docgid.ru

Реологические характеристики крови. Управление кровообращением. По какой причине происходит агрегация эритроцитов

БИОФИЗИКА СИСТЕМЫ КРОВООБРАЩЕНИЯ

Гемодинамические показатели кровотока определяются биофизическими параметрами всей сердечно-сосудистой системы в целом, а именно собственными характеристиками сердечной деятельности (например ударным объемом крови ), структурнымиособенностями сосудов (ихрадиусом и эластичностью) и непосредственно свойствами самой крови (вязкостью).

Для описания ряда процессов , происходящих как в отдельных частях системы кровообращения , так и в ней целом, применяются методы физического, аналогового и математического моделирования. В настоящей главе рассматриваются модели движения крови как в норме, так и при некоторых нарушениях в сердечно-сосудистой системе , к которым, в частности, можно отнести сужения сосудов (например при образовании в нихтромбов ), изменение вязкости крови.

Реологические свойства крови

Реология (от греч. rheos- течение, поток, logos - учение) - это наука о деформациях и текучести вещества. Под реологией крови (гемореологией) будем понимать изучение биофизических особенностей крови как вязкой жидкости.

Вязкость (внутреннее трение) жидкости - свойство жидкости оказывать сопротивление перемещению одной ее части относительно другой. Вязкость жидкости обусловлена, в первую очередь,межмолекулярным взаимодействием, ограничивающим подвижность молекул. Наличие вязкости приводит к диссипации энергии внешнего источника, вызывающего движение жидкости, и переходу ее в теплоту. Жидкость без вязкости (так называемая идеальная жидкость) является абстракцией. Всем реальным жидкостям присуща вязкость. Иcключение – явление сверхтекучести гелия при сверхнизких температурах (квантовый эффект)

Основной закон вязкого течения был установлен И. Ньютоном

(1687 г.) - формула Ньютона:

где F [Н] - сила внутреннего трения (вязкости), возникающая между слоями жидкости при сдвиге их относительно друг друга; [Па с] коэффициент динамической вязкости жидкости, характеризующий сопротивление жидкости смещению ее слоев; - градиент скорости , показывающий, на сколько изменяется скорость V при изменении на единицу расстояния в налравлении Z при переходе от слоя к слою , иначе - скорость сдвига; S [м 2 ] - площадь соприкасающихся слоёв.

Сила внутреннего трения тормозит более быстрые слои и ускоряет более медленные слои. Наряду с коэффициентом динамической вязкости рассматривают так называемый коэффициент кинематической вязкости ( плотность жидкости).

Жидкости делятся по вязким свойствам на два вида: ньютоновские и неньютоновские.

Ньютоновской называется жидкость , коэффициент вязкости которой зависит только от её природы и температуры . Для ньютоновских жидкостей сила вязкости прямо пропорциональна градиенту скорости. Для них непосредственно справедлива формула Ньютона (1.а), коэффициент вязкости в которой является постоянным параметром, не зависящим от условий течения жидкости.

Неньютоновской называется жидкость , коэффициент вязкости которой зависит не только от природы вещества и температуры, но также и от условий течения жидкости , в частности от градиента скорости. Коэффициент вязкости в этом случае не является константой вещества. При этом вязкость жидкости характеризуют условным коэффициентом вязкости, который относится к определенным условиям течения жидкости (например давление, скорость). Зависимость силы вязкости от градиента скорости становится нелинейной:

где n характеризует механические свойства вещества при данных условиях течения. Примером неньютоновских жидкостей являются суспензии. Если имеется жидкость, в которой равномерно распределены твердые невзаимодействующие частицы, то такую среду можно рассматривать как однородную, если мы интересуемся явлениями, характеризующимися расстояниями, большими по сравнению с размером частиц. Свойства такой среды в первую очередь зависят от жидкости. Система же в целом будет обладать уже другой, большей вязкостью , зависящей от формы и концентрации частиц . Для случая малых концентраций частиц С справедлива формула:

где К геометрический фактор - коэффициент, зависящий от геометрии частиц (их формы, размеров), для сферических частиц К вычисляется по формуле:

(2.а)

(R - радиус шара). Для эллипсоидов К увеличивается и определяется значениями его полуосей и их соотношениями. Если структура частиц изменится (например, при изменении условий течения), то и коэффициент К в (2), а следовательно и вязкость такой суспензии также изменится . Подобнаясуспензия представляет собой неньютоновскую жидкость. Увеличение вязкости всей системы связано с тем, что работа внешней силы при течении суспензий затрачивается не только на преодоление истинной (ньютоновской) вязкости , обусловленной межмолекулярным взаимодействием в жидкости, но и на преодоление взаимодействия между ней и структурными элементами.

Кровь - неньютоновская жидкость . В наибольшей степени это связано с тем, что она обладает внутренней структурой , представляя собой суспензию форменных элементов в растворе - плазме. Плазма практически ньютоновская жидкость. Поскольку 93% форменных элементов составляют эритроциты , то при упрощенном рассмотрении кровь это суспензии эритроцитов в физиологическом растворе . Характерным свойством эритроцитов является тенденция к образованию агрегатов. Если нанести мазок крови на предметный столик микроскопа, то можно видеть, как эритроциты “склеиваются” друг с другом, образуя агрегаты, которые получили название монетных столбиков . Условия образования агрегатов различны в крупных и мелких сосудах. Это связано в первую очередь с соотношением размеров сосуда, агрегата и эритроцита (характерные размеры: )

Здесь возможны три варианта:

1. Крупные сосуды (аорта, артерии):

D coc > d агр, d coc > d эритр

При этом градиент небольшой, эритроциты собираются в агрегаты в виде монетных столбиков. В этом случае вязкость крови = 0,005 па.с.

2. Мелкие сосуды (мелкие артерин, артериолы):

В них градиент значительно увеличивается и агрегаты распадаются на отдельные эритроциты, тем самым уменьшая вязкость системы, для этих сосудовчем меньше диаметр просвета, тем меньше вязкость крови. В сосудах диаметром около 5 мкм вязкость крови составляет примерно 2/3 вязкости крови в крупных сосудах.

3. Микрососуды (капилляры):

Наблюдается обратный эффект: с уменьшением просвета сосуда вязкость возрастает в 10-100 раз . В живом сосуде эритроциты легко деформируются и проходят, не разрушаясь, через капилляры даже диаметром З мкм. При этом они сильно деформируются, становясь похожими на купол. В результате поверхность соприкосновения эритроцитов со стенкой капилляра увеличивается по сравнению с недеформированным эритроцитом, способствуя обменным процессам.

Если предположить, что в случаях 1 и 2 эритроциты не деформируются, то для качественного описания изменения вязкости системы можно применить формулу (2), в которой можно учесть различие геометрического фактора для системы из агрегатов (К агр) и для системы из отдельных эритроцитов К эр: К агр К эр, обусловливающее различие вязкости крови в крупных и мелких сосудах, то для описания процессов в микрососудах формула (2) не применима, так как в этом случае не выполняются допущения об однородности среды и твердости частиц.

Гемореология - наука, изучающая поведение крови при течении (в по­токе), то есть свойства потока крови и ее компонентов, а также реологию структур клеточной мембраны форменных элементов крови, прежде всœего эритроцитов.

Реологические свойства крови определяются вязкостью цельной крови и ее плазмы, способностью эритроцитов к агрегации и деформации их мембран.

Кровь представляет собой негомогенную вязкую жидкость. Ее негомогенность обусловлена суспензированными в ней клетками, обладающими определœенными способностями к деформации и агрегации.

В нормальных физиологических условиях в ламинарном кровотоке жидкость движется слоями, параллельными стенке сосуда. Вязкость крови, как и любой жидкости, определяется феноменом трения между сосœедними слоями, в результате которого слои, находящиеся возле сосудистой стенки, движутся мед­леннее, чем таковые в центре кровотока. Это приводит к формированию параболического профиля скорости, неодинакового при систоле и диастоле сердца.

В связи с указанным, величина внутреннего трения или свойство жидкости оказывать сопротивление при перемещении слоев принято называть вязкостью . Единица измерения вязкости - пуаз.

Из этого определœения строго следует, что чем больше вязкость, тем больше должна быть сила напряжения, необходимая для создания коэффи­циента трения или движения потока.

В простых жидкостях, чем больше сила, приложенная к ним, тем больше скорость, то есть сила напряжения пропорциональна коэффициенту трения, а вязкость жидкости остается величиной постоянной.

Основными факторами , которые определяют вязкость цельной крови являются:

1) агрегация и деформируемость эритроцитов; 2) величина гематокрита - повышение показателя гематокрита͵ как правило, сопровождается увеличением вязкости крови; 3) концентрация фибриногена, растворимых комплексов фибринмономера и продуктов деградации фибри­на/фибриногена - повышение их содержания в крови увеличивает ее вяз­кость; 4) соотношение альбумин/фибриноген и соотношение альбу­мин/глобулин - снижение данных соотношений сопровождается повышением вязкости крови; 5) содержание циркулирующих иммунных комплек­сов - при повышении их уровня в крови вязкость возрастает; 6) геометрия сосудистого русла.

При этом кровь не имеет фиксированной вязкости, поскольку является «неньютоновской» (несжимаемой) жидкостью, что определяется её негомогенностью за счет суспензирования в ней форменных элементов, которые изменяют картину течения жидкой фазы (плазмы) крови, искривляя и запу­тывая линии тока. Вместе с тем, при низких значениях коэффициента тре­ния форменные элементы крови образуют агрегаты («монетные столби­ки») и, напротив, при высоких значениях коэффициента трения - де­формируются в потоке. Интересно отметить также еще одну особенность распределœения клеточных элементов в потоке. Указанный выше градиент скорости в ламинарном потоке крови (формирующий параболический про­филь) создает градиент давления: в центральных слоях потока оно ниже, чем в периферических, что обусловливает тенденцию к перемещению клеток к центру.

Агрегация эритроцитов - способность эритроцитов создавать в цель­ной крови «монетные столбики» и их трехмерные конгломераты. Агрегация эритроцитов зависит от условий кровотока, состояния и состава крови и плазмы и непосредственно от самих эритроцитов.

Движущаяся кровь содержит как одиночные эритроциты, так и агрегаты. Среди агрегатов имеются отдельные цепочки эритроцитов («монетные стол­бики») и цепочки в виде выростов. С ускорением скорости потока крови раз­мер агрегатов уменьшается.

Для агрегации эритроцитов необходим фибриноген или другой высокомолекулярный белок или полисахарид, адсорбция которых на мем­бране этих клеток приводит к образованию мостиков между эритроцитами. В «монетных столбиках» эритроциты располагаются параллельно друг другу на постоянном межклеточном расстоянии (25 нм для фибриногена). Умень­шению этого расстояния препятствует сила электростатического отталкива­ния, возникающая при взаимодействии одноименных зарядов мембраны эритроцитов. Увеличению расстояния препятствуют мостики - молекулы фибриногена. Прочность образовавшихся агрегатов прямо пропорциональна концентрации фибриногена или высокомолекулярного агреганта.

Агрегация эритроцитов обратима: агрегаты клеток способны деформироваться и разрушаться при достижении определœенной величины сдвига. При выраженных нарушениях нередко развивается сладж - генерализован­ное нарушение микроциркуляции, вызванное патологической агрегацией эритроцитов, как правило, сочетающейся с повышением гидродинамиче­ской прочности эритроцитарных агрегатов.

Агрегация эритроцитов, в основном, зависит от следующих факторов:

1)ионного состава среды: при повышении общего осмотического давления плазмы эритроциты сморщиваются и утрачивают способность к агрегации;

2)поверхностно-активных веществ, изменяющих поверхностный заряд, и их влияние может быть различным; 3) концентрации фибриногена и иммуноглобулинов; 4) контакта с инородными поверхностями, как правило, сопровождается нарушением нормальной агрегации эритроцитов.

Суммарный объем эритроцитов примерно в 50 раз превышает объем лейкоцитов и тромбоцитов, в связи с чем реологическое поведение крови в крупных сосудах определяет их концентрация и структурно-функциональные свой­ства. К ним относятся следующие: эритроциты должны значительно деформи­роваться, чтобы не быть разрушенными при высоких скоростях кровотока в аорте и магистральных артериях, а также при преодолении капиллярного рус­ла, так как диаметр эритроцитов больше, чем капилляра. Решающее значение при этом имеют физические свойства мембраны эритроцитов, то есть ее спо­собности к деформации.

Деформируемость эритроцитов - это способность эритроцитов деформироваться в сдвиговом потоке, при прохождения через капилляры и поры, способность к плотной упаковке.

Основными факторами , от которых зависит деформируемость эритроцитов, являются: 1) осмотическое давление окружающей среды (плазмы крови); 2) соотношение внутриклеточного кальция и магния, концен­трация АТФ; 3) продолжительность и интенсивность приложенных к эритроциту внешних воздействий (механических и химических), меняющих липидный состав мембраны или нарушающих структуру спектриновой сети; 4) состояние цитоскелœета эритроцита͵ в состав которого входит спектрин; 5) вязкость внутриклеточного содержимого эритроцитов в зависимости от концентрации и свойств гемоглобина.

Реология крови (от греческого слова rheos – течение, поток) – текучесть крови, определяемая совокупностью функционального состояния форменных элементов крови (подвижность, деформируемость, агрегационная активность эритроцитов, лейкоцитов и тромбоцитов), вязкости крови (концентрация белков и липидов), осмолярности крови (концентрация глюкозы). Ключевая роль в формировании реологических параметров крови принадлежит форменным элементам крови, прежде всего эритроцитам, которые составляют 98% от общего объема форменных элементов крови. .

Прогрессирование любого заболевания сопровождается функуционально-структурными изменениями тех или иных форменных элементов крови. Особый интерес вызывают изменения эритроцитов, мембраны которых являются моделью молекулярной организации плазматических мембран. От структурной организации мембран красных кровяных клеток во многом зависят их агрегационная активность и деформируемость, являющиеся важнейшими компонентами в микроцеркуляции. Вязкость крови является одной из интегральных характеристик микроциркуляции, существенно влияющих на гемодинамические параметры. Долевое участие вязкости крови в механизмах регуляции артериального давления и органной перфузии отражается законом Пуазейля: МОоргана= (Рарт – Рвен)/ Rлок , где Rлок= 8Lh / pr4, L – длина сосуда, h - вязкость крови, r – диаметр сосуда. (Рис.1).

Большое количество клинических работ, посвященных гемореологии крови при сахарном диабете (СД) и метаболическом синдроме (МС), выявили снижение параметров, характеризующих деформируемость эритроцитов. У больных СД пониженная способность эритроцитов к деформации и их повышенная вязкость являются следствием увеличения количества гликозированного гемоглобина (HbА1с). Высказано предположение, что связанное с этим затруднение кровообращения в капиллярах и изменение давления в них стимулирует утолщение базальной мембраны, ведет к снижению коэффициента доставки кислорода к тканям, т.е. аномальные эритроциты играют триггерную роль в развитие диабетической ангиопатии..

Нормальный эритроцит в обычных условиях имеет двояковогнутую форму диска, за счет чего площадь его поверхности больше на 20% в сравнении с сферой того же объема. Нормальные эритроциты способны значительно деформироваться при прохождении через капилляры, при этом не меняя своего объема и площади поверхности, что поддерживает процессы диффузии газов на высоком уровне на протяжении всего микроциркуляторного русла различных органов. Показано, что при высокой деформируемости эритроцитов происходит максимальный перенос кислорода в клетки, а при ухудшении деформируемости (повышение жесткости) – поступление кислорода в клетки резко снижается, тканевое рО2 падает.

Деформируемость является важнейшим свойством эритроцитов, обусловливающим их способность выполнять транспортную функцию. Это способность эритроцитов изменять свою форму при постоянном объеме и площади поверхности позволяет им приспосабливаться к условиям кровотока в системе микроциркуляции. Деформируемость эритроцитов обусловлена такими факторами, как внутренняя вязкость (концентрация внутриклеточного гемоглобина), клеточная геометрия (поддержание формы двояковогнутого диска, объем, отношение поверхности к объему) и свойствами мембраны, которые обеспечивают форму и эластичность эритроцитов.
Деформируемость во многом зависит от степени сжимаемости липидного бислоя и постоянством его взаимосвязи с белковыми структурами клеточной мембраны.

Эластические и вязкостные свойства мембраны эритроцитов определяются состоянием и взаимодействием белков цитоскелета, интегральных белков, оптимальным содержанием АТФ, ионов Са++, Mg++ и концентрацией гемоглобина, которые обуславливают внутреннюю текучесть эритроцита. К факторам повышающим жесткость мембран эритроцитов относятся: образование стойких соединений гемоглобина с глюкозой, повышение концентрации в них холестерина и увеличение концентрации свободного Са++ и АТФ в эритроците.

Нарушение деформируемости эритроцитов имеют место при изменении липидного спектра мембран и, прежде всего, при нарушении соотношения холестерин/фосфолипиды, а также при наличие продуктов повреждения мембраны в результате перекисного окисления липидов (ПОЛ). Продукты ПОЛ оказывают дестабилизирующее воздействие на структурно – функциональное состояние эритроцитов и способствуют их модификации.
Деформируемость эритроцитов снижается в связи с абсорбцией на поверхности эритроцитарных мембран белков плазмы, прежде всего, фибриногена. Это включает в себя изменения мембран самих эритроцитов, снижение поверхностного заряда эритроцитарной мембраны, изменение формы эритроцитов и изменений со стороны плазмы (концентрация белков, липидного спектра, уровня общего холестерина, фибриногена, гепарина). Повышенная агрегация эритроцитов приводит к нарушению транскаппилярного обмена, выбросу БАВ, стимулирует адгезию и агрегацию тромбоцитов.

Ухудшение деформируемости эритроцитов сопровождает активацию процессов ПОЛ и снижение концентрации компонентов антиоксидантной системы при различных стрессорных ситуациях или заболеваниях, в частности при СД и сердечно-сосудистых.
Актвация свободнорадикальных процессов обуславливает нарушения гемореологических свойств, реализуемые через повреждения циркулирующих эритроцитов (окисление мембранных липидов, повышение жесткости билипидного слоя, гликозилирование и агрегация белков мембраны), оказывая опосредованное влияние на другие показатели кислородотранспортной функции крови и транспорт кислорода в ткани. Значительная и продолжающаяся активация ПОЛ в сыворотке привод к снижению деформируемости эритроцитов и увеличению их арегации. Таким образом эритроциты одни из первых реагируют на активацию ПОЛ вначале увеличением деформируемости эритроцитов, а затем по мере накопления продуктов ПОЛ и истощения антиоксидантной защиты к увеличению жесткости мембран эритроцитов, их агрегационной активности и, соответственно, к изменениям вязкости крови.

Кислородосвязывающие свойства крови играют важную роль в физиологических механизмах поддержания равновесия между процессами свободнорадикального окисления и антиоксидантной защиты в организме. Указанные свойства крови определяют характер и величину диффузии кислорода к тканям в зависимости от потребности в нем и эффективности его использования, вносит вклад в прооксидантно-антиоксидантноне состояние, проявляя в различных ситуациях либо антиоксиданьные либо прооксидантные качества.

Таким образом, деформируемость эритроцитов является не только определяющим фактором транспорта кислорода к периферическим тканям и обеспечения их потребности в нем, но и механизмом оказывающим влияние на эффективность функционирования антиоксидантной защиты и, в конечном итоге, всей организации поддержания прооксидантно-антиоксидантного равновесия всего организма.

При инсулинорезистентности (ИР) отмечено увеличение количества зритроцитов в периферической крови. При этом происходит повышенная агрегация эритроцитов за счет увеличения количества макромолекул адгезии и отмечается снижение деформируемости эритроцитов, несмотря на то, что инсулин в физиологических концентрациях значительно улучшает реологические свойства крови.

В настоящее время широкое распространение получила теория, рассматривающая мембранные нарушения как ведущие причины органного проявления различных заболевания, в частности в патогенез артериальной гипертензии при МС.

Эти изменения происходят и в различных типах клеток крови: эритроцитах, тромбоцитах, лимфоцитах. .

Внутриклеточное перераспределение кальция в тромбоцитах и эритроцитах влечет за собой повреждение микротубол, активацию контрактильной системы, реакцию высвобождения биологически активных веществ (БАВ) из тромбоцитов, запуская их адгезию, агрегацию, локальную и системную вазокнстрикцию (тромбоксан А2).

У больных АГ, изменения эластических свойств эритроцитарных мембран сопровождается снижением их поверхностного заряда с последующим образованием эритроцитарных агрегатов. Максимальная скорость спонтанной агрегации с образованием стойких эритроцитарных агрегатов отмечена у больных АГ III степени с осложненным течением заболевания. Спонтанная агрегация эритроцитов усиливает выделение внутриэритроцитарного АДФ с последующим гемолизом, что вызывает сопряженную тромбоцитарную агрегацию. Гемолиз эритроцитов в системе микроциркуляции может быть так же связан с нарушением деформируемости эритроцитов, как лимитирующего фактора продолжительности их жизни.

Особенно существенные изменения формы эритроцитов наблюдаются в микроциркуляторном русле, некоторые капилляры которого имеют диаметр менее 2 мкм. Прижизненная микроскопия крови (прим. нативной крови) показывает, что эритроциты, движущиеся в капилляре, подвергаются значительной деформации, приобретая при этом различные формы..

У больных АГ сочетающейся с СД было выявлено увеличение количества аномальных форм эритроцитов: эхиноцитов, стомацитов, сфероцитов и старых эритроцитов в сосудистом русле.

Большой вклад в гемореологию вносят лейкоциты. В связи с их низкой способностью к деформации, лейкоциты могут депонироваться на уровне микроциркуляторного русла и значимо влиять на ОПСС.

Тромбоциты занимают важное место в клеточно – гуморальном взаимодействии систем гемостаза. Данные литературы свидетельствуют о нарушении функциональной активности тромбоцитов уже на ранней стадии АГ, что проявляется повышением их агрегационной активности, повышением чувствительности к индукторам агрегации.

Исследователями отмечено качественное изменение тромбоцитов у больных АГ под действием увеличения свободного кальция в плазме крови, что коррелирует с величиной систолического и диастолического АД. Электронно – микроскопическое исследование тромбоцитов больных АГ выявило наличие различных морфологических форм тромбоцитов, вызванных их повышенной активацией. Наиболее характерны такие изменения формы как псевдоподиальный и гиалиновый тип. Отмечена высокая корреляционная связь между увеличением количества тромбоцитов с их измененной формой и частотой тромботических осложнений. У больных МС с АГ выявляется увеличение циркулирующих в крови тромбоцитарных агрегатов. .

Дислипидемия вносит существенный вклад в функциональную гиперактивность тромбоцитов. Увеличение содержания ОХС, ЛПНП и ЛПОНП при гиперхолестеринемии вызывают патологическое усиление выделения тромбоксана А2 с повышением агрегабельности тромбоцитов. Это связано с наличием на поверхности тромбоцитов рецепторов липопротеинов апо – В и апо – Е. С другой стороны ЛПВП снижают продукцию тромбоксана, ингибируя агрегацию тромбоцитов, за счет связывания со специфическими рецепторами.

Артериальная гипертензия при МС детерминирована множеством взаимодействующих метаболических, нейрогуморальных, гемодинамических факторов и функциональным состоянием форменных элементов крови. Нормализация уровней АД возможно обусловлена суммарными положительными сдвигами в показателях биохимических и реологических параметров крови.

Гемодинамическую основу АГ при МС составляют нарушение соотношения между сердечным выбросом и ОПСС. Сначала возникают функциональные изменения сосудов, связанные с изменениями реологии крови, трансмурального давления и вазоконстрикторными реакциями в ответ на нейрогуморальную стимуляцию, затем формируются морфологические изменения сосудов микроциркуляции лежащие в основе их ремоделирования. При повышении АД снижается дилатационный резерв артериол, поэтому при увеличении вязкости крови ОПСС изменяются в большей степени, чем в физиологических условиях. Если резерв дилатации сосудистого русла исчерпан, то реологические параметры приобретают особое значение, поскольку высокая вязкость крови и сниженная деформируемость эритроцитов способствуют росту ОПСС, препятствуя оптимальной доставке кислорода к тканям.

Таким образом, при МС в результате гликирования белков, в частности эритроцитов, что документируется высоким содержанием HbAc1, имеют место нарушения реологических параметров крови: снижение эластичности и подвижности эритроцитов, повышение агрегационной активности тромбоцитов и вязкости крови, за счет гипергликемии и дислипидемии. Измененные реологические свойства крови способствуют росту общего периферического сопротивления на уровне микроциркуляции и в сочетании с симпатикотонией, имеющей место при МС, лежат в основе генеза АГ. Фармакологическая (бигуаниды, фибраты, статины, селективные бета-блокаторы) коррекция гликимического и липидного профилей крови, способствуют нормализации АД. Объективным критерием эффективности проводимой терапии при МС и СД является динамика HbAc1, снижение которого на 1% сопровождается статистически достоверным уменьшением риска развития сосудистых осложнений (ИМ, мозговой инсульт и др.) на 20% и более.

Фрагмент статьи А.М. Шилов, А.Ш. Авшалумов, Е.Н. Синицина, В.Б. Марковский, Полещук О.И. ММА им. И.М.Сеченова

Кровь - жидкость, циркулирующая в кровеносной системе и переносящая газы и другие растворенные вещества, необходимые для метаболизма либо образующиеся в результате обменных процессов. Кровь состоит из плазмы (прозрачной жидкости бледно-желтого цвета) и взвешенных в ней клеточных элементов. Имеется три основных типа клеточных элементов крови: красные кровяные клетки (эритроциты), белые кровяные клетки (лейкоциты) и кровяные пластинки (тромбоциты).

Красный цвет крови определяется наличием в эритроцитах красного пигмента гемоглобина. В артериях, по которым кровь, поступившая в сердце из легких, переносится к тканям организма, гемоглобин насыщен кислородом и окрашен в ярко-красный цвет; в венах, по которым кровь притекает от тканей к сердцу, гемоглобин практически лишен кислорода и темнее по цвету .

Кровь представляет собой концентрированную суспензию форменных элементов, главным образом, эритроцитов, лейкоцитов и тромбоцитов в плазме, а плазма, в свою очередь, является коллоидной суспензией белков, из которых наибольшее значение для рассматриваемой проблемы имеют: сывороточные альбумин и глобулин, а также фибриноген.

Кровь - довольно вязкая жидкость, причем вязкость ее определяется содержанием эритроцитов и растворенных белков. От вязкости крови зависят в значительной мере скорость, с которой кровь протекает через артерии (полуупругие структуры), и кровяное давление. Текучесть крови определяется также ее плотностью и характером движения различных типов клеток. Лейкоциты, например, движутся поодиночке, в непосредственной близости к стенкам кровеносных сосудов; эритроциты могут перемещаться как по отдельности, так и группами наподобие уложенных в стопку монет, создавая аксиальный, т.е. концентрирующийся в центре сосуда, поток .

Объем крови взрослого мужчины составляет примерно 75 мл на килограмм веса тела; у взрослой женщины этот показатель равен примерно 66 мл. Соответственно общий объем крови у взрослого мужчины - в среднем около 5 л; более половины объема составляет плазма, а остальная часть приходится в основном на эритроциты .

Реологические свойства крови оказывают значительное влияние на величину сопротивления току крови, в особенности периферической кровеносной системы, что сказывается на работе сердечно-сосудистой системы, и, в конечном счете, на скорости обменных процессов в тканях спортсменов.

Реологические свойства крови играют важную роль в обеспечении транспортных и гомеостатических функций кровообращения, особенно на уровне микрососудистого русла. Вязкость крови и плазмы вносит существенный вклад в сосудистое сопротивление кровотоку и влияет на минутный объем крови . Повышение текучести крови увеличивает кислородтранспортные возможности крови, что может играть важную роль в повышении физической работоспособности. С другой стороны, гемореологические показатели могут быть маркерами ее уровня и синдрома перетренировки.

Функции крови:

1. Транспортная функция. Циркулируя по сосудам, кровь транспортирует множество соединений - среди них газы, питательные вещества и др.

2. Дыхательная функция. Эта функция заключается в связывании и переносе кислорода и углекислого газа.

3. Трофическая (питательная) функция. Кровь обеспечивает все клетки организма питательными веществами: глюкозой, аминокислотами, жирами, витаминами, минеральными веществами, водой.

4. Экскреторная функция. Кровь уносит из тканей конечные продукты метаболизма: мочевину, мочевую кислоту и другие вещества, удаляемые из организма органами выделение.

5. Терморегуляторная функция. Кровь охлаждает внутренние органы и переносит тепло к органам теплоотдачи.

6. Поддержание постоянства внутренней среды. Кровь поддерживает стабильность ряда констант организма.

7. Обеспечение водно-солевого обмена. Кровь обеспечивает водно-солевой обмен между кровью и тканями. В артериальной части капилляров жидкость и соли поступают в ткани, а в венозной части капилляра возвращаются в кровь.

8. Защитная функция. Кровь выполняет защитную функцию, являясь важнейшим фактором иммунитета, или защиты организма от живых тел и генетически чуждых веществ.

9. Гуморальная регуляция. Благодаря своей транспортной функции кровь обеспечивает химическое взаимодействие между всеми частями организма, т.е. гуморальную регуляцию. Кровь переносит гормоны и другие физиологически активные вещества .

Плазма крови представляет собой жидкую часть крови, коллоидный раствор белков. В ее состав входит вода (90 - 92%) и органические и неорганические вещества (8 - 10 %). Из неорганических веществ в плазме больше всего белков (в среднем 7 - 8%) - альбуминов, глобулинов и фибриногена (плазма, не содержащая фибриноген, называется сывороткой крови). Кроме того, в ней содержатся глюкоза, жир и жироподобные вещества, аминокислоты, мочевина, мочевая и молочная кислота, ферменты, гормоны и т.д. Неорганические вещества составляют 0.9 - 1.0 % плазмы крови. Это в основном соли натрия, калия, кальция, магния и др. Водный раствор солей, который по концентрации соответствует содержанию солей в плазме крови, называется физиологическим раствором. Он используется в медицине для восполнения недостающей в организме жидкости .

Таким образом, кровь обладает всеми функциями ткани организма - структурой, особой функцией, антигенным составом. Но кровь является тканью особой, жидкой, постоянно циркулирующей по организму. Кровь обеспечивает функцию снабжения других тканей кислородом и транспорт продуктов метаболизма, гуморальную регуляцию и иммунитет, свертывающую и противосвертывающую функцию. Вот почему кровь является одной из самых изучаемых тканей организма.

Исследования реологических свойств крови и плазмы спортсменов в процессе общей аэрокриотерапии показали достоверное изменение вязкости цельной крови, показателя гематокрита и гемоглобина. У спортсменов с низким значением показателя гематокрита, гемоглобина и вязкости - повышение, а у спортсменов с высоким показателем гематокрита, гемоглобина и вязкости - понижение, что характеризует избирательный характер воздействия ОАКТ при этом не наблюдалось достоверного изменения вязкости плазмы крови .

Реологические свойства крови как неод­нородной жидкости имеют особо важное значение при ее течении по микрососудам, просвет кото­рых сопоставим с величиной ее форменных эле­ментов. При движении в просвете капилляров и прилегающих к ним мельчайших артерий и вен эритроциты и лейкоциты меняют свою форму -изгибаются, вытягиваются в длину и т. д. Нормальное течение крови по микрососудам воз­можно только при условиях, если: а) форменные элементы могут легко деформироваться; б) они не склеиваются между собой и не образуют аг­регаты, которые могли бы затруднять кровоток и даже полностью закупоривать просвет микро­сосудов, и в) концентрация форменных элемен­тов крови не является избыточной. Все эти свой­ства важны прежде всего у эритроцитов, так как число их в крови человека примерно в тысячу раз превышает количество лейкоцитов.

Наиболее доступным и широко используемым в клинике способом определения реологических свойств крови у больных является ее вискози­метрия. Однако условия движения крови в лю­бых известных в настоящее время вискозимет­рах значительно отличаются от тех, которые имеют место в живом микроциркуляторном рус­ле. Ввиду этого данные, получаемые при вискозиметрии, отражают лишь некоторые об­щие реологические свойства крови, которые мо­гут способствовать либо препятствовать ее тече-нию по микрососудам в организме. Ту вязкость крови, которую выявляют в вискозиметрах, на­зывают относительной вязкостью, сравнивая ее с вязкостью воды, которую принимают за еди­ницу.

Нарушения реологических свойств крови в микрососудах связаны главным образом с изме­нениями свойств эритроцитов в протекающей по ним крови. Такие изменения крови могут воз­никать не только по всей сосудистой системе организма, но и местно в каких-либо органах или их частях, как, например, это всегда имеет место в очагах воспаления. Ниже перечислены основные факторы, определяющие нарушения реологических свойств крови в микрососудах ор­ганизма.

8.4.1. Нарушение деформируемости эритроцитов

Эритроциты изменяют свою форму при те­чении крови не только по капиллярам, но и в более широких артериях и венах, где они быва­ют обычно вытянутыми в длину. Способность деформироваться (деформируемость) у эритроци­тов связана главным образом со свойствами их наружной мембраны, а также с высокой текуче­стью их содержимого. В потоке крови происхо­дят вращательные движения мембраны вокруг содержимого эритроцитов, которое также переме­щается.

Деформируемость эритроцитов чрезвычайно изменчива при естественных условиях. Она по­степенно уменьшается с возрастом эритроцитов, в результате чего создается препятствие для их прохождения по наиболее узким (диаметром 3 мкм) капиллярам ретикулоэндотелиальной сис­темы. Предполагается, что благодаря этому про­исходит «распознавание» старых эритроцитов и их устранение из кровеносной системы.

Мембраны эритроцитов становятся более же­сткими под влиянием различных патогенных факторов, например потери ими АТФ, гиперосмолярности и т. д. В результате реологические свойства крови изменяются таким образом, что ее течение по микрососудам затрудняется. Это имеет место при заболеваниях сердца, несахар­ном диабете, раке, стрессах и т. д., при которых текучесть крови в микрососудах оказывается значительно пониженной.

8.4.2. Нарушение структуры потока крови в микрососудах

В просвете сосудов поток крови харак­теризуется сложной структурой, связанной: а) с неравномерным распределением не агрегированных эритроцитов в потоке крови по поперечни­ку сосуда; б) со своеобразной ориентацией эрит­роцитов в потоке, которая может меняться от продольной до поперечной; в) с траекторией дви­жения эритроцитов внутри сосудистого просве­та; г) с профилем скоростей отдельных слоев крови, который может изменяться от пара­болического до затупленного разной степени. Все это может оказывать значительное влияние на текучесть крови в сосудах.

С точки зрения нарушений реологических свойств крови особое значение имеют изменения структуры потока крови в микрососудах диамет­ром 15-80 мкм, т. е. несколько более широких, чем капилляры. Так, при первичном замедле­нии кровотока продольная ориентация эритро­цитов часто сменяется на поперечную, профиль скоростей в сосудистом просвете затупляется, траектория движения эритроцитов становится хаотичной. Все это приводит к таким изменениям реологических свойств крови, когда сопротив­ление кровотоку значительно увеличивается, вызывая еще большее замедление течения кро­ви в капиллярах и нарушая микроциркуляцию.

8.4.3. Усиленная внутрисосудистая агрегация эритроцитов, вызывающая стаз крови

В микрососудах

Способность эритроцитов к агрегации, т. е. к слипанию и образованию «монетных столбиков», которые затем склеиваются между собой, явля­ется их нормальным свойством. Однако агрега­ция может значительно усиливаться под влия­нием разных факторов, изменяющих как повер­хностные свойства эритроцитов, так и среду, окружающую их. При усилении агрегации кровь превращается из взвеси эритроцитов с высокой текучестью в сетчатую суспензию, полностью лишенную этой способности. В общем агрегация эритроцитов нарушает нормальную структуру кровотока в микрососудах и является, должно быть, наиболее важным фактором, изменяющим нормальные реологические свойства крови. При прямых наблюдениях кровотока в мик­рососудах иногда можно видеть внутрисосудис-тую агрегацию эритроцитов, названную «зерни­стым током крови». При усилении внутрисосу-дистой агрегации эритроцитов во всей кровенос­ной системе агрегаты могут закупоривать мель­чайшие прекапиллярные артериолы, вызывая нарушения кровотока в соответствующих капил­лярах. Усиленная агрегация эритроцитов может возникать также местно, в микрососудах, и на­рушать микрореологические свойства текущей в них крови до такой степени, что кровоток в капиллярах замедляется и останавливается пол­ностью - возникает стаз, несмотря на то, что ар-гериовенозная разность кровяного давления на протяжении этих микрососудов сохранена. При этом в капиллярах, мелких артериях и венах накапливаются эритроциты, которые тесно со­прикасаются друг с другом, так что границы их перестают быть видимыми («гомогенизация кро­ви»). Однако вначале при стазе крови ни гемо­лиза, ни свертывания крови не происходит. В течение некоторого времени стаз обратим - дви­жение эритроцитов может возобновляться и про­ходимость микрососудов опять восстанавливает­ся.

На возникновение внутрикапиллярной аг­регации эритроцитов оказывает влияние ряд факторов:

1. Повреждение стенок капилляров, вы­зывающее усиление фильтрации жидкости, элек­тролитов и низкомолекулярных белков (альбу­минов) в окружающие ткани. Вследствие этого в плазме крови увеличивается концентрация высокомолекулярных белков - глобулинов и фибриногена, что, в свою очередь, является важ­нейшим фактором усиления агрегации эритро­цитов. Предполагается, что абсорбция этих бел­ков на мембранах эритроцитов уменьшает их поверхностный потенциал и способствует их агре­гации.

Https://studopedia.org/8-12532.html

Загрузка...