docgid.ru

Как подобрать частное решение дифференциального уравнения. Дифференциальные уравнения

6.1. ОСНОВНЫЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ

При решении различных задач математики и физики, биологии и медицины довольно часто не удается сразу установить функциональную зависимость в виде формулы, связывающей переменные величины, которые описывают исследуемый процесс. Обычно приходится использовать уравнения, содержащие, кроме независимой переменной и неизвестной функции, еще и ее производные.

Определение. Уравнение, связывающее независимую переменную, неизвестную функцию и ее производные различных порядков, называется дифференциальным.

Неизвестную функцию обычно обозначают y(x) или просто y, а ее производные - y" , y" и т. д.

Возможны и другие обозначения, например: если y = x(t), то x"(t), x""(t) - ее производные, а t - независимая переменная.

Определение. Если функция зависит от одной переменной, то дифференциальное уравнение называется обыкновенным. Общий вид обыкновенного дифференциального уравнения:

или

Функции F и f могут не содержать некоторых аргументов, но для того, чтобы уравнения были дифференциальными, существенно наличие производной.

Определение. Порядком дифференциального уравнения называется порядок старшей производной, входящей в него.

Например, x 2 y" - y = 0, y" + sinx = 0 - уравнения первого порядка, а y" + 2 y" + 5 y = x - уравнение второго порядка.

При решении дифференциальных уравнений используется операция интегрирования, что связано с появлением произвольной постоянной. Если действие интегрирования применяется n раз, то, очевидно, и в решении будет содержаться n произвольных постоянных.

6.2. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА

Общий вид дифференциального уравнения первого порядка определяется выражением

Уравнение может не содержать в явном виде x и y, но обязательно содержит у".

Если уравнение можно записать в виде

то получим дифференциальное уравнение первого порядка, разрешенное относительно производной.

Определение. Общим решением дифференциального уравнения первого порядка (6.3) (или (6.4)) является множество решений, где С - произвольная постоянная.

График решения дифференциального уравнения называется интегральной кривой.

Придавая произвольной постоянной С различные значения, можно получить частные решения. На плоскости xOy общее решение представляет собой семейство интегральных кривых, соответствующих каждому частному решению.

Если задать точку A (x 0 , y 0), через которую должна проходить интегральная кривая, то, как правило, из множества функций можно выделить одну - частное решение.

Определение. Частным решением дифференциального уравнения называется его решение, не содержащее произвольных постоянных.

Еслиявляется общим решением, тогда из условия

можно найти постоянную С. Условиеназывают начальным условием.

Задача нахождения частного решения дифференциального уравнения (6.3) или (6.4), удовлетворяющего начальному условиюпри называется задачей Коши. Всегда ли эта задача имеет решение? Ответ содержит следующая теорема.

Теорема Коши (теорема существования и единственности решения). Пусть в дифференциальном уравнении y" = f (x, y) функция f (x, y) и ее

частная производная определены и непрерывны в некоторой

области D, содержащей точкуТогда в области D существует

единственное решение уравнения, удовлетворяющее начальному условиюпри

Теорема Коши утверждает, что при определенных условиях существует единственная интегральная кривая y = f (x), проходящая через точкуТочки, в которых не выполняются условия теоремы

Коши, называются особыми. В этих точках терпит разрыв f (x, y) или.

Через особую точку проходит либо несколько интегральных кривых, либо ни одной.

Определение. Если решение (6.3), (6.4) найдено в виде f (x, y, C) = 0, не разрешенным относительно у, то оно называется общим интегралом дифференциального уравнения.

Теорема Коши только гарантирует, что решение существует. Поскольку единого метода нахождения решения нет, мы будем рассматривать только некоторые типы дифференциальных уравнений первого порядка, интегрируемые в квадратурах.

Определение. Дифференциальное уравнение называется интегрируемым в квадратурах, если отыскание его решения сводится к интегрированию функций.

6.2.1. Дифференциальные уравнения первого порядка с разделяющимися переменными

Определение. Дифференциальное уравнение первого порядка называется уравнением с разделяющимися переменными,

Правая часть уравнения (6.5) представляет собой произведение двух функций, каждая из которых зависит только от одной переменной.

Например, уравнениеявляется уравнением с разделяющи-

мися переменными
а уравнение

нельзя представить в виде (6.5).

Учитывая, что, перепишем (6.5) в виде

Из этого уравнения получим дифференциальное уравнение с разделенными переменными, в котором при дифференциалах стоят функции, зависящие лишь от соответствующей переменной:

Интегрируя почленно, имеем


где C = C 2 - C 1 - произвольная постоянная. Выражение (6.6) представляет собой общий интеграл уравнения (6.5).

Разделив обе части уравнения (6.5) на,, мы можем потерять те решения, при которых,Действительно, еслипри

тоочевидно, является решением уравнения (6.5).

Пример 1. Найти решение уравненияудовлетворяющее

условию: y = 6 при x = 2 (y (2) = 6).

Решение. Заменим у" натогда. Умножим обе части на

dx, так как при дальнейшем интегрировании нельзя оставлять dx в знаменателе:

а затем, разделив обе части наполучим уравнение,

которое можно проинтегрировать. Интегрируем:

Тогда; потенцируя, получим y = C . (x + 1) - об-

щее решение.

По начальным данным определяем произвольную постоянную, подставив их в общее решение

Окончательно получаем y = 2(x + 1) - частное решение. Рассмотрим еще несколько примеров решения уравнений с разделяющимися переменными.

Пример 2. Найти решение уравнения

Решение. Учитывая, что, получим.

Проинтегрировав обе части уравнения, будем иметь

откуда

Пример 3. Найти решение уравненияРешение. Делим обе части уравнения на те сомножители, которые зависят от переменной, не совпадающей с переменной под знаком дифференциала, т. е. наи интегрируем. Тогда получим


и, наконец,

Пример 4. Найти решение уравнения

Решение. Зная, чтополучим. Разде-

лим переменные. Тогда

Интегрируя, получим


Замечание. В примерах 1 и 2 искомая функция y выражена явно (общее решение). В примерах 3 и 4 - неявно (общий интеграл). В дальнейшем форма решения оговариваться не будет.

Пример 5. Найти решение уравненияРешение.


Пример 6. Найти решение уравнения, удовлетворяющее

условию y(e) = 1.

Решение. Запишем уравнение в виде

Умножая обе части уравнения на dx и на, получим

Интегрируя обе части уравнения (интеграл в правой части берется по частям), получим

Но по условию y = 1 при x = e . Тогда

Подставим найденные значения С в общее решение:

Полученное выражение называется частным решением дифференциального уравнения.

6.2.2. Однородные дифференциальные уравнения первого порядка

Определение. Дифференциальное уравнение первого порядка называется однородным, если его можно представить в виде

Приведем алгоритм решения однородного уравнения.

1.Вместо y введем новую функциюТогдаи, следовательно,

2.В терминах функции u уравнение (6.7) принимает вид

т. е. замена сводит однородное уравнение к уравнению с разделяющимися переменными.

3.Решая уравнение (6.8), находим сначала u, а затем y = ux.

Пример 1. Решить уравнениеРешение. Запишем уравнение в виде

Производим подстановку:
Тогда

Заменим

Умножим на dx: Разделим на x и натогда

Проинтегрировав обе части уравнения по соответствующим переменным, будем иметь


или, возвращаясь к старым переменным, окончательно получим

Пример 2. Решить уравнениеРешение. Пустьтогда


Поделим обе части уравнения на x 2: Раскроем скобки и перегруппируем слагаемые:


Переходя к старым переменным, придем к окончательному результату:

Пример 3. Найти решение уравнения при условии

Решение. Выполняя стандартную заменуполучаем

или


или

Значит, частное решение имеет видПример 4. Найти решение уравнения

Решение.

Пример 5. Найти решение уравнения Решение.

Самостоятельная работа

Найти решение дифференциальных уравнений с разделяющимися переменными (1-9).

Найти решение однородных дифференциальных уравнений (9-18).

6.2.3. Некоторые приложения дифференциальных уравнений первого порядка

Задача о радиоактивном распаде

Скорость распада Ra (радия) в каждый момент времени пропорциональна его наличной массе. Найти закон радиоактивного распада Ra, если известно, что в начальный момент имелосьRa и период полураспада Ra равен 1590 лет.

Решение. Пусть в моментмасса Ra составляет x = x(t) г, причем Тогда скорость распада Ra равна


По условию задачи

где k

Разделяя в последнем уравнении переменные и интегрируя, получим

откуда

Для определения C используем начальное условие: при.

Тогдаи, значит,

Коэффициент пропорциональности k определяем из дополнительного условия:

Имеем

Отсюдаи искомая формула

Задача о скорости размножения бактерий

Скорость размножения бактерий пропорциональна их количеству. В начальный момент имелось 100 бактерий. В течение 3 ч их число удвоилось. Найти зависимость количества бактерий от времени. Во сколько раз увеличится количество бактерий в течение 9 ч?

Решение. Пусть x - количество бактерий в момент t. Тогда, согласно условию,

где k - коэффициент пропорциональности.

ОтсюдаИз условия известно, что. Значит,

Из дополнительного условия. Тогда

Искомая функция:

Значит, при t = 9 x = 800, т. е. в течение 9 ч количество бактерий увеличилось в 8 раз.

Задача об увеличении количества фермента

В культуре пивных дрожжей быстрота прироста действующего фермента пропорциональна его начальному количеству x. Первоначальное количество фермента a в течение часа удвоилось. Найти зависимость

x(t).

Решение. По условию дифференциальное уравнение процесса имеет вид

отсюда

Но. Значит, C = a и тогда

Известно также, что

Следовательно,

6.3. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ВТОРОГО ПОРЯДКА

6.3.1. Основные понятия

Определение. Дифференциальным уравнением второго порядка называется соотношение, связывающее независимую переменную, искомую функцию и ее первую и вторую производные.

В частных случаях в уравнении могут отсутствовать x, у или у". Однако уравнение второго порядка обязательно должно содержать у". В общем случае дифференциальное уравнение второго порядка записывается в виде:

или, если это возможно, в виде, разрешенном относительно второй производной:

Как и в случае уравнения первого порядка, для уравнения второго порядка могут существовать общее и частное решения. Общее решение имеет вид:

Нахождение частного решения

при начальных условиях- заданные

числа) называется задачей Коши. Геометрически это означает, что требуется найти интегральную кривую у = у (x), проходящую через заданную точкуи имеющую в этой точке касательнуюкоторая об-

разует с положительным направлением оси Ox заданный уголт. е. (рис. 6.1). Задача Коши имеет единственное решение, если правая часть уравнения (6.10),непре-

рывна и имеет непрерывные частные производные по у, у" в некоторой окрестности начальной точки

Для нахождения постоянных входящих в частное решение, надо разрешить систему

Рис. 6.1. Интегральная кривая

Учреждение образования «Белорусская государственная

сельскохозяйственная академия»

Кафедра высшей математики

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА

Конспект лекции для студентов бухгалтерского факультета

заочной формы получения образования (НИСПО)

Горки, 2013

Дифференциальные уравнения первого порядка

    Понятие дифференциального уравнения. Общее и частное решения

При изучении различных явлений часто не удаётся найти закон, который непосредственно связывает независимую переменную и искомую функцию, но можно установить связь между искомой функцией и её производными.

Соотношение, связывающее независимую переменную, искомую функцию и её производные, называется дифференциальным уравнением :

Здесь x – независимая переменная, y – искомая функция,
- производные искомой функции. При этом в соотношении (1) обязательно наличие хотя бы одной производной.

Порядком дифференциального уравнения называется порядок старшей производной, входящей в уравнение.

Рассмотрим дифференциальное уравнение

. (2)

Так в это уравнение входит производная только первого порядка, то оно называется дифференциальным уравнением первого порядка.

Если уравнение (2) можно разрешить относительно производной и записать в виде

, (3)

то такое уравнение называется дифференциальным уравнением первого порядка в нормальной форме.

Во многих случаях целесообразно рассматривать уравнение вида

которое называется дифференциальным уравнением первого порядка, записанным в дифференциальной форме.

Так как
, то уравнение (3) можно записать в виде
или
, где можно считать
и
. Это означает, что уравнение (3) преобразовано в уравнение (4).

Запишем уравнение (4) в виде
. Тогда
,
,
, где можно считать
, т.е. получено уравнение вида (3). Таким образом, уравнения (3) и (4) равносильны.

Решением дифференциального уравнения (2) или (3) называется любая функция
, которая при подстановке её в уравнение (2) или (3) обращает его в тождество:

или
.

Процесс нахождения всех решений дифференциального уравнения называется его интегрированием , а график решения
дифференциального уравнения называетсяинтегральной кривой этого уравнения.

Если решение дифференциального уравнения получено в неявном виде
, то оно называетсяинтегралом данного дифференциального уравнения.

Общим решением дифференциального уравнения первого порядка называется семейство функций вида
, зависящее от произвольной постояннойС , каждая из которых является решением данного дифференциального уравнения при любом допустимом значении произвольной постоянной С . Таким образом, дифференциальное уравнение имеет бесчисленное множество решений.

Частным решением дифференциального уравнения называется решение, получаемое из формулы общего решения при конкретном значении произвольной постоянной С , включая
.

    Задача Коши и её геометрическая интерпретация

Уравнение (2) имеет бесчисленное множество решений. Чтобы из этого множества выделить одно решение, которое называется частным, нужно задать некоторые дополнительные условия.

Задача отыскания частного решения уравнения (2) при заданных условиях называется задачей Коши . Эта задача является одной из важнейших в теории дифференциальных уравнений.

Формулируется задача Коши следующим образом: среди всех решений уравнения (2) найти такое решение
, в котором функция
принимает заданное числовое значение, если независимая переменная
x принимает заданное числовое значение , т.е.

,
, (5)

где D – область определения функции
.

Значение называетсяначальным значением функции , а начальным значением независимой переменной . Условие (5) называется начальным условием или условием Коши .

С геометрической точки зрения задачу Коши для дифференциального уравнения (2) можно сформулировать следующим образом: из множества интегральных кривых уравнения (2) выделить ту, которая проходит через заданную точку
.

    Дифференциальные уравнения с разделяющимися переменными

Одним из простейших видов дифференциальных уравнений является дифференциальное уравнение первого порядка, не содержащее искомой функции:

. (6)

Учитывая, что
, запишем уравнение в виде
или
. Интегрируя обе части последнего уравнения, получим:
или

. (7)

Таким образом, (7) является общим решением уравнения (6).

Пример 1 . Найти общее решение дифференциального уравнения
.

Решение . Запишем уравнение в виде
или
. Проинтегрируем обе части полученного уравнения:
,
. Окончательно запишем
.

Пример 2 . Найти решение уравнения
при условии
.

Решение . Найдём общее решение уравнения:
,
,
,
. По условию
,
. Подставим в общее решение:
или
. Найденное значение произвольной постоянной подставим в формулу общего решения:
. Это и есть частное решение дифференциального уравнения, удовлетворяющее заданному условию.

Уравнение

(8)

Называется дифференциальным уравнением первого порядка, не содержащим независимой переменной . Запишем его в виде
или
. Проинтегрируем обе части последнего уравнения:
или
- общее решение уравнения (8).

Пример . Найти общее решение уравнения
.

Решение . Запишем это уравнение в виде:
или
. Тогда
,
,
,
. Таким образом,
– общее решение данного уравнения.

Уравнение вида

(9)

интегрируется с помощью разделения переменных. Для этого уравнение запишем в виде
, а затем с помощью операций умножения и деления приводим его к такой форме, чтобы в одну часть входила только функция отх и дифференциал dx , а во вторую часть – функция от у и дифференциал dy . Для этого обе части уравнения нужно умножить на dx и разделить на
. В результате получим уравнение

, (10)

в котором переменные х и у разделены. Проинтегрируем обе части уравнения (10):
. Полученное соотношение является общим интегралом уравнения (9).

Пример 3 . Проинтегрировать уравнение
.

Решение . Преобразуем уравнение и разделим переменные:
,
. Проинтегрируем:
,
или – общий интеграл данного уравнения.
.

Пусть уравнение задано в виде

Такое уравнение называется дифференциальным уравнением первого порядка с разделяющимися переменными в симметрической форме.

Для разделения переменных нужно обе части уравнения разделить на
:

. (12)

Полученное уравнение называется дифференциальным уравнением с разделёнными переменными . Проинтегрируем уравнение (12):

.(13)

Соотношение (13) является общим интегралом дифференциального уравнения (11).

Пример 4 . Проинтегрировать дифференциальное уравнение .

Решение . Запишем уравнение в виде

и разделим обе его части на
,
. Полученное уравнение:
является уравнением с разделёнными переменными. Проинтегрируем его:

,
,

,
. Последнее равенство является общим интегралом данного дифференциального уравнения.

Пример 5 . Найти частное решение дифференциального уравнения
, удовлетворяющее условию
.

Решение . Учитывая, что
, запишем уравнение в виде
или
. Разделим переменные:
. Проинтегрируем это уравнение:
,
,
. Полученное соотношение является общим интегралом данного уравнения. По условию
. Подставим в общий интеграл и найдёмС :
,С =1. Тогда выражение
является частным решением данного дифференциального уравнения, записанным в виде частного интеграла.

    Линейные дифференциальные уравнения первого порядка

Уравнение

(14)

называется линейным дифференциальным уравнением первого порядка . Неизвестная функция
и её производная входят в это уравнение линейно, а функции
и
непрерывны.

Если
, то уравнение

(15)

называется линейным однородным . Если
, то уравнение (14) называетсялинейным неоднородным .

Для нахождения решения уравнения (14) обычно используют метод подстановки (Бернулли) , суть которого в следующем.

Решение уравнения (14) будем искать в виде произведения двух функций

, (16)

где
и
- некоторые непрерывные функции. Подставим
и производную
в уравнение (14):

Функцию v будем подбирать таким образом, чтобы выполнялось условие
. Тогда
. Таким образом, для нахождения решения уравнения (14) нужно решить систему дифференциальных уравнений

Первое уравнение системы является линейным однородным уравнением и решить его можно методом разделения переменных:
,
,
,
,
. В качестве функции
можно взять одно из частных решений однородного уравнения, т.е. приС =1:
. Подставим во второе уравнение системы:
или
.Тогда
. Таким образом, общее решение линейного дифференциального уравнения первого порядка имеет вид
.

Пример 6 . Решить уравнение
.

Решение . Решение уравнения будем искать в виде
. Тогда
. Подставим в уравнение:

или
. Функциюv выберем таким образом, чтобы выполнялось равенство
. Тогда
. Решим первое из этих уравнений методом разделения переменных:
,
,
,
,. Функциюv подставим во второе уравнение:
,
,
,
. Общим решением данного уравнения является
.

Вопросы для самоконтроля знаний

    Что называется дифференциальным уравнением?

    Что называется порядком дифференциального уравнения?

    Какое дифференциальное уравнение называется дифференциальным уравнением первого порядка?

    Как записывается дифференциальное уравнение первого порядка в дифференциальной форме?

    Что называется решением дифференциального уравнения?

    Что называется интегральной кривой?

    Что называется общим решением дифференциального уравнения первого порядка?

    Что называется частным решением дифференциального уравнения?

    Как формулируется задача Коши для дифференциального уравнения первого порядка?

    Какова геометрическая интерпретация задачи Коши?

    Как записывается дифференциальное уравнение с разделяющимися переменными в симметрической форме?

    Какое уравнение называется линейным дифференциальным уравнением первого порядка?

    Каким методом можно решить линейное дифференциальное уравнение первого порядка и в чём суть этого метода?

Задания для самостоятельной работы

    Решить дифференциальные уравнения с разделяющимися переменными:

а)
; б)
;

в)
; г)
.

2. Решить линейные дифференциальные уравнения первого порядка:

а)
; б)
; в)
;

г)
; д)
.

Часто одно лишь упоминание дифференциальных уравнений вызывает у студентов неприятное чувство. Почему так происходит? Чаще всего потому, что при изучении основ материала возникает пробел в знаниях, из-за которого дальнейшее изучение дифуров становиться просто пыткой. Ничего не понятно, что делать, как решать, с чего начать?

Однако мы постараемся вам показать, что дифуры – это не так сложно, как кажется.

Основные понятия теории дифференциальных уравнений

Со школы нам известны простейшие уравнения, в которых нужно найти неизвестную x. По сути дифференциальные уравнения лишь чуточку отличаются от них – вместо переменной х в них нужно найти функцию y(х) , которая обратит уравнение в тождество.

Дифференциальные уравнения имеют огромное прикладное значение. Это не абстрактная математика, которая не имеет отношения к окружающему нас миру. С помощью дифференциальных уравнений описываются многие реальные природные процессы. Например, колебания струны, движение гармонического осциллятора, посредством дифференциальных уравнений в задачах механики находят скорость и ускорение тела. Также ДУ находят широкое применение в биологии, химии, экономике и многих других науках.

Дифференциальное уравнение (ДУ ) – это уравнение, содержащее производные функции y(х), саму функцию, независимые переменные и иные параметры в различных комбинациях.

Существует множество видов дифференциальных уравнений: обыкновенные дифференциальные уравнения, линейные и нелинейные, однородные и неоднородные, дифференциальные уравнения первого и высших порядков, дифуры в частных производных и так далее.

Решением дифференциального уравнения является функция, которая обращает его в тождество. Существуют общие и частные решения ДУ.

Общим решением ДУ является общее множество решений, обращающих уравнение в тождество. Частным решением дифференциального уравнения называется решение, удовлетворяющее дополнительным условиям, заданным изначально.

Порядок дифференциального уравнения определяется наивысшим порядком производных, входящих в него.

Обыкновенные дифференциальные уравнения

Обыкновенные дифференциальные уравнения – это уравнения, содержащие одну независимую переменную.

Рассмотрим простейшее обыкновенное дифференциальное уравнение первого порядка. Оно имеет вид:

Решить такое уравнение можно, просто проинтегрировав его правую часть.

Примеры таких уравнений:

Уравнения с разделяющимися переменными

В общем виде этот тип уравнений выглядит так:

Приведем пример:

Решая такое уравнение, нужно разделить переменные, приведя его к виду:

После этого останется проинтегрировать обе части и получить решение.

Линейные дифференциальные уравнения первого порядка

Такие уравнения имеют вид:

Здесь p(x) и q(x) – некоторые функции независимой переменной, а y=y(x) – искомая функция. Приведем пример такого уравнения:

Решая такое уравнение, чаще всего используют метод вариации произвольной постоянной либо представляют искомую функцию в виде произведения двух других функций y(x)=u(x)v(x).

Для решения таких уравнений необходима определенная подготовка и взять их “с наскока” будет довольно сложно.

Пример решения ДУ с разделяющимися переменными

Вот мы и рассмотрели простейшие типы ДУ. Теперь разберем решение одного из них. Пусть это будет уравнение с разделяющимися переменными.

Сначала перепишем производную в более привычном виде:

Затем разделим переменные, то есть в одной части уравнения соберем все "игреки", а в другой – "иксы":

Теперь осталось проинтегрировать обе части:

Интегрируем и получаем общее решение данного уравнения:

Конечно, решение дифференциальных уравнений – своего рода искусство. Нужно уметь понимать, к какому типу относится уравнение, а также научиться видеть, какие преобразования нужно с ним совершить, чтобы привести к тому или иному виду, не говоря уже просто об умении дифференцировать и интегрировать. И чтобы преуспеть в решении ДУ, нужна практика (как и во всем). А если у Вас в данный момент нет времени разбираться с тем, как решаются дифференциальные уравнения или задача Коши встала как кость в горле или вы не знаете, обратитесь к нашим авторам. В сжатые сроки мы предоставим Вам готовое и подробное решение, разобраться в подробностях которого Вы сможете в любое удобное для Вас время. А пока предлагаем посмотреть видео на тему "Как решать дифференциальные уравнения":

Вспомним задачу, которая стояла перед нами при нахождении определенных интегралов:

или dy = f(x)dx. Ее решение:

и сводится она к вычислению неопределенного интеграла. На практике чаще встречается более сложная задача: найти функцию y , если известно, что она удовлетворяет соотношению вида

Это соотношение связывает независимую переменную x , неизвестную функцию y и ее производные до порядка n включительно, называются .

В дифференциальное уравнение входит функция под знаком производных (или дифференциалов) того или иного порядка. Порядок наивысшей называется порядком (9.1).

Дифференциальные уравнения:

- первого порядка,

Второго порядка,

- пятого порядка и т. д.

Функция, которая удовлетворяет данному дифференциальному уравнению, называется его решением, или интегралом. Решить его - значит найти все его решения. Если для искомой функции y удалось получить формулу, которая дает все решения, то мы говорим, что нашли его общее решение, или общий интеграл.

Общее решение содержит n произвольных постоянных и имеет вид

Если получено соотношение, которое связывает x, y и n произвольных постоянных, в виде, не разрешенном относительно y -

то такое соотношение называется общим интегралом уравнения (9.1).

Задача Коши

Каждое конкретное решение, т. е. каждая конкретная функция, которая удовлетворяет данному дифференциальному уравнению и не зависит от произвольных постоянных, называется частным решением, или частным интегралом. Чтобы получить частные решения (интегралы) из общих, надо постоянным придают конкретные числовые значения.

График частного решения называется интегральной кривой. Общее решение, которое содержит все частные решения, представляет собой семейство интегральных кривых. Для уравнения первого порядка это семейство зависит от одной произвольной постоянной, для уравнения n -го порядка - от n произвольных постоянных.

Задача Коши заключается в нахождении частного решение для уравнения n -го порядка, удовлетворяющее n начальным условиям:

по которым определяются n постоянных с 1 , с 2 ,..., c n.

Дифференциальные уравнения 1-го порядка

Для неразрешенного относительно производной дифференциальное уравнения 1-го порядка имеет вид

или для разрешенного относительно

Пример 3.46 . Найти общее решение уравнения

Решение. Интегрируя, получим

где С - произвольная постоянная. Если придадим С конкретные числовые значения, то получим частные решения, например,

Пример 3.47 . Рассмотрим возрастающую денежную сумму, положенную в банк при условии начисления 100 r сложных процентов в год. Пусть Yo начальная денежная сумма, а Yx - по истечении x лет. При начислении процентов один раз в год,получим

где x = 0, 1, 2, 3,.... При начислении процентов два раза в год, получим

где x = 0, 1/2, 1, 3/2,.... При начислении процентов n раз в год и если x принимает последовательно значения 0, 1/n, 2/n, 3/n,..., тогда

Обозначить 1/n = h , тогда предыдущее равенство будет иметь вид:

При н еограниченном увеличении n (при ) в пределе приходем к процессу возрастания денежной суммы при непрерывном начислении процентов:

таким образом видно, что при непрерывном изменении x закон изменения денежной массы выражается дифференциальным уравнением 1- го порядка. Где Y x - неизвестная функция, x - независимая переменная, r - постоянная. Решим данное уравнение, для этого перепишем его следующим образом:

откуда , или , где через P обозначено e C .

Из начальных условий Y(0) = Yo , найдем P: Yo = Pe o , откуда, Yo = P. Следовательно, решение имеет вид:

Рассмотрим вторую экономическую задачу. Макроэкономические модели тоже описываются линейным дифференциальным уравнениям 1-го порядка, описывающим изменение дохода или выпуска продукции Y как функций времени.

Пример 3.48 . Пусть национальный доход Y возрастает со скоростью, пропорциональной его величине:

и пусть, дефицит в расходах правительства прямо пропорционален доходу Y с коэффициентом пропорциональности q . Дефицит в расходах приводит к возрастанию национального долга D:

Начальные условия Y = Yo и D = Do при t = 0. Из первого уравнения Y= Yoe kt . Подставляя Y получаем dD/dt = qYoe kt . Общее решение имеет вид
D = (q/ k) Yoe kt +С, где С = const, которая определяется из начальных условий. Подставляя начальные условия, получаем Do = (q/ k)Yo + С. Итак, окончательно,

D = Do +(q/ k)Yo (e kt -1),

отсюда видно, что национальный долг возрастает с той же относительной скоростью k , что и национальный доход.

Рассмотрим ростейшие дифференциальные уравнения n -го порядка, это уравнения вида

Его общее решение получитм с помощью n раз интегрирований.

Пример 3.49. Рассмотрим пример y """ = cos x.

Решение. Интегрируя, находим

Общее решение имеет вид

Линейные дифференциальные уравнения

В экономике большое применение имеют , рассмотрим решение таких уравнений. Если (9.1) имеет вид:

то оно называется линейным, где рo(x), р1(x),..., рn(x), f(x) - заданные функции. Если f(x) = 0, то (9.2) называется однородными, в противном случае - неоднородным. Общее решение уравнения (9.2) равно сумме какого-либо его частного решения y(x) и общего решения однородного уравнения соответствующего ему:

Если коэффициенты р o (x), р 1 (x),..., р n (x) постоянные, то (9.2)

(9.4) называется линейным дифференциальным уравнением с постоянными коэффициентами порядка n .

Для (9.4) имеет вид:

Можно положить без ограничения общности р o = 1 и записать (9.5) в виде

Будем искать решение (9.6) в виде y = e kx , где k - константа. Имеем: ; y " = ke kx , y "" = k 2 e kx , ..., y (n) = kne kx . Подставим полученные выражения в (9.6), будем иметь:

(9.7) есть алгебраическое уравнение, его неизвестным является k , оно называется характеристическим. Характеристическое уравнение имеет степень n и n корней, среди которых могут быть как кратные, так и комплексные. Пусть k 1 , k 2 ,..., k n - действительные и различные, тогда - частные решения (9.7), а общее

Рассмотрим линейное однородное дифференциальное уравнение второго порядка с постоянными коэффициентами:

Его характеристическое уравнение имеет вид

(9.9)

его дискриминант D = р 2 - 4q в зависимости от знака D возможны три случая.

1. Если D>0, то корни k 1 и k 2 (9.9) действительны и различны, и общее решение имеет вид:

Решение. Характеристическое уравнение: k 2 + 9 = 0, откуда k = ± 3i, a = 0, b = 3, общее решение имеет вид:

y = C 1 cos 3x + C 2 sin 3x.

Линейные дифференциальные уравнения 2-го порядка применяются при изучении экономической модели паутинообразного типа с запасами товаров, где скорость изменения цены P зависит от величины запаса (см. параграф 10). В случае если спрос и предложение являются линейными функциями цены, то есть

а - есть постоянная, определяющая скорость реакции, то процесс изменения цены описывается дифференциальным уравнением:

За частное решения можно взять постоянную

имеющую смысл цены равновесия. Отклонение удовлетворяет однородному уравнению

(9.10)

Характеристическое уравнение будет следующее:

В случае член положителен. Обозначим . Корни характеристического уравнения k 1,2 = ± i w, поэтому общее решение (9.10) имеет вид:

где C и произвольные постоянные, они определяются из начальных условий. Получили закон изменения цены во времени:

Введите свое дифференциальное уравнение, для ввода производной используется апостроa """, нажмите submit получите решение

Инструкция

Если уравнение представлено в виде: dy/dx = q(x)/n(y), относите их к категории дифференциальных уравнений с разделяющимися переменными. Их можно решить, записав условие в дифференциалах по следующей : n(y)dy = q(x)dx. Затем проинтегрируйте обе части. В некоторых случаях решение записывается в виде интегралов, взятых от известных функций. К примеру, в случае dy/dx = x/y, получится q(x) = x, n(y) = y. Запишите его в виде ydy = xdx и проинтегрируйте. Должно получиться y^2 = x^2 + c.

К линейным уравнениям относите уравнения «первой ». Неизвестная функция с ее производными входит в подобное уравнение лишь в первой степени. Линейное имеет вид dy/dx + f(x) = j(x), где f(x) и g(x) – функции, зависящие от x. Решение записывается с помощью интегралов, взятых от известных функций.

Учтите, что многие дифференциальные уравнения - это уравнения второго порядка (содержащие вторые производные) Таким, например, является уравнение простого гармонического движения, записанное в виде общей : md 2x/dt 2 = –kx. Такие уравнения имеют, в , частные решения. Уравнение простого гармонического движения является примером достаточно важного : линейных дифференциальных уравнений, у которых имеется постоянный коэффициент.

Если в условиях задачи лишь одно линейное уравнение, значит, вам даны дополнительные условия, благодаря которым можно найти решение. Внимательно прочитайте задачу, чтобы найти эти условия. Если переменными х и у обозначены расстояние, скорость, вес – смело ставьте ограничение х≥0 и у≥0. Вполне возможно, под х или у скрывается количество , яблок, и т.д. – тогда значениями могут быть только . Если х – возраст сына, понятно, что он не может быть старше отца, поэтому укажите это в условиях задачи.

Источники:

  • как решить уравнение с одной переменной

Задачи на дифференциальное и интегральное исчисление являются важными элементами закрепления теории математического анализа, раздела высшей математики, изучаемой в вузах. Дифференциальное уравнение решается методом интегрирования.

Инструкция

Дифференциальное исчисление исследует свойства . И наоборот, интегрирование функции позволяет по данным свойствам, т.е. производным или дифференциалам функции найти ее саму. В этом и заключается решение дифференциального уравнения.

Любое является соотношением между неизвестной величиной и известными данными. В случае дифференциального уравнения роль неизвестного играет функция, а роль известных величин – ее производные. Кроме этого, соотношение может содержать независимую переменную:F(x, y(x), y’(x), y’’(x),…, y^n(x)) = 0, где x – неизвестная переменная, y(x) – функция, которую нужно определить, порядок уравнения – это максимальный порядок производной (n).

Такое уравнение называется обыкновенным дифференциальным уравнением. Если же в соотношении несколько независимых переменных и частные производные (дифференциалы) функции по этим переменным, то уравнение называется дифференциальным уравнением с частными производными и имеет вид:x∂z/∂y - ∂z/∂x = 0, где z(x, y) – искомая функция.

Итак, чтобы научиться решать дифференциальные уравнения, необходимо уметь находить первообразные, т.е. решать задачу, обратную дифференцированию. Например:Решите уравнение первого порядка y’ = -y/x.

РешениеЗамените y’ на dy/dx: dy/dx = -y/x.

Приведите уравнение к виду, удобному для интегрирования. Для этого умножьте обе части на dx и разделите на y:dy/y = -dx/x.

Проинтегрируйте:∫dy/y = - ∫dx/x + Сln |y| = - ln |x| + C.

Это решение называется общим дифференциального уравнения. С – это константа, множество значений которой определяет множество решений уравнения. При любом конкретном значении С решение будет единственным. Такое решение является частным решением дифференциального уравнения.

Решение большинства уравнений высших степеней не имеет четкой формулы, как нахождение корней квадратного уравнения . Однако существует несколько способов приведения, которые позволяют преобразовать уравнение высшей степени к более наглядному виду.

Инструкция

Наиболее распространенным методом решения уравнений высших степеней является разложение . Этот подход представляет собой комбинацию подбора целочисленных корней, делителей свободного члена, и последующее деление общего многочлена на вида (x – x0).

Например, решите уравнение x^4 + x³ + 2·x² – x – 3 = 0.Решение.Свободным членом данного многочлена является -3, следовательно, его целочисленными делителями могут быть числа ±1 и ±3. Подставьте их по очереди в уравнение и выясните, получится ли тождество:1: 1 + 1 + 2 – 1 – 3 = 0.

Второй корень x = -1. Поделите на выражение (x + 1). Запишите получившееся уравнение (x - 1)·(x + 1)·(x² + x + 3) = 0. Степень понизилась до второй, следовательно, уравнение может иметь еще два корня. Чтобы найти их, решите квадратное уравнение:x² + x + 3 = 0D = 1 – 12 = -11

Дискриминант – отрицательная величина, значит, действительных корней у уравнения больше нет. Найдите комплексные корни уравнения:x = (-2 + i·√11)/2 и x = (-2 – i·√11)/2.

Другой метод решения уравнения высшей степени – замена переменных для приведения его к квадратному. Такой подход используется, когда все степени уравнения четные, например:x^4 – 13·x² + 36 = 0

Теперь найдите корни исходного уравнения:x1 = √9 = ±3; x2 = √4 = ±2.

Совет 10: Как определить окислительно-восстановительные уравнения

Химическая реакция – это процесс превращения веществ, протекающий с изменением их состава. Те вещества, которые вступают в реакцию, называются исходными, а те, которые образуются в результате этого процесса – продуктами. Бывает так, что в ходе химической реакции элементы, входящие в состав исходных веществ, изменяют свою степень окисления. То есть они могут принять чужие электроны и отдать свои. И в том, и в другом случае меняется их заряд. Такие реакции называются окислительно-восстановительными.

Загрузка...