docgid.ru

По наклонной плоскости с углом наклона. Движение тела по наклонной плоскости. Задача на определение критического угла

Несмотря на другие условия движения принципиально решение задачи 8 ничем не отличается от решения задачи 7. Отличие состоит лишь в том, что в задаче 8 действующие на тело силы не лежат вдоль одной прямой, поэтому проекции необходимо взять на две оси.

Задача 8. Лошадь везет сани массой 230 кг, действуя на них с силой 250 Н. Какое расстояние пройдут сани, пока достигнут скорости 5,5 м/с, двигаясь из состояния покоя. Коэффициент трения скольжения саней о снег равен 0,1, а оглобли расположены под углом 20° к горизонту.

На сани действуют четыре силы: сила тяги (натяжения), направленная под углом 20° к горизонту; сила тяжести, направленная вертикально вниз (всегда); сила реакции опоры, направленная перпендикулярно опоре от нее, т. е. вертикально вверх (в данной задаче); сила трения скольжения, направленная против движения. Поскольку сани будут двигаться поступательно, все приложенные силы можно параллельно перенести в одну точку – в центр масс движущегося тела (саней). Через эту же точку проведем и оси координат (рис. 8).

На основании второго закона Ньютона запишем уравнение движения :

.

Направим ось Ox горизонтально вдоль направления движения (см. рис. 8), а ось Oy – вертикально вверх. Возьмем проекции векторов, входящих в уравнение, на координатные оси, добавим выражение для силы трения скольжения и получим систему уравнений:

Решим систему уравнений. (Схема решения системы уравнений, подобных системе, обычно одинакова: из второго уравнения выражают силу реакции опоры и подставляют ее в третье уравнение, а затем выражение для силы трения подставляют в первое уравнение.) В результате получим:

Перегруппируем слагаемые в формуле и разделим ее правую и левую части на массу:

.

Поскольку ускорение не зависит от времени, выберем формулу кинематики равноускоренного движения, содержащую скорость, ускорение и перемещение:

.

Учитывая, что начальная скорость равна нулю, а скалярное произведение одинаково направленных векторов равно произведению их модулей, подставим ускорение и выразим модуль перемещения:

;

Полученное значение и есть ответ задачи, поскольку при прямолинейном движении пройденный путь и модуль перемещения совпадают.

Ответ : сани пройдут 195 м.

    1. Движение по наклонной плоскости

Описание движения небольших тел по наклонной плоскости принципиально не отличается от описания движения тел по вертикали и по горизонтали, поэтому при решении задач на этот вид движения, как и в задачах 7, 8, также необходимо записать уравнение движения и взять проекции векторов на координатные оси. Разбирая решение задачи 9, необходимо обратить внимание на схожесть подхода к описанию различных видов движения и на нюансы, которые отличают решение этого типа задач от решения задач, рассмотренных выше.

Задача 9. Лыжник соскальзывает с длинной ровной заснеженной горки, угол наклона к горизонту которой составляет 30°, а длина равна 140 м. Сколько времени будет длиться спуск, если коэффициент трения скольжения лыж о рыхлый снег равен 0,21?

Дано:

Решение.

Движение лыжника по нак-лонной плоскости происходит под действием трех сил: силы тяжести, направленной вертикально вниз; силы реакции опоры, направленной перпендикулярно к опоре; силы трения скольжения, направленной против движения тела. Пренебрегая размерами лыжника по сравнению с длиной горки, на основании второго закона Ньютона запишем уравнение движения лыжника:

.

Выберем ось Ox вниз вдоль наклонной плоскости (рис. 9), а ось Oy – перпендикулярно наклонной плоскости вверх. Возьмем проекции векторов уравнения на выбранные координатные оси с учетом того, что ускорение направлено вдоль наклонной плоскости вниз, и добавим к ним выражение, определяющее силу трения скольжения. Получим систему уравнений:

Решим систему уравнений относительно ускорения. Для этого из второго уравнения системы выразим силу реакции опоры и подставим полученную формулу в третье уравнение, а выражение для силы трения – в первое. После сокращения массы имеем формулу:

.

Ускорение не зависит от времени, значит, можно воспользоваться формулой кинематики равноускоренного движения, содержащей перемещение, ускорение и время:

.

С учетом того, что начальная скорость лыжника равна нулю, а модуль перемещения равен длине горки, выразим из формулы время и, подставляя в полученную формулу ускорение, получим:

;

Ответ : время спуска с горы 9,5 с.

Динамика является одним из важных разделов физики, который изучает причины движения тел в пространстве. В данной статье рассмотрим с точки зрения теории одну из типичных задач динамики — движение тела по наклонной плоскости, а также приведем примеры решений некоторых практических проблем.

Основная формула динамики

Прежде чем переходить к изучению физики движения тела по плоскости наклонной, приведем необходимые теоретические сведения для решения этой задачи.

В XVII Исаак Ньютон благодаря практическим наблюдениям за движением макроскопических окружающих тел вывел три закона, носящих в настоящее время его фамилию. На этих законах зиждется вся классическая механика. Нас интересует в данной статье лишь второй закон. Его математический вид приведен ниже:

Формула говорит о том, что действие внешней силы F¯ придаст ускорение a¯ телу массой m. Это простое выражение будем далее использовать для решения задач движения тела по плоскости наклонной.

Отметим, что сила и ускорение — это величины векторные, направленные в одну и ту же сторону. Кроме того, сила — это аддитивная характеристика, то есть в приведенной формуле F¯ можно рассматривать как результирующее воздействие на тело.

Наклонная плоскость и силы, действующие на тело, находящееся на ней

Ключевым моментом, от которого зависит успех решения задач движения тела по плоскости наклонной, является определение действующих на тело сил. Под определением сил понимают знание их модулей и направлений действия.

Ниже дан рисунок, где показано, что тело (автомобиль) находится в покое на наклоненной под углом к горизонту плоскости. Какие силы на него действуют?

Список ниже перечисляет эти силы:

  • тяжести;
  • реакции опоры;
  • трения;
  • натяжения нити (если присутствует).

Сила тяжести


В первую очередь это сила тяжести (F g). Она направлена вертикально вниз. Поскольку тело имеет возможность двигаться только вдоль поверхности плоскости, то при решении задач силу тяжести разлагают на две взаимно перпендикулярные составляющие. Одна из составляющих направлена вдоль плоскости, другая — перпендикулярна ей. Только первая из них приводит к появлению у тела ускорения и, по сути, является единственным движущим фактором для рассматриваемого тела. Вторая составляющая обуславливает возникновение силы реакции опоры.

Реакция опоры

Второй действующей на тело силой является реакция опоры (N). Причина ее появления связана с третьим законом Ньютона. Величина N показывает, с какой силой плоскость воздействует на тело. Она направлена вверх перпендикулярно плоскости наклонной. Если бы тело находилось на горизонтальной поверхности, то N равнялась бы его весу. В рассматриваемом же случае N равна лишь второй составляющей, полученной при разложении силы тяжести (см. абзац выше).

Реакция опоры не оказывает прямого воздействия на характер движения тела, поскольку она перпендикулярна плоскости наклона. Тем не менее она обуславливает появление трения между телом и поверхностью плоскости.

Сила трения


Третьей силой, которую следует учитывать при исследовании движения тела по наклонной плоскости, является трение (F f). Физическая природа трения является непростой. Ее появление связано с микроскопическими взаимодействиями соприкасающихся тел, имеющих неоднородные поверхности контакта. Выделяют три вида этой силы:

  • покоя;
  • скольжения;
  • качения.

Трение покоя и скольжения описываются одной и той же формулой:

где µ — это безразмерный коэффициент, значение которого определяется материалами трущихся тел. Так, при трении скольжения дерева о дерево µ = 0,4, а льда о лед — 0,03. Коэффициент для трения покоя всегда больше такового для скольжения.

Трение качения описывается по отличной от предыдущей формуле. Она имеет вид:

Здесь r — радиус колеса, f — коэффициент, имеющий размерность обратной длины. Эта сила трения, как правило, намного меньше предыдущих. Заметим, что на ее значение влияет радиус колеса.

Сила F f , какого бы типа она ни была, всегда направлена против движения тела, то есть F f стремится остановить тело.

Натяжение нити

При решении задач движения тела по наклонной плоскости эта сила не всегда присутствует. Ее появление определяется тем, что находящееся на наклонной плоскости тело связано с помощью нерастяжимой нити с другим телом. Часто второе тело свисает на нити через блок за пределами плоскости.

На находящийся на плоскости предмет, сила натяжение нити воздействует либо ускоряя его, либо замедляя. Все зависит от модулей сил, действующих в физической системе.

Появление этой силы в задаче значительно усложняет процесс решения, поскольку приходится рассматривать одновременно движение двух тел (на плоскости и свисающего).


Задача на определение критического угла

Теперь пришло время применить описанную теорию для решения реальных задач движения по наклонной плоскости тела.

Предположим, что брус из дерева имеет массу 2 кг. Он находится на деревянной плоскости. Следует определить, при каком критическом угле наклона плоскости брус начнет по ней скользить.

Скольжение бруса наступит только тогда, когда суммарная действующая вниз вдоль плоскости сила на него окажется больше нуля. Таким образом, чтобы решить эту задачу, достаточно определить результирующую силу и найти угол, при котором она станет больше нуля. Согласно условию задачи на брус будут вдоль плоскости оказывать действие только две силы:

  • составляющая силы тяжести F g1 ;
  • трение покоя F f .

Чтобы началось скольжение тела, должно выполняться условие:

Отметим, что если составляющая силы тяжести превысит трение покоя, то она также будет больше силы трения скольжения, то есть начавшееся движение будет продолжаться с постоянным ускорением.

Рисунок ниже показывает направления всех действующих сил.


Обозначим критический угол символом θ. Несложно показать, что силы F g1 и F f будут равны:

F g1 = m × g × sin(θ);

F f = µ × m × g × cos(θ).

Здесь m × g — это вес тела, µ — коэффициент силы трения покоя для пары материалов дерево-дерево. Из соответствующей таблицы коэффициентов можно найти, что он равен 0,7.

Подставляем найденные величины в неравенство, получаем:

m × g × sin(θ) ≥ µ × m × g × cos(θ).

Преобразуя это равенство, приходим к условию движения тела:

tg(θ) ≥ µ =>

θ ≥ arctg(µ).

Мы получили весьма интересный результат. Оказывается, значение критического угла θ не зависит от массы тела на наклонной плоскости, а однозначно определяется коэффициентом трения покоя µ. Подставляя его значение в неравенство, получим величину критического угла:

θ ≥ arctg(0,7) ≈ 35 o .

Задача на определение ускорения при движении по наклонной плоскости тела


Теперь решим несколько иную задачу. Пусть на стеклянной наклонной плоскости находится брус из дерева. Плоскость к горизонту наклонена под углом 45 o . Следует определить, с каким ускорением будет двигаться тело, если его масса равна 1 кг.

Запишем главное уравнение динамики для этого случая. Поскольку сила F g1 будет направлена вдоль движения, а F f против него, то уравнение примет вид:

F g1 — F f = m × a.

Подставляем полученные в предыдущей задаче формулы для сил F g1 и F f , имеем:

m × g × sin(θ) — µ × m × g × cos(θ) = m × a.

Откуда получаем формулу для ускорения:

a = g × (sin(θ) — µ × cos(θ)).

Снова мы получили формулу, в которой нет массы тела. Этот факт означает, что бруски любой массы будут соскальзывать за одно и то же время по наклонной плоскости.

Учитывая, что коэффициент µ для трущихся материалов дерево-стекло равен 0,2, подставим все параметры в равенство, получим ответ:

Таким образом, методика решения задач с наклонной плоскостью заключается в определении результирующей силы, действующей на тело, и в последующем применении второго закона Ньютона.

Физика: движение тела по наклонной плоскости. Примеры решения и задачи — все интересные факты и достижения науки и образования на сайт

Пусть тело, способное вращаться (например, цилиндр), катится по наклонной плоскости. Будем предполагать, что при движении не возникает скольжения. Это означает, что скорость тела в точке касания А равна нулю. Отсутствие скольжения обеспечивается действием сил со стороны наклонной плоскости. На вращающееся тело действуют: сила тяжести , сила нормальной реакции опорыи сила трения
(рис. 1.5). Векторы этих сил на рисунке показаны исходящими из их точек приложения. При отсутствии скольжения сила трения
есть сила трения покоя или сила трения сцепления.

У равнение движения центра масс тела согласно второму закону Ньютона имеет вид:

.

В скалярной форме относительно оси х , направленной вдоль плоскости вниз, это уравнение имеет вид:

Вращение тела вокруг оси, проходящей через центр масс С, обусловлено только силой трения, так как моменты сил нормальной реакции опоры и тяжести равны нулю, поскольку линии действия этих сил проходят через ось вращения. Поэтому уравнение динамики вращательного движения имеет вид:

,

где I – момент инерции тела,
– угловое ускорение,r – радиус тела,
– момент силы трения. Следовательно:

(1.11)

Из выражений (1.10) и (1.11) имеем:

(1.12)

Применим закон сохранения энергии к движению цилиндра по наклонной плоскости. Кинетическая энергия вращающегося тела равна сумме кинетической энергии поступательного движения центра масс этого тела и вращательного движения точек тела относительно оси, проходящей через центр масс:

, (1.13)

где ω – угловая скорость, которая связана со скоростью центра масс соотношением:

. (1.14)

При отсутствии скольжения сила трения приложена к тем точкам тела, которые лежат на мгновенной оси вращения А . Мгновенная скорость таких точек равна нулю, а потому приложенная к ним сила трения сцепления работы не производит и не влияет на величину полной кинетической энергии скатывающегося тела. Роль силы трения сцепления сводится к тому, чтобы привести тело во вращение и обеспечить чистое качение. При наличии силы трения сцепления работа силы тяжести идет на увеличение кинетической энергии не только поступательного, но и вращательного движения тела. Следовательно, закон сохранения энергии тела, катящегося по наклонной плоскости, запишется в виде:

, (1.15)

где кинетическая энергия Е к определяется по формуле (1.13), а потенциальная энергия Е п = mgh .

2. Описание лабораторной установки

Лабораторная установка (рис. 2.1.) представляет собой наклонную плоскость 1, высотой h и длиной l . В верхней точке плоскости установлен фиксирующий механизм 2; в нижней – контрольный датчик 3, соединенный с секундомером 4.

3. Порядок выполнения работы

1. Эксперимент с поступательно движущимся телом

      Включить в сеть электронный блок посредством сетевого шнура.

      Поместить тело (брусок) в фиксирующий механизм 2, при этом показания секундомера должны быть на нуле.

      Отпустить тело, при этом оно будет скользить вниз вдоль наклонной плоскости. После того как тело коснется контрольного датчика 3, снять показания с секундомера. Опыт провести не менее пяти раз.

      Измерить массу бруска m .

      Измерить длину l и высоту h наклонной плоскости.

      Данные занести в таблицу 1.

Таблица 1

l ,

h ,

m ,

t ,

,

,

,


11. Записать закон сохранения энергии для движущегося тела (1.9), проверить его выполнение с учетом силы трения для средних значений ,,
. Указать точность выполнения этого закона в процентном соотношении.

В данной статье рассказывается о том, как решать задачи про движение по наклонной плоскости. Рассмотрено подробное решение задачи о движении связанных тел по наклонной плоскости из ЕГЭ по физике.

Решение задачи о движении по наклонной плоскости

Прежде чем перейти непосредственно к решению задачи, как репетитор по математике и физике, рекомендую тщательно проанализировать ее условие. Начать нужно с изображения сил, которые действуют на связанные тела:

Здесь и — силы натяжения нити, действующие на левое и правое тело, соответственно, — сила реакции опоры, действующая на левое тело, и — силы тяжести, действующие на левое и правое тело, соответственно. С направлением этих сил все понятно. Сила натяжения направлена вдоль нити, сила тяжести вертикально вниз, а сила реакции опоры перпендикулярно наклонной плоскости.

А вот с направлением силы трения придется разбираться отдельно. Поэтому на рисунке она изображена пунктирной линией и подписана со знаком вопроса. Интуитивно понятно, что если правый груз будет «перевешивать» левый, то сила трения будет направлена противоположно вектору . Наоборот, если левый груз будет «перевешивать» правый, то сила трения будет сонаправлена с вектором .

Правый груз тянет вниз сила Н. Здесь мы взяли ускорение свободного падения м/с 2 . Левый груз вниз тоже тянет сила тяжести, но не вся целиком, а только ее «часть», поскольку груз лежит на наклонной плоскости. Эта «часть» равна проекции силы тяжести на наклонную плоскости, то есть катету в прямоугольном треугольнике , изображенном на рисунке, то есть равна Н.

То есть «перевешивает» все-таки правый груз. Следовательно, сила трения направлена так, как показано на рисунке (мы ее нарисовали от центра масс тела, что возможно в случае, когда тело можно моделировать материальной точкой):

Второй важный вопрос, с которым нужно разобраться, будет ли вообще двигаться эта связанная система? Вдруг окажется так, что сила трения между левым грузом и наклонной плоскостью будет настолько велика, что не даст ему сдвинуться с места?

Такая ситуация будет возможна в том случае, когда максимальная сила трения, модуль которой определяется по формуле (здесь — коэффициент трения между грузом и наклонной плоскостью, — сила реакции опоры, действующая на груз со стороны наклонной плоскости), окажется больше той силы, которая старается привести систему с движение. То есть той самой «перевешивающей» силы, которая равна Н.

Модуль силы реакции опоры равен длине катета в треугольнике по 3-музакону Ньютона (с какой по величине силой груз давит на наклонную плоскость, с такой же по величине силой наклонная плоскость действует на груз). То есть сила реакции опоры равна Н. Тогда максимальная величина силы трения составляет Н, что меньше, чем величина «перевешивающей силы».

Следовательно, система будет двигаться, причем двигаться с ускорением. Изобразим на рисунке эти ускорения и оси координат, которые нам понадобятся далее при решении задачи:

Теперь, после тщательного анализа условия задачи, мы готовы приступить к ее решению.

Запишем 2-ой закон Ньютона для левого тела:

А в проекции на оси координатной системы получаем:

Здесь с минусом взяты проекции, векторы которых направлен против направления соответствующей оси координат. С плюсом взяты проекции, векторы которых сонаправлен с соответствующей осью координат.

Еще раз подробно объясним, как находить проекции и . Для этого рассмотрим прямоугольный треугольник , изображенный на рисунке. В этом треугольнике и . Также известно, что в этом прямоугольном треугольнике . Тогда и .

Вектор ускорения целиком лежит на оси , поэтому и . Как мы уже вспоминали выше, по определению модуль силы трения равен произведению коэффициента трения на модуль силы реакции опоры. Следовательно, . Тогда исходная система уравнений принимает вид:

Запишем теперь 2-ой закон Ньютона для правого тела:

В проекции на ось получаем.

Аналогично рычагу , наклонные плоскости уменьшают усилие, необходимое для подъема тел. Например, бетонный блок весом 45 килограммов поднять руками довольно сложно, однако втащить его наверх по наклонной плоскости вполне возможно. Вес тела, размещенного на наклонной плоскости, раскладывается на две составляющие, одна из которых параллельна, а другая перпендикулярна ее поверхности. Для перемещения блока вверх по наклонной плоскости человек должен преодолеть только параллельную составляющую, величина которой растет с увеличением угла наклона плоскости.

Наклонные плоскости весьма разнообразны по конструктивному выполнению. Например, винт состоит из наклонной плоскости (резьбы), обвивающей по спирали его цилиндрическую часть. При вворачивании винта в деталь, его резьба проникает в тело детали, образуя очень прочное соединение за счет большого трения между деталью и витками резьбы. Тиски преобразуют действие рычага и вращательное движение винта в линейную сдавливающую силу. По такому же принципу работает и домкрат, используемый для подъема тяжелых грузов.

Силы на наклонной плоскости

У тела, находящегося на наклонной плоскости, сила тяжести действует параллельно и перпендикулярно ее поверхности. Для перемещения тела вверх по наклонной плоскости необходима сила, равная по величине составляющей силы тяжести, параллельной поверхности плоскости.

Наклонные плоскости и винты

Родство винта с наклонной плоскостью легко проследить, если обернуть цилиндр разрезанным по диагонали листом бумаги. Образующаяся спираль идентична по расположению резьбе винта.

Силы, действующие на винт

При повороте винта его резьба создает очень большую силу, приложенную к материалу детали, в которую он ввернут. Эта сила тащит винт вперед, если он поворачивается по часовой стрелке, и назад, если он поворачивается против часовой стрелки.

Винт для подъема тяжестей

Вращающиеся винты домкратов развивают огромную силу, позволяя им поднимать столь тяжелые тела как легковые или грузовые автомобили. При повороте центрального винта рычагом два конца домкрата стягиваются вместе, производя необходимый подъем.

Наклонные плоскости для расщепления

Клин состоит из двух наклонных плоскостей, соединенных своими основаниями. При забивании клина в дерево наклонные плоскости развивают боковые силы, достаточные для расщепления самых прочных пиломатериалов.

Сила и работа

Несмотря на то, что наклонная плоскость может облегчить задачу, она не уменьшает количество работы, требующееся для ее выполнения. Подъем бетонного блока весом 45 кг (W) на 9 метров вертикально вверх (дальний рисунок справа) требует совершения работы 45x9 килограммометров, что соответствует произведению веса блока на величину перемещения. Когда блок находится на наклонной плоскости с углом наклона 44,5°, сила (F), необходимая для втаскивания блока, уменьшается до 70 процентов от его веса. Хотя это и облегчает перемещение блока, зато теперь, чтобы, поднять блок на высоту 9 метров, его необходимо тащить по плоскости 13 метров. Другими словами выигрыш в силе равен высоте подъема (9 метров), деленной на длину перемещения по наклонной плоскости (13 метров).

Загрузка...