, Азии — 960 м). Эта высотная аномалия объясняется тем, что большая часть массы материка сложена льдом, который почти втрое легче каменных пород. Когда-то он был свободен ото льда и ненамного отличался по высоте от других континентов, но постепенно мощный ледяной панцирь покрыл весь материк, а земная кора стала прогибаться под колоссальной нагрузкой. За прошедшие миллионы лет эта избыточная нагрузка, «изостатически компенсировалась», иначе говоря, земная кора прогнулась, но следы ее до сих пор отражены в рельефе Земли. Океанографические исследования прибрежных антарктических вод показали, что материковая отмель (шельф), которая окаймляет все материки мелководной полосой с глубинами не более 200 м, у берегов Антарктиды оказалась на 200—300 м глубже. Причиной этому служит опускание земной коры под тяжестью льда, ранее покрывавшего материковую отмель толщиной 600— 700 м. Сравнительно недавно лед отсюда отступил, но земная кора еще не успела «разогнуться» и, кроме того, она удерживается льдом, лежащим южнее. Неограниченному распространению Антарктического ледникового покрова всегда мешало море.

Всякое расширение ледников за пределы суши возможно лишь при услоиии, что море у берега не глубокое, иначе морские течения и волнения рано или поздно разрушат выдвинувшийся далеко в море лед. Поэтому граница максимального оледенения проходила по внешнему краю материковой отмели. На антарктическое оледенение в целом большое влияние оказывает изменение уровня моря. При понижении уровня Мирового океана ледниковый покров шестого континента начинает наступать, при повышении происходит его отступание. Известно, что за последние 100 лет уровень моря вырос на 18 см, продолжает расти и сейчас. Видимо, с этим процессом связано разрушение некоторых антарктических шельфових ледников, сопровождающееся отколом огромных столовых айсбергов длиной до 150 км. Вместе с тем есть все основания полагать, что масса антарктического оледенения в современную эпоху увеличивается, и это тоже может быть связано с происходящим глобальным потеплением. Действительно, потепление климата вызывает активизацию атмосферной циркуляции и усиление межширотного обмена воздушных масс. На Антарктический материк поступает более теплый и влажный воздух. Однако повышение температуры на несколько градусов не вызывает никакого таяния внутри материка, где сейчас стоят морозы в 40—60°С, в то время как увеличение количества влаги приводит к более обильным снегопадам. Значит, потепление вызывает увеличение питания и рост оледенения Антарктиды.

Последнее максимальное оледенение

Кульминация последней ледниковой эпохи на Земле была 21—17 тыс. лет назад, когда объем льда возрастал приблизительно до 100 млн. км 3 . В Антарктике оледенение в это время захватывало весь континентальный шельф. Объем льда в ледниковом покрове, по-видимому, достигал 40 млн. км 3 , то есть был примерно на 40% больше его современного объема. Граница паковых льдов сдвигалась к северу приблизительно на 10°. В Северном полушарии 20 тыс. лет назад формировался гигантский Панарктический древнеледниковый покров, объединявший Евразийский, Гренландский, Лаврентийский и ряд более мелких щитов, а также обширные плавучие шельфовые ледники. Общий объем щита превышал 50 млн. км 3 , а уровень Мирового океана понижался не менее чем на 125м.

Деградация Панарктического покрова началась 17 тыс. лет назад с разрушения входивших в его состав шельфовых ледников. После этого «морские» части Евразийского и Североамериканского ледниковых покровов, потерявшие устойчивость, стали катастрофически разрушаться. Распад оледенения произошел всего за несколько тысяч лет. От края ледниковых покровов в то время текли огромные массы воды, возникали гигантские подпрудные озера, а их прорывы были во много раз больше современных. В природе господствовали стихийные процессы, неизмеримо более активные, чем сейчас. Это привело к значительному обновлению природной среды, частичной смене животного и растительного мира, началу господства на Земле человека.

12 тыс. лет назад наступил голоцен — современная геологическая эпоха. Температура воздуха в умеренных широтах повысилась на 6° по сравнению с холодным поздним плейстоценом. Оледенение приняло современные размеры.

Древние оледенения...

Идеи о древних оледенениях гор были высказаны еще в конце XVIII века, а о прошлом оледенении равнин умеренных широт — в первой половине XIX века. Теория древнего оледенения не сразу завоевала признание среди ученых. Еще в начале XIX века во многих местах земного шара находили штрихованные валуны горных пород явно не местного происхождения, но что их могло принести, ученые не знали. В

1830 году английский исследователь Ч. Лайель выступил со своей теорией, в которой и разнос валунов, и штриховку скал приписывал действию плавучих морских льдов. Гипотеза Лайеля встретила серьезные возражения. Во время своего знаменитого путешествия на корабле «Бигль» (1831—1835 годы) Ч.Дарвин некоторое время прожил на Огненной Земле, где воочию увидел ледники и порождаемые ими айсберги. Впоследствии он писал, что валуны по морю могут разноситься айсбергами, особенно в периоды более широкого развитии ледников. А после своего путешествия в Альпы в 1857 году и сам Лайель усомнился в правильности своей теории. В 1837 году швейцарский исследователь Л. Агассис впервые объяснил воздействием ледников и полировку скал, и перенос валунов, и отложение морены. Значительный вклад в становление ледниковой теории внесли русские ученые, и прежде всего П.А. Кропоткин. Путешествуя в 1866-м по Сибири, он обнаружил на Па-томском нагорье множество валунов, ледниковых наносов, гладких отполированных скал и связал эти находки с деятельностью древних ледников. В 1871 году Русское географическое общество командировало его в Финляндию — страну с яркими следами недавно отступивших отсюда ледников. Эта поездка окончательно оформила его взгляды. Изучая древние геологические отложения, мы нередко находим тиллиты — грубообломочные окаменевшие морены и ледниково-морские осадки. Они обнаружены на всех континентах в отложениях разного возраста, и по ним восстанавливается ледниковая история Земли за 2,5 млрд. лет, в течение которых планета пережила 4 ледниковые эры, длившиеся от многих десятков до 200 млн. лет. Каждаи такая эра состояла из ледниковых периодов, соизмеримых по длительности с плейстоценом, или четвертичным периодом, а каждый период — из большого числа ледниковых эпох.

Продолжительность ледниковых эр на Земле составляет не менее трети всего времени ее эволюции за последние 2,5 млрд, лет. А если учесть длительные начальные фазы зарождения оледенения и его постепенной деградации, то эпохи оледенения займут почти столько же времени, сколько и теплые, безледные, условия. Последний из ледниковых периодов начался почти миллион лет назад, в четвертичное время, и ознаменовался обширным распространением ледников — Великим оледенением Земли. Под мощными покровами льда оказались северная часть Северо-Американского континента, значительная часть Европы, а возможно, также и Сибирь. В Южном полушарии подо льдом, как и сейчас, находился весь Антарктический материк. В период максимального распространения четвертичного оледенения ледники покрывали свыше 40 млн. км 2 — около четверти всей поверхности материков. Крупнейшим в Северном полушарии был Североамериканский ледниковый щит, достигавший в толщину 3,5 км. Под ледниковым покровом толщиной до 2,5 км оказалась вся северная Европа. Достигнув наибольшего развития 250 тыс. лет назад, четвертичные ледники Северного полушария стали постепенно сокращаться. Оледенение не было непрерывным на протяжении всего четвертичного периода. Существуют геологичоские, палеоботанические и другие доказательства того, что за это время ледники по крайней мере трижды совершенно исчезали, сменяясь эпохами межледниковья, когда климат был теплее современного. Однако на смену этим теплым эпохам приходили похолодания, и ледники распространялись вновь. Сейчас мы живем, по-видимому, в конце четвертой эпохи четвертичного оледенения. Совсем не так, как в Северном полушарии, развивалось четвертичное оледенение Антарктиды. Оно возникло за много миллионов лет до того времени, как появились ледники в Северной Америке и Европе. Помимо климатических условий этому способствовал издавна существовавший здесь высокий материк. В отличие от древних ледниковых покровов Северного полушария, которые то исчезали, то возникали вновь, Антарктический ледниковый покров мало изменялся в своих размерах. Максимальное оледенение Антарктиды было больше современного всего в полтора раза по объему и ненамного больше по площади.

... и их возможные причины

Причина крупных изменений климата и возникновения великих оледенений Земли до сих пор остается загадкой. Все высказанные по этому поводу гипотезы можно объединить в три группы — причину периодических изменений земного климата искали либо вне пределов Солнечной системы, либо в деятельности самого Солнца, либо в процессах, происходящих на Земле.

Галактика
К космическим гипотезам oтносятся предположения о влиянии на похолодание Земли различных участков Вселенной, которые проходит Земля, двигаясь в космосе вместе с Галактикой. Одни считают, что похолодание наступает тогда, когда Земля проходит участки мирового пространства, заполненные газом. Другие — те же последствия приписывают воздействию облаков космической пыли. Согласно еще одной из гипотез Земля в целом должна испытывать большие изменения, когда она, перемещаясь вместе с Солнцем, переходит из насыщенной звездами части Галактики в ее внешние, разреженные области. Когда земной шар приближается к апогалактию — точке, наиболее удаленной от той части нашей Галактики, где расположено наибольшее количество звезд, он входит в зону «космической зимы» и на нем начинается ледниковая эпоха.

Солнце
Развитие оледенений связывают также с колебаниями активности самого Солнца. Гелиофизики уже давно выяснили периодичность появления на нем темных пятен, вспышек, протуберанцев и научились прогнозировать эти явления. Оказалось, что солнечная активность периодически меняется. Существуют периоды разной длительности: 2—3, 5—6, 11, 22 и около 100 лет. Может так случиться, что кульминации нескольких периодов разной длительности совпадут и солнечная активность будет особенно велика. Но может быть и наоборот — совпадут несколько периодов пониженной солнечной активности, и это вызовет развитие оледенения. Подобные изменения солнечной активности, безусловно, отражаются на колебаниях ледников, но вряд ли способны вызвать великое оледенение Земли.

СО 2
Повышение или понижение температуры на Земле может происходить также в случае изменения состава атмосферы. Так, углекислота, свободно пропускающая солнечные лучи к Земле, но поглощающая большую часть ее теплового излучения, служит колоссальным экраном, который препятствует охлаждению нашей планеты. Сейчас содержание в атмосфере С0 2 не превышает 0,03%. Если эта цифра уменьшится вдвое, то средние годовые температуры в умеренных поясах снизятся на 4—5°, что может привести к началу ледникового периода.

Вулканы
Своеобразным экранам может служить и вулканическая пыль, выбрасываемая при крупных извержениях до высоты 40 км. Облака вулканической пыли, с одной стороны, задерживают солнечные лучи, а с другой — не пропускают земное излучение. Но первый процесс сильнее второго, поэтому периоды усиленного вулканизма должны вызывать охлаждение Земли.

Горы
Широко известна и идея о связи оледенения на нашей планете с горообразованием. Во время эпох горообразования поднимавшиеся крупные массы континентов попадали в более высокие слои атмосферы, охлаждались и служили местами зарождения ледников.

Океан
По мнению многих исследователей, оледенение может возникать также в результате перемены направления морских течений. Например, течение Гольфстрим ранее было отклонено выступом суши, простиравшимся от Ньюфаундленда к островам Зеленого мыса, что способствовало охлаждению Арктики по сравнению с современными условиями.

Атмосфера
В последнее время ученые стали связывать развитие оледенения с перестройкой циркуляции атмосферы — когда в отдельные районы планеты попадает значительно большее количество осадков и при наличии достаточно высоких гор здесь возникает оледенение.

Антарктида
Возможно, возникновению оледенения способствовало поднятие Антарктического материка. В результате разрастания ледникового покрова Антарктиды на несколько градусов уменьшилась температура всей Земли и на несколько десятков метров понизился уровень Мирового океана, что способствовало развитию оледенения на севере.

"Новейшая история"

Последнее отступание ледников, начавшееся свыше 10 тыс. лет назад, осталось на памяти людей. В историческую эпоху — примерно за 3 тыс. лет — наступания ледников происходили в столетия с пониженной температурой воздуха и увеличенной увлажненностью. Такие же условия складывались в последние века прошлой эры и в середине прошлого тысячелетия. Околи 2,5 тыс. лет назад началось значительное похолодание климата. Арктические острова покрылись ледниками, в странах Средиземноморья и Причерноморья на грани новой эры климат был более холодным и влажным, чем сейчас. В Альпах в I тысячелетии до н. э. ледники выдвинулись на более низкие уровни, загромоздили горные перевалы льдами и разрушили некоторые высоко расположенные селения. На эту эпоху приходится крупное наступание кавказских ледников. Совсем другим был климат на рубеже I и II тысячелетий.

Более теплые условия и отсутствие льдов в северных морях позволили мореплавателям Северной Европы проникнуть далеко на север. С 870 года началась колонизация Исландии, где ледников в то время было меньше, чем теперь.

В X веке норманны, ведомые Эйриком Рыжым, обнаружили южную оконечность огромного острова, берега которого заросли густой травой и высоким кустарником, они основали здесь первую европейскую колонию, а землю эту назвали Гренландией.

К концу I тысячелетия сильно отступили и горные ледники в Альпах, на Кавказе, в Скандинавии и Исландии. Климат начал снова серьезно меняться в XIV веке. В Гренландии стали наступать ледники, летнее оттаивание грунтов становилось все более кратковременным, и к концу века здесь прочно установилась вечная мерзлота. Возросла ледовитость северных морей, и предпринимавшиеся в последующие века попытки достигнуть Гренландии обычно заканчивались неудачей. С конца XV века началось наступание ледников во многих горных странах и полярных районах. После сравнительно теплого XVI века наступили суровые столетия, получившие название малого ледникового периода. На юге Европы часто повторялись суровые и продолжительные зимы, в 1621 и 1669 годах замерзал пролив Босфор, а в 1709 году у берегов замерзало Адриатическое море. Во второй половине XIX века завершился малый ледниковый период и началась сравнительно теплая эпоха, продолжающаяся и сейчас.

Что нас ждет?

Потепление XX столетия особенно четко было выражено в полярных широтах Северного полушария. Колебания ледниковых систем характеризуются долей наступающих, стационарных и отступающих ледников. Так, например, для Альп имеются данные, охватывающие все прошедшее столетие. Если доля наступающих альпийских ледников в 40-50-х годах была близка к нулю, то в середине 60-х здесь наступало около 30%, а в конце 70-х — 65—70% обследованных ледников. Подобное их состояние свидетельствовало о том, что антропогенное увеличение содержания двуокиси углерода, других газов и аэрозолей в атмосфере в XX столетии не повлияло на нормальный ход глобальных атмосферных и ледниковых процессов. Однако в конце прошлого века повсюду в горах ледники перешли к отступанию, что стало реакцией на глобальное потепление, тенденция которого особенно усилилась в 1990-х годах.

Известно, что возросшее ныне количество выбросов в атмосферу аэрозоля антропогенного происхождения способствует уменьшению прихода солнечной радиации. В связи с этим появились голоса о начале ледниковой эпохи, но они затерялись в мощной волне опасений грядущего антропогенного потепления из-за постоянного роста С0 2 и других газовых примесей в атмосфере.

Увеличение С0 2 ведет к увеличению количества задерживаемого тепла и тем самым повышает температуру. Такое же воздействие оказывают и некоторые малые газовые примеси, попадающие в атмосферу: фреоны, окислы азота, метан, аммиак и так далее. Но тем не менее далеко не вся масса образующейся при сгорании двуокиси углерода остается в атмосфере: 50—60% промышленных выбросов С0 2 попадают в океан или усваиваются растениями. Многократный рост концентрации С0 2 в атмосфере не ведет к такому же многократному росту температуры. Очевидно, существует природный механизм регулирования, резко замедляющий парниковый эффект при концентрациях С0 2 превышающих двух- или трехкратные.

Какова перспектива роста содержания С0 2 в атмосфере в ближайшие десятилетия и как будет повышаться температура пследавие этого, определенно сказать трудно. Некоторые ученые предполагают ее увеличение в первой четверти XXI века на 1—1,5°, а в дальнейшем и еще больше. Однако эта позиция не доказана, есть много оснований полагать, что современное потепление представляет собой часть естественного цикла колебаний климата и в недалеком будущем сменится похолоданием. Во всяком случае, голоцен, длящийся уже более 11 тыс. лет, оказывается самым длинным межледниковьем за последние 420 тыс. лет и уже скоро, очевидно, закончится. И мы, заботясь о последствиях текущего потепления, не должны забывать и о возможном грядущем похолодании на Земле.

Владимир Котляков, академик, директор Института географии РАН

Одна из загадок Земли, наравне с возникновением на ней Жизни и вымирания в конце мелового периода динозавров, это – Великие Оле­денения.

Есть мнение, что оледенения повторяются на Земле регулярно через каждые 180-200 млн. лет. Следы оледенений известны в отложениях, которым миллиарды и сотни миллионов лет назад – в кембрии, в карбоне, в триасе-перми. О том, что они могли быть, «говорят» так называемые тиллиты , породы, очень схожие с мореной последнего, точнее последних оледенений . Это остатки древних отложений ледников, состоящие из глинистой массы с включениями крупных и мелких исцарапанных при движении (штрихованных) валунов.

Отдельные слои тиллитов , находимых даже в экваториальной Африке, могут достигать мощности десятков и даже сотен метров !

Признаки оледенений обнаружены на разных материках – в Австралии, Южной Америке, Африке и Индии , что используется учёными для реконструкции палеоконтинентов и часто приводят в подтверждение теории тектоники плит .

Следы древних оледенений свидетельствуют о том, что оледенения континентального масштаба – это совсем не случайный феномен, это закономерное природное явление, возникающее при определённых условиях .

Последний из ледниковых периодов начался почти миллион лет назад, в четвертичное время, или четвертичный период, плейстоцен и ознаменовался обширным распространением ледников – Великим Оледенением Земли .

Под мощными, многокилометровыми покровами льда оказались северная часть Северо-Американского континента – Северо-Американский ледниковый щит, достигавший мощности до 3.5 км и простиравшийся примерно до 38° северной широты и значительная часть Европы, на который (ледниковый покров мощностью до 2.5-3 км). На территории России ледник спускался двумя громадными язы­ками по древним долинам Днепра и Дона.

Частично оледенение охватило и Сибирь – там в основном было так называемое «горно-долинное оледенение», когда ледники не покрывали все пространство мощным покровом, а были лишь в горах и предгорных долинах, что связано с резко-континентальным климатом и низкими температурами в Восточной Сибири. А вот почти вся Западная Сибирь, в связи с тем, что прошло подпруживание рек, и прекратился их сток в Северный Ледовитый океан, оказалось под водой, и представляла собой огромное море-озеро.

В Южном полушарии подо льдом, как и сейчас, находился весь Антарктический материк.

В период максимального распространения четвертичного оледенения ледники покрывали свыше 40 млн. км 2 около четверти всей поверхности материков.

Достигнув наибольшего развития около 250 тыс. лет назад, четвертичные ледники Северного полушария стали постепенно сокращаться, так как период оледенения не был непрерывным на протяжении всего четвертичного периода .

Существуют и геологические, и палеоботанические и иные доказательства того, что ледники несколько раз исчезали, сменяясь эпохами межледниковья , когда климат был даже теплее современного. Однако на смену теплым эпохам вновь приходили похолодания, и ледники распространялись вновь.

Сейчас мы живем, по-видимому, в конце четвертой эпохи четвертичного оледенения.

А вот в Антарктиде оледенение возникло за миллионы лет до того времени, как появились ледники в Северной Америке и Европе. Помимо климатических условий этому способствовал издавна существовавший здесь высокий материк. Кстати сейчас, в связи с тем, что толща ледника Антарктиды огромна, материковое ложе «ледяного континента» кое-где находится ниже уровня моря…

В отличие от древних ледниковых покровов Северного полушария, которые то исчезали, то возникали вновь, Антарктический ледниковый покров мало изменялся в своих размерах. Максимальное оледенение Антарктиды было больше современного всего в полтора раза по объему, и ненамного больше по площади.

Теперь о гипотезах… Гипотез, почему происходят оледенения, и были ли они вообще, сотни, если не тысячи!

Обычно выдвигаются следующие основные научные гипотезы :

  • Вулканические извержения, приводящие к уменьшению прозрачности атмосферы и похолоданию на всей территории Земли;
  • Эпохи орогенеза (горообразования);
  • Уменьшение количества углекислого газа в атмосфере, что снижает «парниковый эффект» и приводит к похолоданию;
  • Цикличность активности Солнца;
  • Изменения положения Земли относительно Солнца.

Но, тем не менее, причины оледенений окончательно так и не выяснены!

Предполагают, например, что оледенение начинается, когда при увеличении расстояния между Землей и Солнцем, вокруг которого она вращается по слегка вытянутой орбите, уменьшается количество солнечного тепла, получаемого нашей планетой, т.е. оледенение наступает при прохождении Землей точки орбиты, наиболее далеко отстоящей от Солнца.

Однако астрономы считают, что одних лишь изменений количества солнечного излучения, попадающего на Землю, недостаточно, чтобы начался ледниковый период. Видимо, имеет значение и колебание активности самого Солнца, что является периодическим, циклическим процессом, и изменяется через каждые 11-12 лет, с цикличностью 2-3 года и 5-6 лет. А самые большие циклы активности, как установил советский географ А.В. Шнитников – примерно 1800-2000 лет.

Есть также и гипотеза, что возникновение ледников связано с некими участками Вселенной, через которые проходит наша Солнечная система, двигаясь со всей Галактикой, то ли заполненные газом, то ли «облаками» космической пыли. И вероятно, что «космическая зима» на Земле наступает, когда земной шар находится в точке, наиболее удаленной от центра нашей Галактики, где имеются скопления «космической пыли» и газа.

Следует отметить, что обычно перед эпохами похолоданий всегда «идут» эпохи потепления, и есть, например, гипотеза, что Северный Ледовитый океан, вследствие потепления, временами полностью освобождается ото льда (между прочим, это происходит и сейчас), с поверхности океана усиленное испарение, потоки влажного воздуха направляются к полярным областям Америки и Евразии, и над холодной поверхностью Земли выпадает снег, не успевающий растаять за короткое и холодное лето. Так на материках и возникают ледниковые покровы.

Но, когда в результате превращения части воды в лед, уровень Мирового океана понижается на десятки метров, тёплый Атлантический океан перестаёт сообщаться с Северным Ледовитым океаном, и тот снова постепенно покрывается льдом, испарение с его поверхности резко прекращается, снега на материках выпадает всё меньше и меньше, «питание» ледников ухудшается, и ледниковые покровы начинают таять, а уровень Мирового океана вновь повышается. И снова Северный Ледовитый океан соединяется с Атлантическим, и снова ледяной покров начал постепенно исчезать, т.е. цикл развития очередного оледенения начинается заново.

Да, все эти гипотезы вполне возможны , но пока ни одна из них не может быть подтверждена серьезными научными фактами.

Поэтому одна из главных, основополагающих гипотез – это изменение климата на самой Земле, что связано с вышеупомянутыми гипотезами .

Но вполне возможно, что процессы оледенения связаны с совокупным воздействием различных природных факторов , которые могли действовать и совместно, и сменять друг друга , и важно то, что, начавшись, оледенения, как «заведённые часы», уже развиваются самостоятельно, по своим законам, иногда даже «игнорируя» некоторые климатические условия и закономерности.

И ледниковый период, начавшийся в Северном полушарии около 1 млн. лет назад, ещё не завершился , и мы, как уже было сказано, живем в более тёплом промежутке времени, в межледниковье .

На протяжении всей эпохи Великих Оледенений Земли льды то отступали, то вновь надвигались. На территории и Америки, и Европы было, по-видимому, четыре глобальные ледниковые эпохи, между которыми были сравнительно теплые периоды.

А вот полное отступление льдов произошло всего лишь около 20 – 25 тыс. лет назад , но в некоторых районах льды задержались ещё дольше. Из района современного Санкт-Петербурга ледник отступил только 16 тыс. лет назад, а кое-где на Севере небольшие ос­татки древнего оледенения сохранились и до сих пор.

Отметим, что современные ледники не могут идти ни на какое срав­нение с древним оледенением нашей планеты – они за­нимают лишь около 15 млн. кв. км, т. е. менее одной тридцатой части земной поверхности.

Как же можно определить, а было ли в данном месте Земли оледенение, или нет? Обычно это достаточно легко определить по своеобразным формам географического рельефа и горным породам.

На полях и в лесах России часто встречаются большие скопления огромных валунов, гальки, глыб, песков и глин. Они обычно лежат прямо на поверхности, но их можно увидеть и в обрывах оврагов, и в склонах речных долин.

Кстати, одним первым, кто попытался объяснить, как образовались эти отложения, был выдающий географ и анархист-теоретик, князь Петр Алексеевич Кропоткин. В своем труде «Исследования о ледниковом периоде» (1876 г.) он утверждал, что территорию России некогда покрывали огромные ледяные поля.

Если мы посмотрим на физико-географическую карту Европейской России, то в расположении холмов, возвышенностей, котловин и долин крупных рек можно заметить некоторые закономерности. Так, например Ленинградская и Новгородская области с юга и востока как бы ограничены Валдайской возвышенностью , имеющей вид дуги. Это как раз тот рубеж, где в далёком прошлом остановился огромный ледник, наступавший с севера.

К юго-востоку от Валдайской возвышенности расположена слегка извилистая Смоленско-Московская возвышенность, протянувшаяся от Смоленска до Переславля-Залесского. Это ещё одна из границ распространения покровных ледников.

На Западно-Сибирской равнине также видны многочисленные холмистые извилистые возвышенности – «гривы», также свидетельства деятельности древних ледников, точнее ледниковых вод. Много следов остановок движущихся ледников, стекавших по склонам гор в крупные котловины, обнаружено в Средней и Восточной Сибири.

Трудно представить себе льды толщиной в несколько километров на месте нынешних городов, рек и озёр, но, тем не менее, ледниковые плато не уступали по высоте Уралу, Карпатам или Скандинавским горам. Эти гигантские и к тому же подвижные массы льда оказывали влияние на всю природную среду – рельеф, ландшафты, речной сток, почвы, растительность и животный мир.

Следует отметить, что на территории Европы и Европейской части России от геологических эпох, предшествующих четвертичному периоду – палеогена (66-25 млн. лет) и неогена (25-1.8 млн. лет) практически не сохранилось никаких горных пород, они были полностью размыты и переотложены во время четвертичного периода, или как его часто называет, плейстоцена.

Ледники зародились и двигались со стороны Скандинавии, Кольского полуострова, Полярного Урала (Пай-Хоя) и островов Северного Ледовитого океана . И практически все геологические отложения, которые мы видим на территории Москвы – морена, точнее моренные суглинки, пески различного происхождения (водно-ледниковые, озерные, речные), огромные валуны, а также покровные суглинки – все это свидетельство мощного воздействия ледника .

На территории Москвы можно выделить следы трех оледенений (хотя насчитывается их гораздо больше – разные исследователи выделяют от 5 до нескольких десятков периодов наступлений и отступлений льда):

  • окское (около 1 млн. лет назад),
  • днепровское (около 300 тыс. лет назад),
  • московское (примерно 150 тыс. лет назад).

Валдайский же ледник (исчез всего-навсего 10 – 12 тыс. лет назад) до Москвы «не дошел», и для отложений этого периода характерны водно-ледниковые (флювио-гляциальные) отложения – в основном пески Мещерской низменности.

А сами названия ледников соответствуют названиям тех мест, до которых доходили ледники – до Оки, Днепра и Дона, Москва-реки, Валдая, и т. п.

Так как мощность ледников достигала почти 3 км, можно себе представить, какую колоссальную работу он совершал! Некоторые возвышенности и холмы на территории Москвы и Московской области – это мощные (до 100 метров!) отложения, которые «принес» ледник.

Наиболее известны, например Клинско-Дмитровская моренная гряда , отдельные возвышенности на территории Москвы (Воробьевы горы и Теплостанская возвышенность ). Огромные валуны, весом до нескольких тонн (например, Девичий камень в Коломенском) – тоже результат работы ледника.

Ледники сглаживали неровности рельефа: разрушали возвышенности и кряжи, а образовавшимися обломками горных пород заполняли понижения - долины рек и озёрные котловины, перенося огромные массы каменных обломков на расстояние более 2 тыс. км.

Однако огромные массы льда (учитывая его колоссальную толщину) столь сильно давили на подстилающие горные породы, что даже самые крепкие из них не выдерживали и разрушались.

Их обломки вмораживались в тело движущегося ледника и, словно наждаком, на протяжении десятков тысяч лет царапали скалы, сложенные гранитами, гнейсами, песчаниками и другими породами, вырабатывая в них углубления. До сих пор сохранились многочисленные ледниковые борозды, «шрамы» и ледниковая полировка на гранитных скалах, а также длинные ложбины в земной коре, занятые впоследствии озёрами и болотами. Примером могут служить бесчисленные впадины озёр Карелии и Кольского полуострова.

Но ледники выпахивали на своём пути далеко не все горные породы. Разрушению подвергались в основном те области, где ледниковые покровы зарождались, росли, достигали толщины более 3 км и откуда они начинали своё движение. Главным центром оледенения в Европе была Фенноскандия, включающая Скандинавские горы, плоскогорья Кольского полуострова, а также плоскогорья и равнины Финляндии и Карелии.

По пути своего продвижения лёд насыщался обломками разрушенных горных пород, и они постепенно скапливались как внутри ледника, так и под ним. Когда лёд таял, массы обломков, песка и глины оставались на поверхности. Особенно активным был этот процесс, когда движение ледника прекращалось и начиналось таяние его обломков.

У края ледников, как правило, возникали водные потоки, двигавшиеся по поверхности льда, в теле ледника и под толщей льда. Постепенно они сливались, образуя целые реки, которые за тысячи лет формировали узкие долины и перемывали множество обломочного материала.

Как уже было сказано, формы ледникового рельефа весьма разнообразны. Для моренных равнин характерно множество гряд и валов, обозначающих места остановок движущихся льдов и основной формой рельефа среди них являются валы конечных морен, обычно это невысокие дугообразные гряды, сложенные песком и глиной с примесью валунов и гальки. Понижения между грядами часто бывают заняты озёрами. Иногда среди моренных равнин можно увидеть отторженцы – глыбы размером в сотни метров и весом в десятки тонн, гигантские куски ложа ледника, перенесённые им на огромные расстояния.

Ледники нередко перегораживали течения рек и возле таких «плотин» возникали огромные озёра, заполняющие понижения речных долин и впадины, что часто меняло направление стока рек. И хотя такие озёра существовали сравнительно недолго (от тысячи до трех тысяч лет), на их дне успевали накапливаться озёрные глины , слоистые осадки, посчитав слои которых, можно четко выделить периоды зимы и лета, а также сколько лет эти осадки накапливались.

В эпоху, последнего, валдайского оледенения возникли Верхневолжские приледниковые озёра (Молого-Шекснинское, Тверское, Верхне-Моложское и др). Сначала их воды имели сток на юго-запад, но с отступанием ледника они получили возможность стока на север. Следы Молого-Шекснинского озера остались в виде террас и береговых линий на высоте около 100 м.

Весьма многочисленны следы древних ледников в горах Сибири, Урала, Дальнего Востока. В результате древнего оледенения, 135-280 тысяч лет назад, появились острые пики гор – «жандармы», на Алтае, в Саянах, Прибайкалье и Забайкалье, на Становом нагорье. Здесь преобладал так называемый «сетчатый тип оледенения», т.е. если бы можно было посмотреть с высоты птичьего полёта, то можно было бы увидеть, как на фоне ледников возвышаются свободные ото льда плато и вершины гор.

Следует отметить, что в периоды ледниковых эпох на части территории Сибири располагались довольно крупные ледяные массивы, например на архипелаге Северная Земля, в горах Бырранга (полуостров Таймыр), а также на плато Путорана на севере Сибири .

Обширное горно-долинное оледенение было 270-310 тысяч лет назад на Верхоянском хребте, Охотско-Колымском нагорье и в горах Чукотки . Эти области принято считать центрами оледенений Сибири .

Следы этих оледенений – многочисленные чашеобразные углубления горных вершин – цирки или кары , огромные моренные валы и озёрные равнины на месте вытаявшего льда.

В горах так же, как и на равнинах, возникали озёра у ледяных плотин, периодически озёра переполнялись, и гигантские массы воды через невысокие водоразделы с невероятной скоростью устремлялись в соседние долины, врезаясь в них и образуя огромные каньоны и ущелья. Например на Алтае, в Чуйско-Курайской впадине, до сих пор сохранились «гигантская рябь», «котлы высверливания», ущелья и каньоны, огромные глыбы-отторженцы, «сухие водопады» и другие следы потоков воды, вырывавшихся из древних озёр «всего- навсего» 12-14 тыс. лет назад.

«Вторгаясь» с севера на равнины Северной Евразии, ледниковые покровы то проникали далеко на юг по понижениям рельефа, то останавливались у каких-либо препятствий, например, возвышенностей.

Наверное, пока нельзя точно определить, какое из оледенений было «самым великим», однако, известно, например, что валдайский ледник по своей площади резко уступал днепровскому.

Различались и ландшафты у границ покровных ледников. Так, в окскую эпоху оледенения (500-400 тыс. лет назад) к югу от них располагалась полоса арктических пустынь шириной около 700 км – от Карпат на западе до Верхоянского хребта на востоке. Ещё дальше, на 400-450 км южнее, простиралась холодная лесостепь , где могли расти только такие неприхотливые деревья, как лиственницы, берёзы и сосны. И лишь на широте Северного Причерноморья и Восточного Казахстана начинались сравнительно тёплые степи и полупустыни.

В эпоху днепровского оледенения ледники были существенно больше. Вдоль окраины ледяного покрова тянулась тундростепь (сухая тундра) с очень суровым климатом. Среднегодовая температура приближалась к минус 6°С (для сравнения: в Подмосковье среднегодовая температура в настоящее время около +2,5°С).

Открытое пространство тундры, где зимой было мало снега и стояли сильные морозы, растрескивалось, образуя, так называемые «мерзлотные полигоны», которые в плане напоминают по форме клин. Их и называют «ледовые клинья, причём в Сибири они часто достигают высоты десяти метров! Следы этих «ледовых клиньев» в древних ледниковых отложениях «говорит» о суровом климате. Следы мерзлотного, или криогенного воздействия заметы и в песках, это часто нарушенные, как бы «рваные» слои, часто с высоким содержанием минералов железа.

Водно-ледниковые отложения со следами криогенного воздействия

Последнее «Великое Оледенение» изучается уже более 100 лет. Многие десятки лет упорного труда выдающихся исследователей ушли на сбор данных о его распространении на равнинах и в горах, на картирование конечно-моренных комплексов и следов ледниково-подпрудных озёр, ледниковых шрамов, друмлинов, участков «холмистой морены».

Правда есть и исследователи, которые вообще отрицают древние оледенения, и считают ледниковую теорию ошибочной. По их мнению, никакого оледенения вообще не было, а было «холодное море, по которому плавали айсберги», а все ледниковые отложения – это лишь донные осадки этого мелководного моря!

Другие исследователи, «признавая общую справедливость теории оледенений», тем не менее, сомневаются в правильности вывода о грандиозных масштабах оледенений прошлого, и особенно сильное недоверие вызывает у них вывод о ледниковых щитах, налегавших на полярные континентальные шельфы, они считают, что были «небольшие ледниковые шапки арктических архипелагов», «голая тундра» или «холодные моря», а в Северной Америке, где уже давно восстановлен крупнейший в Северном полушарии «лаврентьевский ледниковый щит», были лишь «группы ледников, слившихся основаниями куполов».

Для Северной Евразии этими исследователями признаются лишь Скандинавский ледниковый щит и изолированные «ледниковые шапки» Полярного Урала, Таймыра и плато Путорана, а в горах умеренных широт и Сибири – только долинные ледники.

А некоторые учёные, наоборот, «реконструируют» в Сибири «гигантские ледниковые покровы», по своим размерам и по строению не уступающие Антарктическому.

Как мы уже отмечали, в Южном полушарии Антарктический ледниковый покров распространялся на весь материк, включая его подводные окраины, в частности области морей Росса и Уэдделла.

Максимальная высота ледникового покрова Антарктиды составляла 4 км, т.е. была близка к современной (сейчас около 3.5 км), площадь льда возрастала до почти 17 миллионов квадратных километров, а общий объём льда достигал 35-36 миллионов кубических километров.

Ещё два больших ледниковых покрова были в Южной Америке и Новой Зеландии.

Патагонский ледниковый покров располагался в Патагонских Андах , их предгорьях и на соседнем континентальном шельфе. О нём сегодня напоминают живописный фьордовый рельеф чилийского побережья и остаточные ледниковые покровы Анд.

«Южноальпийский комплекс» Новой Зеландии – был уменьшенной копией Патагонского. Он имел ту же форму и так же выдвигался на шельф, на побережье им выработана система похожих фьордов.

В Северном полушарии в периоды максимального оледенения мы бы увидели огромный Арктический ледниковый покров , возникавший в результате объединения Североамери­канского и Евразийского покровов в единую ледниковую систему, причём важную роль играли плавучие шельфовые ледники, особенно Центрально-Арктический, покрывавший всю глубоководную часть Северного Ледовитого океана.

Крупнейшими элементами Арктического ледникового покрова были Лаврентьевский щит Северной Америки и Карский щит арктической Евразии , они имели форму гигантских плоско-выпуклых куполов. Центр первого из них располагался над юго-западной частью Гудзонова залива, вершина поднималась на высоту более 3 км, а его восточный край выдвигался до внешнего края континентального шельфа.

Карский ледниковый щит занимал всю площадь современных Баренцева и Карского морей, его центр лежал над Карским морем, а южная краевая зона покрывала весь север Русской равнины, Западной и Средней Сибири.

Из других элементов Арктического покрова особого внимания заслуживает Восточно-Сибирский ледниковый щит , который распространялся на шельфы морей Лаптевых, Восточно-Сибирского и Чукотского и был больше Гренландского ледникового щита . Он оставил следы в виде крупных гляциодислокаций Новосибирских островов и района Тикси , с ним же связаны и грандиозные ледниково-эрозионные формы острова Врангеля и Чукотского полуострова .

Итак, последний ледниковый покров Северного полушария, состоял из более чем десятка больших ледниковых щитов и множества более мелких, а также из объединявших их шельфовых ледников, плававших в глубоком океане.

Промежутки времени, в которые ледники исчезали, или сокращались на 80-90%, называют межледниковьями. Освободившиеся ото льда ландшафты в условиях относительно тёплого климата преображались: тундра отступала к северному побережью Евразии, а тайга и широколиственные леса, лесостепи и степи занимали положение, близкое к современному.

Таким образом, на протяжении последнего миллиона лет природа Северной Евразии и Северной Америки неоднократно меняла свой облик.

Валуны, щебень и песок, вмороженные в придонные слои движущегося ледника, выполняя роль гигантского «напильника», сглаживали, шлифовали, царапали граниты и гнейсы, а подо льдом формировались своеобразные толщи валунных суглинков и песков, отличающиеся высокой плотностью, связанной с воздействием ледниковой нагрузки – основная, или донная морена.

Так как размеры ледника определяются равновесием между количеством ежегодно выпадающего на него снега, который и превращается в фирн, а потом в лёд, и того что, не успевает растаять и испариться за теплые сезоны, то при потеплении климата края ледников отступают на новые, «равновесные рубежи». Концевые части ледниковых языков перестает двигаться и постепенно тают, а включенные в лёд валуны, песок и суглинок высвобождаются, образуя вал, повторяющий очертания ледника – конечную морену ; другая же часть обломочного материала (в основном песок и глинистые частицы) выносится потоками талой воды и отлагается вокруг в виде флювиогляциальных песчаных равнин (зандров ).

Подобные потоки действуют и в глубине ледников, заполняя флювиогляциальным материалом трещины и внутриледниковые каверны. После стаивания ледниковых языков с такими заполненными пустотами на земной поверхности, поверх вытаявшей донной морены остаются хаотические нагромождения холмов различной формы и состава: яйцевидные (при виде сверху) друмлины , вытянутые, как железнодорожные насыпи (вдоль оси ледника и перпендикулярно конечным моренам) озы и неправильной формы камы .

Очень четко все эти формы ледникового ландшафта представлены в Северной Америке: граница древнего оледенения здесь маркирована конечно-моренным валом с высотами до пятидесяти метров, протянувшимся поперек всего континента от восточного его побережья до западного. К северу от этой «Великой ледниковой стены» ледниковые отложения представлены в основном мореной, а к югу от нее – «плащом» флювиогляциальных песков и галечников.

Как для территории Европейской части России выделены четыре эпохи оледенения, так и для Центральной Европы также выделены четыре ледниковые эпохи, названные по соответствующим альпийским речкам – гюнц, миндель, рисс и вюрм , а в Северной Америке – небраскское, канзасское, иллинойсское и висконсинское оледенения.

Климат перигляциальных (окружающих ледник) территорий был холодным и сухим, что полностью подтверждается палеонтологическими данными. В этих ландшафтах возникает весьма специфическая фауна с сочетанием криофильных (холодолюбивых) и ксерофильных (сухолюбивых) растений тундростепь.

Сейчас похожие природные зоны, сходные с перигляциальными, сохранились в виде так называемых реликтовых степей – островков среди таежного и лесотундрового ландшафта, например, так называемые аласы Якутии, южные склоны гор северо-восточной Сибири и Аляски, а также в холодные засушливые высокогорья Центральной Азии.

Тундростепь отличалась тем, что её травяной ярус формировали в основном не мхи (как в тундре), а злаки , и именно здесь складывался криофильный вариант травянистой растительности с очень высокой биомассой пастбищных копытных и хищников – так называемой «мамонтовой фауной» .

В её составе были причудливо смешаны различные виды животных, как характерных для тундры северный олень, олень-карибу, овцебык, лемминги , для степей – сайгак, лошадь, верблюд, бизон, суслики , а также мамонты и шерстистые носороги, саблезубый тигр – смилодон, и гигантская гиена .

Следует отметить, что многие климатические изменения повторялись как бы «в миниатюре» на памяти человечества. Это так называемые «Малые ледниковые периоды» и «межледниковья».

Например, во время так называемого «Малого ледникового периода» с 1450 по 1850 года ледники повсеместно наступали, и их размеры превосходили современные (снежный покров появлялся, например, в горах Эфиопии, где его сейчас нет).

А в предшествовавший «Малому ледниковому периоду» Атлантический оптимум (900-1300 г.г.) ледники, наоборот, сократились, и климат был заметно мягче нынешнего. Вспомним, что именно в эти времена викинги назвали Гренландию «Зеленой землей», и даже заселили её, а также доходили на своих ладьях до побережья Северной Америки и острова Ньюфаундленд. А новгородские купцы-ушкуйники проходили «Северным морским путем» до Обской губы, основав там город Мангазею.

А последнее отступание ледников, начавшееся свыше 10 тысяч лет назад, хорошо осталось в памяти людей, отсюда и легенды о Всемирном потопе, так огромнее количество талых вод устремилось вниз, на юг, частыми стали дожди и наводнения.

В далёком прошлом рост ледников происходил в эпохи с пониженной температурой воздуха и увеличенной увлажненностью, такие же условия складывались и в последние века прошлой эры, и в середине прошлого тысячелетия.

А около 2.5 тысяч лет назад началось значительное похолодание климата, арктические острова покрылись ледниками, в странах Средиземноморья и Причерноморья на рубеже эр климат был более холодным и влажным, чем сейчас.

В Альпах в I тысячелетии до н. э. ледники выдвинулись на более низкие уровни, загромоздили горные перевалы льдами и разрушили некоторые высоко расположенные селения. Именно в эту эпоху резко активизируются и растут ледники на Кавказе.

Но к концу I тысячелетия опять началось потепление климата, отступили горные ледники в Альпах, на Кавказе, в Скандинавии и Исландии.

Климат начал снова серьезно меняться лишь в XIV веке, в Гренландии стали быстро расти ледники, летнее оттаивание грунтов становилось всё более кратковременным, и к концу века здесь прочно установилась вечная мерзлота.

С конца XV века начался рост ледников во многих горных странах и полярных районах и после сравнительно теплого XVI века наступили суровые столетия, и получившие название «Малого ледникового периода». На юге Европы часто повторялись суровые и продолжительные зимы, в 1621 и 1669 годах замерзал пролив Босфор, а в 1709 году у берегов замерзало Адриатическое море. Но «Малый ледниковый период» завершился во второй половине XIX века и началась сравнительно теплая эпоха, которая продолжается и сейчас.

Отметим, что потепление XX столетия особенно четко выражено в полярных широтах Северного полушария, а колебания ледниковых систем характеризуются процентной долей наступающих, стационарных и отступающих ледников.

Так, например, для Альп имеются данные, охватывающие всё прошедшее столетие. Если доля наступающих альпийских ледников в 40-50-х годах ХХ века была близка к нулю, то в середине 60-х ХХ века здесь наступало около 30%, а в конце 70-х ХХ века – 65-70% обследованных ледников.

Подобное их состояние свидетельствует о том, что антропогенное (техногенное) увеличение содержания двуокиси углерода, метана и других газов и аэрозолей в атмосфере в XX столетии никак не повлияло на нормальный ход глобальных атмосферных и ледниковых процессов. Однако в конце прошлого, ХХ века повсюду в горах ледники стали отступать, стали таять и льды Гренландии, что связано с потеплением климата, и что особенно усилилась в 1990-х годах.

Известно, что возросшее ныне техногенное количество выбросов в атмосферу углекислого газа, метана, фреона и различных аэрозолей вроде бы как способствует уменьшению солнечной радиации. В связи с этим и появились «голоса» сначала журналистов, потом политиков, а потом и учёных о начале «новой ледниковой эпохи». Экологи «забили тревогу», опасаясь «грядущего антропогенного потепления» из-за постоянного роста углекислого газа и иных примесей в атмосфере.

Да, хорошо известно, что увеличение СО 2 ведет к увеличению количества задерживаемого тепла и тем самым повышает температуру воздуха у поверхности Земли, образуя пресловутый «парниковый эффект».

Такое же воздействие оказывают и некоторые другие газы техногенного происхождения: фреоны, оксиды азота и оксиды серы, метан, аммиак. Но, тем не менее, далеко не вся двуокись углерода остается в атмосфере: 50-60% промышленных выбросов СО 2 попадают в океан, где быстро усваиваются животными (кораллами в первую очередь), и конечно же усваиваются и растениями вспомним процесс фотосинтеза: растения поглощают углекислый газ и выделяют кислород! Т.е. чем больше углекислого газа – тем лучше, тем выше процент кислорода в атмосфере! Кстати, такое уже было в истории Земли, в каменноугольном периоде… Поэтому даже многократный рост концентрации СО 2 в атмосфере не сможет привести к такому же многократному росту температуры, так как существует определённый природный механизм регулирования, резко замедляющий парниковый эффект при высоких концентрациях СО 2 .

Так что все многочисленные «научные гипотезы» о «парниковом эффекте», «повышении уровня Мирового океана», «изменения течения Гольфстрима», и естественно «грядущего Апокалипсиса» большей частью навязаны нам «сверху», политиками, некомпетентными учеными, неграмотными журналистами или просто аферистами от науки. Чем больше запугаешь население – тем проще сбывать товар и управлять…

А на самом деле происходит обычный природный процесс – один этап, одна климатическая эпоха сменяется другой, и ничего странного в этом нет… А то что происходят природные катастрофы, и что их якобы стало больше – смерчей, наводнений и прочее – так еще 100-200 лет назад огромные территории Земли были просто незаселенны! А сейчас людей более 7 млрд., и живут они часто там, где именно и возможны наводнения и смерчи – по берегам рек и океанов, в пустынях Америки! Тем более, вспомним, что природные катаклизмы были всегда, и даже губили целые цивилизации!

А что касается мнения учёных, на которые так любят ссылаться и политики, и журналисты… Ещё в 1983 году американские социологи Рэндалл Коллинз и Сэл Рестиво в своей знаменитой статье «Пираты и политики в математике» написали открытым текстом: «…Не существует неизменного набора норм, которые руководят поведением ученых. Неизменна лишь деятельность ученых (и соотносимых с ними других типов интеллектуалов), направленная на стяжание богатства и славы, а также на получение возможности контролировать поток идей и навязывать свои собственные идеи другим… Идеалы науки не предопределяют научного поведения, но возникают из борьбы за индивидуальный успех в различных условиях соревнования …».

И ещё немного о науке… Различные крупные компании часто выделяют гранты на проведение так называемых «научных исследований» в тех или иных областях, но возникает вопрос – насколько человек, проводящий исследование, компетентен в данной области? Почему из сотен учёных был выбран именно он?

И если некому учёному, «некая организация» заказывает например «некое исследование по безопасности ядерной энергетики», то, само собой разумеется, что этот учёный будет вынужден «прислушиваться» к заказчику, так как у него есть «вполне определенные интересы», и понятно, что «свои выводы» он, скорее всего, будет «подлаживать» под заказчика, так как главный вопрос – это уже не вопрос научных исследований а что желает заказчик получить, какой результат . И если результат заказчика не устроит , то и этого ученого больше не пригласят , и ни в одном «серьезном проекте», т.е. «денежном», он более участвовать не будет, так как пригласят другого ученого, более «покладистого»… Многое, безусловно, зависит и от гражданской позиции, и профессионализма, и репутации как ученого… Но не будем забывать, сколько в России «получают» ученые… Да в мире, в Европе и в США, ученый живет в основном на гранты… А любой учёный тоже «хочет кушать».

Кроме того – данные и мнения одного ученого, пусть и крупного специалиста в своей области – это еще не факт! А вот если исследования подтверждаются какими-нибудь научными группами, институтами, лабораториями, то лишь тогда исследования могут быть достойны серьёзного внимания .

Если конечно эти «группы», «институты» или «лаборатории» не финансировались заказчиком данного исследования или проекта…

А.А. Каздым,
кандидат геолого-минералогических наук, член МОИП

Палеогеновый период геологической истории Земли, начавшийся 67 миллионов лет назад, длился 41 миллион лет. Следующий, неогеновый, - 25 миллионов лет. Последний, самый короткий, - около 1 миллиона лет. Его-то и называют ледниковым.

Устоялось представление о том, что поверхность суши и моря, даже недра планеты испытали влияние мощнейших оледенений. Получены данные, свидетельствующие о последовательном похолодании климата Земли со времени палеогена (60-65 миллионов лет назад) до наших дней. Среднегодовая температура воздуха в умеренных широтах снизилась с характерных для тропической зоны 20° С до 10. В нынешних климатических условиях процессы оледенения формируются и развиваются на площади 52 миллиона квадратных километров. Им подвержена десятая часть поверхности планеты.

В течение последних 700 тысяч лет, полагают ученые, на севере Евразии и Северной Америки существовали огромные по протяженности ледниковые покровы - гораздо более обширные, чем современный Гренландский и даже Антарктический. Размеры этого палеооледенения оцениваются крупным специалистом в этой области - американским ученым РФ. Флинтом - в 45,2 миллиона квадратных километров. На Северную Америку приходилось 18, Гренландию - 2, Евразию - 10 миллионов квадратных километров льдов. Иными словами, предполагаемая площадь оледенения в Северном полушарии была более, чем в два раза обширнее, чем в сегодняшней Антарктиде (14 миллионов квадратных километров). В работах гляциологов реконструируются ледниковые щиты в Скандинавии, на Северном море, значительной части Англии, равнинах Северной Европы, низменностях и горных районах севера Азии и почти на всей территории Канады, Аляски и севера США. Толщина этих щитов определяется в 3-4 километра. С ними связываются грандиозные (вплоть до глобальных) изменения природной обстановки на Земле.

Специалисты рисуют весьма впечатляющие картины былого. Они полагают, что под натиском льдов, надвигавшихся с Севера, древние люди и животные покидали места обитания и искали пристанища в южных районах, где климат был тогда намного холоднее, чем сейчас.

Считается, что уровень Мирового океана в то время понизился на 100-125 метров, так как ледниковые покровы «сковали» огромное количество его вод. Когда ледники начали таять, море затопило обширные низменные пространства суши. (С предполагаемым наступлением моря на материки связывают иногда легенду о всемирном потопе.)

Насколько верны бытующие в науке представления о последней ледниковой эпохе? - вопрос актуальный. Знание характера, размеров древних ледников, масштабов их геологической деятельности необходимо для объяснения многих аспектов развития природы и древнего человека. Последнее особенно важно. Мы живем в четвертичном периоде, который называют антропогенным.

Познавая прошлое, можно предсказывать будущее. Поэтому ученые думают о том, грозит ли человечеству в ближайшей или отдаленной перспективе новое «великое оледенение».

Итак, чего ожидать человечеству, если климат на Земле опять станет значительно холоднее нынешнего?

С ИДЕЯМИ СВЫКАЮТСЯ, КАК С ЛЮДЬМИ

Книга «Исследования о ледниковом периоде», написанная узником Петропавловской крепости - известным ученым и революционером П.А. Кропоткиным, - вышла в свет в 1876 году. В его работе полно и ясно излагались соображения о «великом оледенении», зародившемся в горах Скандинавии, заполнившем котловину Балтийского моря и вышедшем на Русскую равнину и Прибалтийские низменности. Эта концепция древнего оледенения получила широкое признание в России. Одно из главных ее оснований - факт распространения на равнинах Северной Европы своеобразных отложений: несортированных глин и суглинков, содержащих каменные обломки в виде гальки и валунов, размеры которых достигали 3-4 метров в поперечнике.

Ранее ученые вслед за великими естествоиспытателями XIX века Ч.Лайелем и Ч.Дарвином считали, что суглинки и глины отлагались на дне холодных морей - современных равнинах Северной Европы, а валуны разносились плавающими льдами.

«Дрифтовая (от слова "дрейф") теория», быстро теряя сторонников, отступала под натиском идей П.А.Кропоткина. Они подкупали возможностью объяснить многие загадочные факты. Откуда, например, взялись на равнинах Европы отложения, содержащие крупные валуны? Ледники, наступавшие широким фронтом, позднее растаяли, и эти валуны оказались на поверхности земли. Это звучало вполне убедительно.


Спустя тридцать три года немецкие исследователи А.Пенк и Э.Брюкнер, изучавшие территорию Баварии и высказавшие идею о четырехкратном древнем оледенении Альп, решились четко увязать каждый из его этапов с террасами рек бассейна верхнего течения Дуная.

Оледенения получили имена, главным образом, притоков Дуная. Самое древнее - «гюнц», более молодое - «миндель», затем следовали «рисс» и «вюрм». Следы их впоследствии стали искать и находить на равнинах Северной Европы, в Азии, Северной и Южной Америке и даже в Новой Зеландии. Исследователи настойчиво увязывали геологическую историю того или иного региона с «эталонной» Центральной Европой. Никто не задумался над тем, правомерно ли выделять древние оледенения в Северной или Южной Америке, Восточной Азии или островах Южного полушария по аналогии с Альпами. Вскоре на палеогеографических картах Северной Америки появились оледенения, соответствующие альпийским. Они получили имена штатов, которых достигали, как полагают ученые, спускаясь к югу. Наиболее древнее - небрасское - соответствует альпийскому гюнцу, канзасское - минделю, иллинойское - риссу, висконсинское - вюрму.

Представления о четырех покровных оледенениях в недавнем геологическом прошлом были приняты и для территории Русской равнины. Их назвали (в порядке убывания возраста) окским, днепровским, московским, валдайским и соотнесли с миндельским, рисским, вюрмским. А как же самое древнее альпийское оледенение - гюнц? Иногда под разными названиями на Русской равнине выделяют и пятое, соответствующее ему оледенение.

Предпринятые в последние годы попытки «усовершенствовать» альпийскую модель привели к выделению еще двух догюнцевских (наиболее ранних) «великих оледенений» - дуная и бибера. А в связи с тем, что с некоторыми из предполагаемых альпийских оледенений сопоставляются по два-три (на равнинах Европы и Азии), общее их число в четвертичном периоде достигает, по мнению некоторых ученых, одиннадцати и более.

С идеями свыкаются, сродняются, как с людьми. Расстаться с ними подчас очень трудно. Проблема древних «великих оледенений» в этом смысле - не исключение. Накопленные учеными данные о строении, времени зарождения и истории развития нынешних ледниковых покровов Антарктиды и Гренландии, о закономерностях структуры и формирования современных мерзлых пород и явлениях, с ними связанных, ставят под сомнение многие бытующие в науке представления о характере, масштабах проявления древних ледников и их геологической деятельности. Однако (традиции сильны, энерция мышления велика) эти данные либо не замечаются, либо им не придают значения. Они по-новому не осмысливаются и серьезно не анализируются. Рассмотрим же в их свете проблему древних покровных оледенений и попытаемся понять, что на самом деле происходило с природой Земли в недалеком геологическом прошлом.

ФАКТЫ ПРОТИВ ТЕОРИИ

Четверть века назад почти все ученые были согласны с тем, что современные ледниковые покровы Антарктиды и Гренландии развивались синхронно с предполагаемыми «великими ледниками» в Европе, Азии и Северной Америке. Покровное оледенение Земли, считали они, начиналось в Антарктиде, Гренландии, на арктических островах, затем охватывало материки Северного полушария. В межледниковые эпохи антарктические и гренландские льды таяли полностью. Уровень Мирового океана поднимался на 60-70 метров выше современного. Значительные территории приморских равнин затапливались морем. Никто не сомневался в том, что современная эпоха - еще незакончившаяся ледниковая. Дескать, ледниковые покровы просто не успели растаять. Более того: в эпохи похолоданий не только возникали огромные ледники на континентах Северного полушария, но существенно разрастались Гренландский и Антарктический ледниковые щиты... Минули годы, и результаты исследований труднодоступных полярных районов полностью опровергли эти представления.

Оказалось, что ледники в Антарктиде появились задолго до «ледникового периода» - 38-40 миллионов лет назад, когда по северу Евразии и Северной Америки простирались субтропические леса, а на берегах современных арктических морей раскачивались пальмы. Ни о каком оледенении на континентах Северного полушария тогда, конечно, не может быть и речи. Ледниковый покров Гренландии также возник не менее 10-11 миллионов лет назад. В то время на побережьях арктических морей на севере Сибири, Аляски и Канады произрастали смешанные леса (среди берез, ольхи, елей, лиственниц встречались широколиственный дуб, липа, вяз), соответствующие теплому влажному климату.

Данные о древности ледниковых покровов Антарктиды и Гренландии остро поставили вопрос о причинах оледенения Земли. Их видят в общепланетарных потеплениях и похолоданиях климата. (Еще в 1914 году югославский ученый М.Миланкович вычертил графики колебаний прихода солнечной радиации на земную поверхность за последние 600 тысяч лет, отождествляемых с эпохами оледенений и межледниковыми периодами.) Но мы теперь знаем, что когда на севере Евразии и Северной Америки климат был теплым, Антарктида и Гренландия укрылись ледниковыми щитами, размеры которых позднее никогда существенно не уменьшались. Значит, дело не в колебаниях прихода солнечного тепла и общеземных похолоданиях и потеплениях, а в сочетании определенных факторов, приводящих к оледенению в данных конкретных условиях.

Исключительная стабильность гренландского и антарктического ледниковых покровов не свидетельствует в пользу представления о неоднократности развития и исчезновения «великих оледенений» на материках Северного полушария. Непонятно, почему более 10 миллионов лет непрерывно существует гренландский ледниковый щит, в то время как рядом с ним менее чем за 1 миллион лет в силу каких-то совершенно неясных причин неоднократно возникал и исчезал североамериканский.

Положите на стол два куска льда - один в 10 раз больший другого. Какой из них растает быстрее? Если вопрос покажется риторическим, спросите себя: какой ледниковый покров должен был исчезнуть первым при общем потеплении климата в Северном полушарии - Гренландский площадью 1,8 миллиона квадратных километров или предполагаемый рядом с ним североамериканский - в 10 раз больший? Очевидно, что второй обладал большей устойчивостью (во времени) ко всем внешним изменениям.

Опираясь на господствующую сейчас теорию, не объяснить этого парадокса. Согласно ей, огромный гипотетический североамериканский ледниковый щит возникал за последние 500-700 тысяч лет четыре-пять или более раз, т. е. примерно через каждые 100-150 тысяч лет, а размеры расположенного по соседству (несравненно меньшего) почти не менялись. Невероятно!

Если устойчивость антарктического ледового покрова в течение десятков миллионов лет (допустим, что ледники Северного полушария в это время возникали и исчезали) можно объяснить близостью материка к полюсу, то в отношении Гренландии следует помнить: ее южная оконечность находится близ 60 градуса северной широты - на одной параллели с Осло, Хельсинки, Ленинградом, Магаданом. Так могли ли предполагаемые «великие оледенения» возникать и исчезать в Северном полушарии столь часто, как принято утверждать? Вряд ли. Что касается критериев и способов установления их количества, то они ненадежны. Красноречивое доказательство тому - разнобой в оценке численности оледенений. Сколько их все-таки было: 1-4, 2-6, или 7-11? И какое из них можно считать максимальным?

Термины «похолодание» и «оледенение» употребляются обычно как синонимы. Само собой, вроде бы, разумеется: чем холоднее был климат Земли, тем более широким фронтом наступали с севера древние ледники. Говорят: «было столько-то эпох похолоданий», подразумевая, что было столько же эпох оледенений. Однако и тут новейшие исследования поставили немало неожиданных вопросов.

А.Пенк и Э.Брюкнер считали максимальным самое древнее или одно из самых древних оледенений ледникового периода. Они были убеждены, что размеры последующих последовательно уменьшались. В дальнейшем укрепилось и практически безраздельно господствовало мнение: самым крупным являлось оледенение, приходящееся на середину ледникового периода, а самым ограниченным - последнее. Для Русской равнины было аксиомой: наиболее обширное днепровское оледенение, имевшее два больших «языка» по долинам Днепра и Дона, опускалось по ним южнее широты Киева. Границы следующего - московского проводили значительно севернее (несколько южнее Москвы), еще более молодого - валдайского рисовали севернее Москвы (примерно на полпути от нее до Ленинграда).

Пределы распространения гипотетических ледовых покровов на равнинах восстанавливают двумя способами: по отложениям древних ледников (тиллю - несортированной смеси глины, песка, крупных каменных обломков), по формам рельефа и по ряду других признаков. И вот что примечательно: в пределах распространения самого молодого (из предполагаемых) оледенения находили отложения, которые относили затем ко всем или почти ко всем предшествующим (двум, трем, четырем и т.д.). Близ южных границ днепровского оледенения (в долинах Днепра и Дона в их нижнем течении) обнаруживается только один слой тилля, как и у южных пределов предположительно максимального иллинойского (в Северной Америке). И тут и там севернее устанавливается больше слоев отложений, которые по тем или иным признакам причисляют к ледниковым.

На севере и особенно северо-западе рельеф Русской равнины имеет резкие («свежие») очертания. Общий характер местности позволяет полагать, что еще недавно здесь был ледник, подаривший ленинградцам и жителям Прибалтики излюбленные места отдыха и туризма - живописные сочетания гряд, холмов и озер, лежащих в западинах между ними. Озера на Валдайской и Смоленской возвышенностях нередко глубоки и отличаются прозрачностью и чистотой воды. А к югу от Москвы ландшафт меняется. Здесь почти нет участков холмисто-озерного рельефа. Преобладают увалы и пологие холмы, изрезанные речными долинами, ручьями и оврагами. Поэтому считается, что бывший здесь когда-то ледниковый рельеф переработан и изменен почти до неузнаваемости. Наконец, для южных пределов предполагаемого распространения ледниковых покровов на Украине и по Дону характерны расчлененные, изрезанные реками пространства, почти лишенные признаков ледникового рельефа (если он был тут), что дает, дескать, основание считать: здешний ледник - один из самых древних...

Все эти представления, казавшиеся бесспорными, в последнее время поколеблены.

ПАРАДОКС ПРИРОДЫ

Сенсационными оказались результаты изучения льда из кернов глубоких скважин в Антарктиде, Гренландии и донных отложений океанов и морей.

По соотношению тяжелых и легких изотопов кислорода во льду и морских организмах ученые могут теперь определять древние температуры, при которых накапливался лед и отлагались слои осадочных пород на дне моря. Выяснилось: одно из сильнейших похолоданий приходится не на начало и середину «ледникового периода», а почти на самый его конец - на интервал времени, отстоящий от наших дней на 16-18 тысяч лет. (Ранее предполагали, что самое большое оледенение на 84-132 тысячи лет старше.) Признаки очень резкого похолодания климата в конце «ледникового периода» обнаружены и другими методами в разных частях Земли. В частности, по ледяным жилам на севере Якутии. Вывод о том, что наша планета недавно пережила одну из самых холодных или самую холодную эпоху, кажется теперь весьма достоверным.

Но как объяснить феноменальный природный парадокс, состоящий в том, что времени очень сурового климата соответствует минимальное из предполагаемых наземных покровных оледенений? Оказавшись в «тупиковом» положении, некоторые ученые пошли по наиболее легкому пути - отказались от всех прежних представлений и предложили считать последнее оледенение одним из максимальных, поскольку климат в это время был одним из самых холодных. Таким образом, отрицается вся система геологических доказательств последовательности природных событий в ледниковом периоде, рушится все здание «классической» ледниковой концепции.

МИФИЧЕСКИЕ СВОЙСТВА ЛЕДНИКОВ

Нельзя разобраться в сложных вопросах истории «ледникового периода», не изучив предварительно проблем геологической деятельности древних ледников. Оставленные ими следы - единственные свидетельства их распространения.

Ледники бывают двух основных типов: большие щиты или купола, сливающиеся в огромные покровы, и горные ледники (глетчеры). Геологическая роль первых наиболее полно освещена в работах американского ученого Р.Ф.Флинта, обобщившего представления многих ученых (в том числе и советских), согласно которым ледники совершают огромную разрушительную и созидательную работу - выпахивают большие рытвины, котловины и накапливают мощные толщи отложений. Допускается, например, что они, подобно бульдозеру, способны выскребать котловины глубиной несколько сот метров, а в отдельных случаях (Согне-фиорд в Норвегии) - до 1,5-2,5 тысячи метров (глубина этого фиорда 1200 м плюс такая же высота склонов). Совсем неплохо, если иметь в виду, что ледник должен был «рыть» здесь твердые скальные породы. Правда, чаще всего с ледниковым выпахиванием связывают образование котловин глубиной «только» 200-300 метров. Но сейчас с достаточной степенью точности установлено, что лед движется двумя способами. Либо его глыбы скользят по сколам-трещинам, либо действуют законы вязкопластического течения. При длительных и все возрастающих напряжениях твердый лед становится пластичным и начинает, хотя и очень медленно, течь.

В центральных частях Антарктического покрова скорость движения льда 10-130 метров в год. Она несколько возрастает лишь в своеобразных «ледяных реках», текущих в ледяных же берегах (выводных ледниках). Движение придонной части ледников настолько медленно и плавно, что они физически не в состоянии совершать ту грандиозную работу, которая им приписывается. Да и везде ли касается ледник поверхности своего ложа? Снег и лед - хорошие теплоизоляторы (эскимосы издавна строят жилища из спрессованного снега и льда), а из недр земли к ее поверхности постоянно поступает в небольших количествах внутриземное тепло. В покровах большой толщины лед снизу подтаивает, под ним возникают реки и озера. В Антарктиде близ советской станции «Восток» под четырехкилометровой толщей ледника существует водоем площадью 8 тысяч квадратных километров! Значит, лед не только не сдирает здесь подстилающие его породы, а как бы «плавает» над ними или, если слой воды невелик, скользит по их смоченной поверхности. Горные ледники в Альпах, на Кавказе, Алтае и в других районах продвигаются со средней скоростью 100-150 метров в год. Их придонные слои и здесь в основном ведут себя как вязко-пластичное вещество и текут в соответствии с законом ламинарного течения, приспосабливаясь к неровностям ложа. Стало быть, и они не могут выпахивать корытообразные долины-троги шириной несколько километров и глубиной 200-2500 метров. Это подтверждают любопытные наблюдения.

В средние века площадь ледников в Альпах увеличилась. Они продвинулись вниз по речным долинам и погребли под собой постройки римской эпохи. А когда альпийские ледники вновь отступили, из-под них показались прекрасно сохранившиеся фундаменты зданий, разрушенных людьми и землетрясениями, и мощеные римские дороги с выбитыми на них колеями от повозок. В центральной части Альп, близ Инсбрука в долине реки Инн, под отложениями отступившего ледника обнаружены слоистые осадки древнего озера (с остатками рыб, листьями и ветками деревьев), существовавшего здесь около 30 тысяч лет назад. Значит ледник, надвинувшийся на озеро, практически не повредил слоя мягких осадков - даже не смял их.

С чем же связана большая ширина и корытообразная форма долин горных ледников? Думается, с активным обрушением склонов долин в результате выветривания. На поверхности ледников оказывалось огромное количество обломков каменного материала. Движущийся лед, как лента транспортера, уносил их вниз. Долины не загромождались. Их склоны, оставаясь крутыми, быстро отступали. Они приобретали большую ширину и поперечный профиль, напоминающий корыто: плоское дно и крутые борта.

Признавать способность ледниковых потоков механически разрушать горные породы - значит приписывать им мифические свойства. Благодаря тому, что ледники не выпахивают свое ложе, во многих долинах, ныне свободных ото льда, сохранились древние речные отложения и связанные с ними россыпи золота и ряда других ценных полезных ископаемых. Если бы ледники производили приписываемую им вопреки фактам, логике и физическим законам огромную разрушительную работу, в истории человечества не было бы «золотых лихорадок» Клондайка, Аляски, а Джек Лондон не написал бы нескольких прекрасных повестей и рассказов.

С ледниками связывается и разнообразная созидательная геологическая деятельность. Но нередко это делается без должного обоснования. В горах действительно часто встречаются толщи, состоящие из хаотической смеси глыб, щебня и песка, перегораживающие иногда долины от одного до другого склона. Ими сложены иной раз и значительные по протяженности участки долин. На равнинах к отложениям древних ледниковых покровов относят обычно неслоистые и несортированные глины, суглинки, супеси, содержащие каменные включения - преимущественно гальку и валуны. Однако известно, что в холодноводных озерах валуны могут разноситься плавающими льдами. Переносят их и речные льды. Поэтому многие разновидности морских и речных отложений содержат каменные включения. Причислять их только на этом основании к ледниковым отложениям нельзя. Большая роль принадлежит тут селям, наиболее интенсивным в горах или предгорьях и в поясах, для которых характерна смена дождливых (увлажненных) и засушливых периодов.

Одним из очевидных свидетельств ледникового происхождения таких отложений считаются «валунные отмостки» - скопления валунов, верхняя поверхность которых якобы сточена льдом. Мы только что доказали: ледник не мог этого сделать. Те, кто бывал на берегах приполярных рек и морей, знают: валунные отмостки - обычное здесь явление. При резких подвижках льда в береговой зоне он проделывает впечатляющую работу: словно бритвой срезает выступающие выпуклые края валунов, стальные трубы и бетонные сваи. В содержащих валуны отложениях несортированных глин и суглинков есть остатки раковин морских организмов. Стало быть, они накапливались в море. Иногда встречаются валуны, к гладкой поверхности которых прикрепились морские раковины. Такие находки отнюдь не свидетельствуют в пользу ледникового происхождения этих округлых каменных глыб.

ГЕОЛОГИЧЕСКАЯ РОЛЬ ПОДЗЕМНОГО ОЛЕДЕНЕНИЯ

Под влиянием представлений о «великих» наземных суперледниках роль подземного оледенения в истории Земли или не замечалась, или природа его истолковывалась ошибочно. Об этом феномене иной раз говорили как о явлении, сопутствующем древним оледенениям.


Зона распространения мерзлых горных пород на Земле очень велика. Она занимает около 13 процентов площади суши (в СССР - почти половину территории), включает огромные пространства Арктики и Субарктики, а в восточных районах Азиатского материка достигает средних широт.

Наземное и подземное оледенения в целом свойственны областям охлаждения Земли, т. е. регионам с отрицательными среднегодовыми температурами воздуха, испытывающим дефицит тепла. Дополнительное условие образования наземных ледников - преобладание твердых атмосферных осадков (снега) над их расходом, а подземное оледенение приурочено к районам, где атмосферных осадков не хватает. В первую очередь - к территории севера Якутии, Магаданской области и Аляски. В Якутии, где выпадает очень мало снега, находится полюс холода Северного полушария. Здесь зарегистрирована рекордно низкая температура - минус 68°С.

Для зоны распространения мерзлых горных пород наиболее характерен подземный лед. Чаще всего это более или менее равномерно распределенные в толщах отложений небольшие по размерам прослойки и прожилки. Пересекаясь между собой, они нередко образуют ледяную сетку или решетку. Встречаются и залежи подземного льда толщиной до 10-15 метров и более. А самая впечатляющая его разновидность - вертикальные ледяные жилы высотой 40-50 и шириной свыше 10 метров в верхней (самой толстой) части.

В соответствии с концепцией В.А.Обручева крупные ледяные жилы, линзы и пласты подземных льдов еще совсем недавно считали захороненными остатками былых ледниковых покровов и обосновывали этим теоретическую реконструкцию огромного ледникового покрова почти на всей территории Сибири вплоть до арктических морей и их островов.

Советские (главным образом) ученые раскрыли механизм образования ледяных жил. В условиях низких температур грунт, укрытый тонким слоем снега, интенсивно охлаждается, сжимается и разбивается трещинами. Зимой в них попадает снег, летом вода. Она замерзает, поскольку нижние окончания трещин проникают в сферу постоянно мерзлых горных пород, имеющих температуру ниже 0°С. Периодическое возникновение новых трещин на старом месте и заполнение их дополнительными порциями снега и воды приводят сначала к образованию ледяных жил клиновидной формы высотой не более 12-16 метров. В дальнейшем они растут в высоту и ширину, выжимая часть вмещающего их минерального вещества к земной поверхности. Последняя за счет этого постоянно повышается - ледяные жилы как бы «закапываются» в грунт. С увеличением глубины залегания создаются условия для их дальнейшего роста вверх. Он прекращается, когда общая льдонасыщенность отложений достигает максимального значения 75-90 процентов от общего объема всей льдогрунтовой массы. Общее повышение поверхности может достигать при этом 25-30 метров. Согласно расчетам, на образование ледяных жил большой вертикальной протяженности требуется 9-12 тысяч лет.


Когда возможности роста ледяной жилы исчерпываются, происходит ее вскрытие, она начинает протаивать. Возникает термокарстовая воронка, которая при отсутствии стока из нее превращается в озеро, имеющее часто крестообразную форму в связи с тем, что располагается оно на взаимном пересечении ледяных жил. Наступает стадия массового протаивания льдистых пород.

Ледяные жилы порождают озера, а озера ликвидируют их, подготавливая условия для повторного появления и развития жильных льдов.


Вопрос о связи образования крупных ледяных жил с морозобойным растрескиванием грунтов и замерзанием воды в них решен практически однозначно, обсуждаются лишь детали этого процесса, связь его с теми или другими ландшафтами в условиях континентальной суши. Проблема происхождения крупных залежей подземного льда, имеющих форму линз и прослоев, оказалась более сложной и до сих пор является предметом острой дискуссии. Одни ученые считают, что это захороненные остатки древних ледников. Другие утверждают: такие залежи образуются в процессе промерзания грунтов. Некоторые исследователи неправильно относят к ледниковым погребенные линзы и пласты льда, вынесенные когда-то морем на сушу.

Особенно много линз и пластов подземного льда на севере Западно-Сибирской низменности и приморских равнинах Чукотки. Результаты работ там советских мерзлотоведов позволяют сделать вполне определенный вывод: подземные линзы и пласты льда в этих районах образовались в процессе промерзания горных пород и являются характерным его следствием. Ряд деталей их строения (прежде всего наличие в подземных залежах льда крупных каменных включений - гальки и валунов) не укладываются в рамки стандартных представлений о подземном льдообразовании. Именно валуны рассматриваются как главное и прямое свидетельство того, что содержащие их льды - остатки былых ледниковых покровов. Однако попадание валунов в массивы «чистого» подземного льда вполне объяснимо. Горные породы разбиты трещинами. Проникшая в них вода, замерзая, выталкивала валуны вверх, где их обволакивал «чистый» лед.

Другая специфическая черта подземных линзовидных залежей льда - иногда свойственная им складчатость. При росте к поверхности ледяные жилы сминают в куполообразные складки перекрывающие их отложения. Предполагают, что деформации во льду отражают процесс былого движения ледника, а смятия горных пород связывают с его динамическим воздействием на свое ложе («гляциодинамические дислокации»). Выше уже говорилось о нереальности подобных представлений. Деформированные крупные скопления подземного льда линзовидной формы представляют собой внедрения воды и грунта в процессе промерзания отложений после того, как поверхность их оказалась выше уровня моря. О справедливости подобной точки зрения однозначно свидетельствует тот факт, что в целом ряде случаев скопления деформированного льда перекрыты смятыми в пологие складки морскими слоистыми осадками, содержащими остатки морских организмов.

Теорию древних оледенений используют обычно для объяснения природных явлений, ставящих в тупик исследователя, который не может дать правдоподобной интерпретации способа их образования. Именно так обстоит дело с проблемой происхождения залежей подземного льда, содержащего валуны. Однако отсутствие объяснения сложного природного явления не есть доказательство того, что оно обязательно обусловлено деятельностью древнего ледника.

Наконец, изучение области современного распространения мерзлых горных пород дает ключ к расшифровке происхождения характерного холмисто-западинного рельефа, который принято называть «типично ледниковым». Дело в том, что подземный лед в мерзлых горных породах распределяется очень неравномерно. Его количество нередко эквивалентно поднятию высоты земной поверхности на 40-60 метров. Естественно, что при протаивании мерзлых пород здесь образуются понижения соответствующей глубины. А там, где содержание льда было намного меньшим, после протаивания возникнут холмы. Процесс локального неравномерного протаивания льдистых пород можно наблюдать в северных районах распространения вечной мерзлоты. При этом возникает холмисто-озерный рельеф, совершенно аналогичный тому, который принимают за «типично ледниковый» на равнинах Северной Европы. Для этой зоны (кроме сказанного выше) характерно интенсивное торфообразование, следы которого зафиксированы в мощных черноземах Европы и Азии.


ИЗУЧАЯ ПРОШЛОЕ, ПРОГНОЗИРОВАТЬ БУДУЩЕЕ

Итак ясно, что геологическая роль и, следовательно, размеры и число древних наземных «великих ледниковых покровов» во многом преувеличены. Крупные похолодания климата действительно были свойственны последнему периоду геологической истории Земли, но они, по-видимому, приводили к развитию наземных ледников лишь в горных районах и на прилегающих к ним территориях, расположенных в условиях холодного, но достаточно влажного климата с высоким количеством зимних атмосферных осадков. Роль подземного оледенения в истории Земли, напротив, явно недооценивается. Наиболее широко оно развивалось в областях с суровым климатом при некотором дефиците твердых осадков.

Есть все основания полагать, что в эпохи холодной аридизации климата (аридный климат - сухой, свойственный пустыням и полупустыням; аридизация происходит при высоких или низких температурах воздуха в условиях малого количества атмосферных осадков) площадь подземного оледенения в Северном полушарии, как и в настоящее время, намного превосходила масштабы наземных ледников. Огромные пространства морей также покрывались льдом.

Были ли эти эпохи для нашей планеты следствием каких-то астрономических факторов или сугубо земных (скажем, смещения Северного полюса) - однозначного ответа сейчас нет. Но можно утверждать: последний период в геологической истории Земли не столько ледниковый, сколько в целом ледовый, ибо площади подземных и морских льдов превосходят (и превосходили) площади распространения наземных ледников.

Изучая геологическое прошлое, познавая закономерности развития природы, ученые пытаются прогнозировать ее будущее. Что же ждет человечество, если климат Земли вновь станет значительно холоднее современного? Возникнут ли ледниковые суперпокровы? Исчезнет ли под ними вся Северная Европа и почти половина Северной Америки? Думается, можно дать вполне определенный отрицательный ответ. Ледники возникнут, по-видимому, только в Скандинавии и в пределах других горных территорий, получающих зимой снега больше, чем расходуется его летом, а обширные пространства Евразии и Северной Америки будут ареной развития подземного оледенения. При дефиците влаги это приведет к холодной аридизации огромных регионов Земли.

Загрузка...