docgid.ru

Разведка и добыча нефти в россии. Поиск и разведка нефтяных и газовых месторождений

  • 5. Основы нефтегазопромысловой геологии
  • 5.1. Проблема поиска нефтяных и газовых месторождений
  • 5.2. Состав и возраст земной коры
  • 5.3. Формы залегания осадочных горных пород
  • 5.4. Состав нефти и газа
  • 5.5. Происхождение нефти
  • 5.6. Происхождение газа
  • 5.7. Образование месторождений нефти и газа
  • 5.8. Методы поиска и разведки нефтяных и газовых месторождений
  • 5.9. Этапы поисково-разведочных работ
  • 6. Бурение нефтяных и газовых скважин
  • 6.1. Краткая история развития бурения
  • 6.2. Понятие о скважине
  • 6.3. Классификация способов бурения
  • 6.4. Буровые установки, оборудование и инструмент
  • 6.5. Цикл строительства скважины
  • 6.6. Промывка скважин
  • 6.7. Осложнения, возникающие при бурении
  • 6.8. Наклонно направленные скважины
  • 6.9. Сверхглубокие скважины
  • 6.10. Бурение скважин на море
  • 7. Добыча нефти и газа
  • 7.1. Краткая история развития нефтегазодобычи
  • 7.2. Физика продуктивного пласта
  • 7.3. Этапы добычи нефти и газа
  • 7.4. Разработка нефтяных и газовых месторождений
  • 7.5. Эксплуатация нефтяных и газовых скважин. Способы эксплуатации скважин
  • Оборудование устья скважин
  • 7.6. Системы сбора нефти на промыслах
  • 7.7. Промысловая подготовка нефти
  • 7.8. Установка комплексной подготовки нефти
  • 7.9. Системы промыслового сбора природного газа
  • 7.10. Промысловая подготовка газа
  • 7.11. Система подготовки и закачки воды в продуктивные пласты
  • Сооружения для нагнетания воды в пласт
  • 7.12. Защита промысловых трубопроводов и оборудования от коррозии
  • Применение ингибиторов
  • 7.13. Стадии разработки залежей
  • 7.14. Проектирование разработки месторождений
  • 8. Переработка нефти
  • 8.1. Краткая история развития нефтепереработки
  • 8.2. Продукты переработки нефти
  • Нефтяные масла
  • Другие нефтепродукты
  • 8.3. Основные этапы нефтепереработки
  • 8.4. Типы нефтеперерабатывающих заводов
  • 9. Переработка газов
  • 9.1. Исходное сырье и продукты переработки газов
  • 9.2. Основные объекты газоперерабатывающих заводов
  • 9.3. Отбензинивание газов
  • Абсорбционный метод
  • Адсорбционный метод
  • 9.4. Газофракционирующие установки
  • 10. Химическая переработка углеводородного сырья
  • 10.1. Краткие сведения о нефтехимических производствах
  • 11. Способы транспортировки нефти, нефтепродуктов и газа
  • 11.1. Краткая история развития способов транспорта энергоносителей
  • 11.2. Современные способы транспортирования нефти, нефтепродуктов и газа
  • Водный транспорт
  • 11.3. Область применения различных видов транспорта
  • 12. Трубопроводный транспорт нефти
  • 12.1. Развитие нефтепроводного транспорта в России
  • 12.2. Свойства нефти, влияющие на технологию ее транспорта
  • 12.3. Классификация нефтепроводов
  • 12.4. Основные объекты и сооружения магистрального нефтепровода
  • 12.5. Трубы для магистральных нефтепроводов
  • 12.6. Трубопроводная арматура
  • 12.7. Средства защиты трубопроводов от коррозии
  • Протекторная защита
  • 12.8. Насосно-силовое оборудование
  • 12.9. Резервуары и резервуарные парки в системе магистральных нефтепроводов
  • 12.10. Системы перекачки
  • 12.11. Перекачка высоковязких и высокозастывающих нефтей
  • 13. Трубопроводный транспорт нефтепродуктов
  • 13.1. Развитие нефтепродуктопроводного транспорта в России
  • 13.2. Свойства нефтепродуктов, влияющие на технологию их транспорта
  • 13.3. Краткая характеристика нефтепродуктопроводов
  • 13.4. Особенности трубопроводного транспорта нефтепродуктов
  • 14. Хранение и распределение нефтепродуктов
  • 14.1. Краткая история развития нефтебаз
  • 14.2. Классификация нефтебаз
  • 14.3. Операции, проводимые на нефтебазах
  • 14.4. Объекты нефтебаз и их размещение
  • 14.5. Резервуары нефтебаз
  • 14.6. Насосы и насосные станции нефтебаз
  • 14.7. Сливо-наливные устройства для железнодорожных цистерн
  • 14.8. Нефтяные гавани, причалы и пирсы
  • 14.9. Установки налива автомобильных цистерн
  • 14.10. Подземное хранение нефтепродуктов
  • 14.11. Автозаправочные станции
  • 15. Трубопроводный транспорт газа
  • 15.1. Развитие трубопроводного транспорта газа
  • 15.2. Свойства газов, влияющие на технологию их транспорта
  • 15.3. Классификация магистральных газопроводов
  • 15.4. Основные объекты и сооружения магистрального газопровода
  • 15.5. Газоперекачивающие агрегаты
  • 15.6. Аппараты для охлаждения газа
  • 15.7. Особенности трубопроводного транспорта сжиженных газов
  • 16. Хранение и распределение газа
  • 16.1. Неравномерность газопотребления и методы ее компенсации
  • 16.2. Хранение газа в газгольдерах
  • 16.3. Подземные газохранилища
  • 16.4. Газораспределительные сети
  • 16.5. Газорегуляторные пункты
  • 16.6. Автомобильные газонаполнительные компрессорные станции
  • 16.7. Использование сжиженных углеводородных газов в системе газоснабжения
  • 16.8. Хранилища сжиженных углеводородных газов
  • 17. Трубопроводный транспорт твердых и сыпучих материалов
  • 17.1. Пневмотранспорт
  • 17.2. Контейнерный транспорт
  • 17.3. Гидротранспорт
  • 18. Проектирование трубопроводов и хранилищ
  • 18.1. Проектирование магистральных трубопроводов
  • 18.2. Особенности проектирования нефтебаз
  • 18.3. Использование эвм при проектировании трубопроводов и хранилищ
  • 19. Сооружение трубопроводов
  • 19.1. Основные этапы развития отраслевой строительной индустрии
  • Период до распада ссср
  • 19.2. Состав работ, выполняемых при строительстве линейной части трубопроводов
  • 19.3. Сооружение линейной части трубопроводов Погрузочно-разгрузочные и транспортные работы
  • 19.4. Особенности сооружения переходов магистральных трубопроводов через преграды
  • Воздушные переходы
  • 19.5. Строительство морских трубопроводов
  • 20. Сооружение насосных и компрессорных станций магистральных трубопроводов
  • 20.1. Состав работ, выполняемых при сооружении насосных и компрессорных станций
  • 20.2. Общестроительные работы на перекачивающих станциях Разбивочные работы
  • 20.3. Специальные строительные работы при сооружении нс и кс
  • Монтаж оборудования
  • Монтаж технологических трубопроводов
  • 20.4. Сооружение блочно-комплектных насосных и компрессорных станций
  • Основные понятия и определения
  • Предметно-алфавитный указатель
  • Список литературы
  • Приложение основы нефтегазового дела глазами студентов
  • 5.8. Методы поиска и разведки нефтяных и газовых месторождений

    Целью поисково-разведочных работ является выявление, оценка запасов и подготовка к разработке промышленных залежей нефти и газа.

    В ходе поисково-разведочных работ применяются геологические, геофизические, гидрогеохимические методы, а также бурение скважин и их исследование.

    Геологические методы

    Проведение геологической съемки предшествует всем остальным видам поисковых работ. Для этого геологи выезжают в исследуемый район и осуществляют так называемые полевые работы. В ходе них они изучают пласты горных пород, выходящие на дневную поверхность, их состав и углы наклона. Для анализа коренных пород, укрытых современными наносами, роются шурфы глубиной до 3 м. А с тем, чтобы получить представление о более глубоко залегающих породах бурят картировочные скважины глубиной до 600 м.

    По возвращении домой выполняются камеральные работы, т.е. обработка материалов, собранных в ходе предыдущего этапа. Итогом камеральных работ являются геологическая карта и геологические разрезы местности (рис. 5.4).

    Геологическая карта - это проекция выходов горных пород на дневную поверхность. Антиклиналь на геологической карте имеет вид овального пятна, в центре которого располагаются более древние породы, а на периферии - более молодые.

    Однако как бы тщательно ни производилась геологическая съемка, она дает возможность судить о строении лишь верхней части горных пород. Чтобы «прощупать» глубокие недра используют геофизические методы.

    Геофизические методы

    К геофизическим методам относятся сейсморазведка, электроразведка и магниторазведка.

    Сейсмическая разведка (рис. 5.5) основана на использовании закономерностей распространения в земной коре искусственно создаваемых упругих волн. Волны создаются одним из следующих способов: 1) взрывом специальных зарядов в скважинах глубиной до 30 м; 2) вибраторами; 3) преобразователями взрывной энергии в механическую. Скорость распространения сейсмических волн в породах различной плотности неодинакова: чем плотнее порода, тем быстрее проникают сквозь нее волны. На границе раздела двух сред с различной плотностью упругие колебания частично отражаются, возвращаясь к поверхности земли, а частично преломившись, продолжают свое движение вглубь недр до новой поверхности раздела. Отраженные сейсмические волны улавливаются сейсмоприемниками. Расшифровывая затем полученные графики колебаний земной поверхности, специалисты определяют глубину залегания пород, отразивших волны, и угол их наклона.

    Электрическая разведка основана на различной электропроводности горных пород. Так, граниты, известняки, песчаники, насыщенные соленой минерализованной водой, хорошо проводят электрический ток, а глины, песчаники, насыщенные нефтью, обладают очень низкой электропроводностью.

    Принципиальная схема электроразведки с поверхности земли приведена на рис. 5.6. Через металлические стержни А и В сквозь грунт пропускается электрический ток, а с помощью стержней М и N и специальной аппаратуры исследуется искусственно созданное электрическое поле. На основании выполненных замеров определяют электрическое сопротивление горных пород. Высокое электросопротивление является косвенным признаком наличия нефти или газа.

    Гравиразведка основана на зависимости силы тяжести на поверхности Земли от плотности горных пород. Породы, насыщенные нефтью или газом, имеют меньшую плотность, чем те же породы, содержащие воду. Задачей гравиразведки является определение мест с аномально низкой силой тяжести.

    Магниторазведка основана на различной магнитной проницаемости горных пород. Наша планета - это огромный магнит, вокруг которого расположено магнитное поле. В зависимости от состава горных пород, наличия нефти и газа это магнитное поле искажается в различной степени. Часто магнитомеры устанавливают на самолеты, которые на определенной высоте совершают облеты исследуемой территории. Аэромагнитная съемка позволяет выявить антиклинали на глубине до 7 км, даже если их высота составляет не более 200...300 м.

    Геологическими и геофизическими методами, главным образом, выявляют строение толщи осадочных пород и возможные ловушки для нефти и газа. Однако наличие ловушки еще не означает присутствия нефтяной или газовой залежи. Выявить из общего числа обнаруженных структур те, которые наиболее перспективны на нефть и газ, без бурения скважин помогают гидрогеохимические методы исследования недр.

    Гидрогеохимические методы

    К гидрохимическим относят газовую, люминесцентно-биту-монологическую, радиоактивную съемки и гидрохимический метод.

    Рис. 5.6 Принципиальная схема электроразведки

    Рис. 5.7 Схема многопластового нефтяного месторождения

    Газовая съемка заключается в определении присутствия углеводородных газов в пробах горных пород и грунтовых вод, отобранных с глубины от 2 до 50 м. Вокруг любой нефтяной и газовой залежи образуется ореол рассеяния углеводородных газов за счет их фильтрации и диффузии по порам и трещинам пород. С помощью газоанализаторов, имеющих чувствительность К)" 15 ...10" G %, фиксируется повышенное содержание углеводородных газов в пробах, отобранных непосредственно над залежью. Недостаток метода заключается в том, что аномалия может быть смещена относительно залежи (за счет наклонного залегания покрывающих пластов, например) или же быть связана с непромышленными залежами.

    Применение люминесцентно-битуминологической съемки основано на том, что над залежами нефти увеличено содержание битумов в породе, с одной стороны, и на явлении свечения битумов в ультрафиолетовом свете, с другой. По характеру свечения отобранной пробы породы делают вывод о наличии нефти в предполагаемой залежи.

    Известно, что в любом месте нашей планеты имеется так называемый радиационный фон, обусловленный наличием в ее недрах радиоактивных трансурановых элементов, а также воздействием космического излучения. Специалистам удалось установить, что над нефтяными и газовыми залежами радиационный фон понижен. Радиоактивная съемка выполняется с целью обнаружения указанных аномалий радиационного фона. Недостатком метода является то, что радиоактивные аномалии в приповерхностных слоях могут быть обусловлены рядом других естественных причин. Поэтому данный метод пока применяется ограниченно.

    Гидрохимический метод основан на изучении химического состава подземных вод и содержания в них растворенных газов, а также органических веществ, в частности, аренов. По мере приближения к залежи концентрация этих компонентов в водах возрастает, что позволяет сделать вывод о наличии в ловушках нефти или газа.

    Бурение и исследование скважин

    Бурение скважин применяют с целью оконтуривания залежей, а также определения глубины залегания и мощности нефтегазоносных пластов.

    Еще в процессе бурения отбирают керн-цилиндрические образцы пород, залегающих на различной глубине. Анализ керна позволяет определить его нефтегазоносность. Однако по всей длине скважины керн отбирается лишь в исключительных случаях. Поэтому после завершения бурения обязательной процедурой является исследование скважины геофизическими методами.

    Наиболее распространенный способ исследования скважин -электрокаротаж. В этом случае в скважину после извлечения бурильных труб опускается на тросе прибор, позволяющий определять электрические свойства пород, пройденных скважиной. Результаты измерений представляются в виде электрокаротажных диаграмм. Расшифровывая их, определяют глубины залегания проницаемых пластов с высоким электросопротивлением, что свидетельствует о наличии в них нефти.

    Практика электрокаротажа показала, что он надежно фиксирует нефтеносные пласты в песчано-глинистых породах, однако в карбонатных отложениях возможности электрокаротажа ограничены. Поэтому применяют и другие методы исследования скважин: измерение температуры по разрезу скважины (термометрический метод), измерение скорости звука в породах (акустический метод), измерение естественной радиоактивности пород (радиометрический метод) и др.

    Поиски и разведка месторождений нефти и газа

    Геологоразведочные работы на нефть и газ, так же как и на другие полезные ископаемые, проводятся в 2 этапа. Сначала проводят работы, цель которых заключается отыскании новых месторождений. Их называют поисковыми. После открытия месторождения на нефти и газа на нем проводят работы, нацеленные на определения геологических запасов нефти или газа и условий его разработки. Их называют - разведочными.

    В чем состоят их особенности поисков и разведки залежей нефти и газа? В отличие от залежей многих других полезных ископаемых, залежи нефти и газа всегда скрыты под осадочными напластованиями различной мощности. Поиски их в настоящее время осуществляется на глубинах от 2-3 до 8-9 км, поэтому открытые залежей возможно только путем бурения скважин.

    Другая важная особенность залежей нефти и газа состоит в том, что они связаны с определенными типами тектонических или седиментационных структур, которое определяют возможное наличие природных ловушек в проницаемых пластах и толщах. К первым относятся различного вида куполовидные или антиклинальные складки , ко вторым относятся рифогенные и эрозионные выступы, песчаные линзы, зоны выклинивания и стратиграфического срезания.

    Постановка дорогостоящего поискового бурения на площади должна быть обоснована положительной оценкой перспектив её промышленной нефтигазоностности. Такая оценка складывается из положительных результатов геолого-геофизических работ на площади, выявляющих благоприятную тектоническую или седиментацинную структуру, а также из положительной оценки перспектив нефтигазоностности той структурно - фациональной зоны, к которой эта площадь относятся. Процедура оценки перспектив нефтигазоностности упрощается, если в данной зоне уже вывялены и разведаны месторождения того же типа, что и предлагаемое и усложняется, если это новая зона или поиски нефти и газа в этой зоне пока еще пока не увенчалась успехом. В первом и особенно во втором случае необходимо обоснования перспектив зоны в целом.

    Разведка нефтяных и газовых месторождений , так же как и выявления их, осуществляется при помощи бурения и испытания на приток скважин, которые в этом случае называются разведочными . Каждая промышленная залежь месторождения разведуется и оценивается отдельно, хотя для разведки залежей могут, использованы одни и те же скважины. Основным параметром залежи является её запасы, размеры которых в значительной мере определяются размерами ловушки. Различают геологические и извлекаемые запасы. Геологическими запасами нефти и газа называют количество этих полезных ископаемых, находящихся в залежи. Объем нефти и газа в залежи существенно отличается от того объема, который они занимают на поверхности. Объем жидкой фазы углеводородов в залежи несколько больше того объема, который они занимают на поверхности. Это объясняется температурным расширением жидкости в недрах и главным образом переходом части газообразных углеводородов в жидкую фазу. Объем природного газа в залежи возрастает прямо пропорционально пластовому давлению. Таким образом, для оценки геологических запасов нефти и газа в залежи необходимо знание не только формы, размеров залежи и порового объема нефтегазонасыщенных пород, но и физико-химических свойств этих полезных ископаемых по глубинным и поверхностным пробам, а также термодинамических условий пласта (температура, пластовое давление).

    Извлекаемыми запасами называют количество нефти и газа приведенное к атмосферным условиям, которое может быть извлечено из залежи современными методами добычи. Извлекаемые запасы нефти изменяются в различных залежах от 15 до 80% в зависимости от физико-химических свойств нефти и свойств коллектора, а также от метода разработки. извлекаемые запасы газа составляют больший процент, но иногда существенно снижаются, главным образом в связи с дефектами системы разработки или большой неоднородностью коллектора. Система разработки помимо прочих физических и экономических условий определяется фильтрующей способностью коллектора и степенью активности пластовых вод того природного резервуара (пласта), в котором они заключены. Поэтому при разведке залежей производится измерение и соответствующих параметрических характеристик пласта.

    Разведка нефтяных и газовых залежей требует изучения многих параметров самого полезного ископаемого и толщи, в которой оно заключено.

    Задача поисков состоит в обнаружении промышленных скоплений нефти и газа. Для успешного и планомерного научно обоснованного решения этой задачи необходимо: а) знать факторы, определяющие размещение месторождений нефти и газа в земной коре, т. е. поисковые предпосылки; б) установить поисковые признаки месторождений нефти и газа; в) разработать комплекс эффективных поисковых методов и научиться его применять в соответствии с поисковыми признаками и природными условиями района поисков; г) по данным поисковых работ дать обоснованную оценку промышленных перспектив месторождений нефти и газа и своевременно отбраковать заведомо непромышленные проявления нефти и газа.

    Задача разведки состоит в изучении месторождений с целью подготовки их к разработке путем проведения наиболее эффективных мероприятий, к числу которых относится правильно выбранная система разведки.

    Для решения этих задач необходимо знать следующее: а) форму и размеры залежей, входящих в месторождение; б) условия залегания полезного ископаемого; в) гидрогеологические условия; г) особенности строения коллекторских толщ, содержащих нефть и газ; д) состав и свойства нефти, газа и воды; е) сведения о сопутствующих компонентах.

    Бурение скважин является основным и наиболее трудоемким способом изучения строения недр, выявления и разведки залежей нефти и газа. В соответствии с действующей классификацией различаются следующие категории скважин.

    Опорные скважины бурят для изучения геологического разреза крупных геоструктурных элементов и оценки перспектив их нефтегазоносности. Бурение опорных скважин производится с большим отбором керна и сопровождается опробованием тех коллекторских толщ, с которыми может быть связана нефтегазоносность. Как правило, опорные скважины закладываются в благоприятных структурных условиях, бурение их доводится до фундамента, а в областях его глубокого залегания - до технически возможных глубин.

    Параметрические скважины бурят для изучения геологического строения и сравнительной оценки перспектив нефтегазоносности возможных зон нефтегазонакопления, а также для получения необходимых сведений о геолого-геофизической характеристике разреза отложений с целью уточнения результатов сейсмических и других геофизических исследований. Скважины этой категории закладывают в пределах локальных структур и тектонических зон по профилям. В них производится отбор керна (до 20% от глубины скважины и сплошной в пределах нефтегазоносных свит) и опробование пластов, выделенных как возможно продуктивные или с целью изучения гидрогеологических условий.

    Структурные скважины бурят для выявления и подготовки к глубокому бурению перспективных площадей. Эти скважины доводят до маркирующих горизонтов, по которым строят надежные структурные карты.

    Во многих районах структурное бурение проводится в комплексе с геофизическими работами для уточнения физических параметров и привязки геофизических данных к геологическим, т.е. для проверки или уточнения положения в разрезе опорных геофизических горизонтов и формы их залегания.

    Поисковые скважины бурят на площадях, подготовленных к глубокому поисковому бурению с целью открытия новых месторождений нефти и газа. К поисковым относятся все скважины, заложенные на новой площади до получения первого промышленного притока нефти или газа, а также все первые скважины, заложенные на обособленных тектонических блоках или на новые горизонты в пределах месторождения. В поисковых скважинах производятся исследования с целью детального разреза отложений, его нефтегазоносности, а также структурных условий. При этом производится поинтервальный отбор керна по всему разрезу, не изученному бурением; сплошной отбор керна в интервалах нефтегазоносных горизонтов и на границах стратиграфических подразделений; отбор проб нефти, газа и воды при опробовании нефтегазоносных, а также водоносных горизонтов пластоиспытателем или через колонну.

    Разведочные скважины бурят на площадях с установленной промышленной нефтегазоносностью с целью подготовки залежей к разработке. При бурении разведочных скважин производят следующие исследования: отбор керна в интервалах залегания продуктивных пластов, отбор поверхностных и глубинных проб нефти, газа и воды, опробование возможно продуктивных горизонтов, пробная эксплуатация продуктивных горизонтов. При определении конструкций поисковых и разведочных скважин предусматривается возможность передачи этих скважин в фонд эксплуатационных.

    Разведка осуществляется по различным методикам. В содержание методики входит число скважин, порядок их размещения, последовательность разбуривания, порядок опробования вскрытых горизонтов. В практике разведки нефтяных и газовых месторождений скважины размещают по профилям (разведочным линиям) или по сетке.


    По мере осуществления разведки производится обобщение материалов, как в графическом, так и в аналитическом виде, в результате чего создается графо-аналитическая модель залежи различной степени достоверности (строятся профили, карты в изолиниях и даются количественные характеристики различных показателей). Создание таких моделей принято называть геометризацией залежей (месторождений).



    Рис. № 10 Схема корреляции разреза по сводным геолого-геофизическим данным.

    В процессе разведки изучают различные показатели, характеризующие форму залежи, свойства коллектора и пр. В результате изучения залежи дается ее обобщенная характеристика в виде численных значений основных признаков и показателей, которые в этом случае называют параметрами. К основным параметрам залежи, необходимым для подсчета запасов и проектирования разработки, относятся численные значения площади, мощности, пористости, проницаемости. нефтенасыщенности, пластового давления и многие другие.

    В результате разведки дается экономическая оценка месторождения, в которой отражены промышленное значение месторождения (его запасы, возможный уровень добычи) и горно-геологические условия разработки (глубины скважин, возможные системы разработки и пр.).

    При разведке, также как и при разработке месторождений нефти и газа, необходимо проводить мероприятия, исключающие неоправданное нарушение природных условий: бесцельное уничтожение лесов, загрязнение почвы и водоемов сточными водами, буровым раствором и нефтью.

    Поисково-разведочные работы на нефть и газ включаютвсе виды человеческой деятельности - от прогнозирования нефтегазоносности неизученных территорий и до подсчета запасов УВ в выявленных залежах и месторождениях и подготовкаих к разработке. Поисками и разведкой занимаются специалисты разногопрофиля, включая геологов, геофизиков, геохимиков, гидрогеологов, гидродинамиков, буровиков, химиков, экономистови т.д.

    На разных стадиях поисково-разведочного процесса выпол­няется комплекс определенных видов деятельности и исследова­ний с применением современной аппаратуры и оборудования, включая использование ЭВМ и программирования, дешифрирование аэро и космических снимков, бурение скважин различного назначения, испытание пластов на нефть и газ и т.д.

    Высокая эффективность поисков и разведки скоплений нефти и газа возможна лишь при условии проведения достаточно научно обоснованных исследований в конкретных перспективных в нефтегазосном отношении районах и областях с учетом общих закономерностей образования и размещения нефти и газа в земной коре. При поисках и разведке нефти и газа важно учитывать экономические знания, а также экологию окружающей среды, состояние промышленности и транспорта в районах предполагаемого проведения поисково-разведочных работ.

    В проектах поисков и разведки скоплений нефти и газа вперспективных районах и областях, которые представляют различные геологические организации, дается обоснование экономической целесообразности проведения работ, учитывающее применение наиболее эффективных методов, позволяющих получить максимальный прирост разведанных запасов нефти и газа при минимальных затратах.

    Поиски нефти и газа в России и сопредельных странах прово­дятся на суше и в море (на континентальном шельфе), при этом технология поисково-разведочных работ в том и другом случаях существенно различается. Однако, притом, что бурение и разведка в море представляют большие трудности по сравнению с аналогичными работами на суше, в ряде случаев даже в континен­тальных условиях бывают большие проблемы. Так, технические сложности и большие издержки производства возникают при освоении скоплений УВ на большой глубине (более 5 км), а также - под мощной толщей каменной соли, как в Прикаспийском регионе (и то, и другое вместе).

    В проектах поисков и разведки скоплений нефти и газа, поми­мо технологической части, где изложены задачи, виды, объем и методика проведения всех работ, имеются экологическая и экономическая части, предусматривающие проведение мероприятий по охране недр и окружающей среды, а также оценивающие геолого-экономическую значимость проектируемых работ. После обсуждения и утверждения проектов выделяются материально-технические, трудовые и другие ресурсы на проведение геологоразведочных работ на нефть и газ.


    По окончании поисково-разведочного процесса проводится на­учная обработка всей полученной информации, выполняется подсчет запасов УВ, составляется геологический отчет. В результате определяется степень выполнения проекта и дается оценка гео­логической эффективности проведенных поисково-разведочных работ, а затем рассчитываются экономические показатели.

    Поиски и разведку нефти и газа, а также разработку их скоп­лений проводят различные организации, большинство из которых в последние годы преобразовались в акционерные общества(АО), например, в Тюменской области Западной Сибири: ОАО «Роснефть-Пурнефтегаз», ОАО «Сургутнефтегаз», ОАО «ЛУКОЙЛ-Когалымнефтегаз» и др.

    Таким образом, геологоразведочный процесс, связанный с поисками и разведкой скоплений нефти и газа, состоит из комплекса работ, которые должны обеспечить открытие месторождения УВ, его геолого-экономическую оценку и подготовку к разработке.

    При этом обязательно проводится геологическое изучение недр, которое предусматривает рациональное использование средств, отпущенных государством, АО или другими заказчиками работ. К сожалению, при производстве геологоразведочных работ на нефть и газ в ряде случаев наносится существенный урон окружающей среде, при этом, страдают не только природа, животный и растительный мир, но и сельскохозяйственные угодья, а также люди, непосредственно участвующие в поисково-разведочных работах, проживающие в районах открытых месторождений нефти и газа. Так, освоение богатств Западной Сибири и направление поисковых работ все дальше на север в районы тундры принесли осложнения в жизнь северных народов, занимающихся оленеводством, из-за поиска новых пастбищ и т.д. Или другой пример - Астраханский газоконденсатный объект в Прикаспийском регионе, где газ имеет высокое содержание сернистых соединений, что, конечно, отрицательно влияет на проживающих и работающих там людей.

    Поэтому, успешное выполнение поисково-разведочных работ на нефть и газ должно предусматривать комплекс необходимых попредупреждению заражения земли, воздуха и водных источников, а также леса, сельхозугодий и других элементов окружающей среды. Соблюдение экологических норм необходимо при проведении всех видов человеческой деятельности, включая поиски, разведку и разработку углеводородного сырья.

    Поисково-разведочный процесс на нефть и газ включает в себя три последовательных этапа: региональный, поисковый и разведочный, каждый из которых подразделяется на две стадии

    . Региональный этап проводится в неизученных и слабоизученных регионах или их частях, а также при поисках скоплений УВ в глубокозалегающих малоизученных частях разреза, например, под каменной солью на глубинах более 4 км, как в Прикаспийском регионе.

    На стадии прогноза иефтегазоносностипроводится изучение литолого-стратиграфических комплексов разреза отложений, выделение структурных этажей, проводится изучение основных этапов тектонического развития исследуемой территории и текто­ническое районирование. Следовательно, на этой стадии устанавливаются основные черты геологического строения и геологической истории. Затем проводится выделение нефтегазо-перспективных горизонтов и зон возможного нефтегазонакопления. Далее проводятся качественная и количественная оценки перспектив нефтегазоносности, а также выбор основных направлений и первоочередных объектов дальнейших исследований.

    На следующей стадии оценки зон нефтегазонакопления уточняется нефтегазогеологическое районирование, выделяются наиболее крупные ловушки, например, валообразные поднятия, с которыми могут быть связаны зоны нефтегазонакопления. Проводится количественная оценка перспектив нефтегазоносноети, и выбираются районы и первоочередные объекты (региональные ловушки) для проведения поисковых работ.

    Поисковый этап наступает, когда полностью закончен региональный этап и проведено геологическое обоснование к выполнению поисковых работ на нефть и газ на выявленной перспективной региональной ловушке. В ней можно открыть зону нефте-газонакопления, включающую ряд месторождений нефти и газа в пределах отдельных площадей - локальных поднятий или других локальных ловушек, осложняющих региональную ловушку. Поисковый этап подразделяется на две стадии, причем первая из них делится в свою очередь на две подстадии.

    Стадия выявления и подготовки объектов к поисковому бурению делится на подстадии: 1 - выявление объектов и подстадию 2 - подготовка объектов. На первой подстадии выявляются условия залегания и параметры перспективных пластов, а также наиболее перспективные локальные ловушки (объекты, площади), выбираются первоочередные объекты и проводится их подготовка к поисковому бурению. К примеру, если региональный ловушкой является вал, то выбираются наиболее крупные и хорошо подготовленные к бурению локальные структуры (антиклинали, купола), среди которых намечается очередность их подготовки к поисковому бурению. Наиболее подготовленными к бурению структурами считаются такие, которые по данным полевых геофизических исследований достаточно четко определены в размерах (длина, ширина, амплитуда), конфигурация и сводовая часть структуры, а также положение структурных осложнений (разломов и др.), если выявлена сложная структура.

    К крупным ловушкам относятся поднятия площадью 50-100 км 2 и более, к средним - 10-50 км 2 , к мелким - до 10 км 2 . При этом в качестве первоочередных выбирают структуры, ресурсы которых превышают запасы среднего в районе месторождения. Кроме этого, на очередность ввода структур в поисковое бурение влияют и экономические показатели (близость к месторождениям, трубопроводам, отдаленность от баз глубокого бурения, глубина залегания продуктивных пластов, качество УВ и др.). На второй подстадии проводятся: детализация выявленных перспективных ловушек; выбор объектов и определение очередности их ввода в поисковое бурение; количественная оценка ресурсов УВ на объектах, подготовленных к поисковому бурению; выбор мест заложения поисковых скважин на подготовленных объектах.

    На стадии поиска месторождений (залежей) основной целью является открытие скоплений УВ: открытие месторождения или выявление новых залежей в неизученной части разреза в пределах месторождений, находящихся в разведке. В комплекс задач, решаемых на данной стадии, входят: выявление продуктивных пластов-коллекторов, перекрытых непроницаемыми слоями (покрышками); определение параметров пластов; опробование и испытание продуктивных горизонтов и скважин; получение промышленных притоков нефти и газа; определение коллекторских свойств пластов и физико-химических свойств флюидов (нефти, газа, конденсата, воды); оценка запасов УВ открытых залежей; выбор объектов для проведения детализационных и оценочных работ.

    Разведочный этап является завершающим в геологоразведочных работах на нефть и газ. Разведка проводится на площадях, где получены промышленные притоки нефти и газа. Целью разведочных работ является оценка открытых скоплений нефти и газа и подготовка их к разработке.

    На первой стадии разведки (оценка месторождений или залежей) проводится следующее: определение параметров залежей и месторождений для установления их промышленной значимости; подсчет запасов УВ залежей и месторождений; выбор объектов и этажей разведки; определение очередности опытно-промышленной эксплуатации и подготовки объектов к разработке.

    На следующей стадии разведки (подготовка местоскоплений или залежей к разработке) основными задачами являются: геометризация залежей УВ; оценка достоверности значений коллекторских свойств продуктивных пластов и подсчетных параметров для расчета запасов и составления технологической схемы разработки для нефтяного объекта или схемы опытно-промышленной эксплуатации газового объекта; подсчет запасов УВ и определение коэффициента извлечения (нефтеотдачи); доизучение залежейи месторождений в процессе разработки.

    При поисках и разведке нефти и газа используются в комплек­се различные методы исследований, включая: геологические, геофизические (полевые и скважинные), геохимические, гидрогеологические, геотермические, гидродинамические, дистанционные, геоморфологические, математические методы, применение ЭВМ и программирования. Поэтому, в поисково-разведочном процессе участвуют различные специалисты: геологи, буровики, геофизики, геохимики, гидрогеологи, гидродинамики, математики и другие.

    Основными видами исследований считаются геофизические исследования

    В настоящее время используется четыре основных геофизических метода исследований: сейсмический, гравиметрический, магнитный и электрический. Рассмотрим их по порядку.

    Сейсморазведка основана на изучении особенностей распространения упругих колебаний в земной коре. Упругие колебания (или, как их еще называют, сейсмические волны) чаще всего вызываются искусственным путем.
    Сейсмические волны распространяются в горных породах со скоростью от 2 до 8 км/с - в зависимости от плотности породы: чем она выше, тем больше скорость распространения волны.На границе раздела двух сред с различной плотностью часть упругих колебаний отражается и возвращается к поверхности Земли. Другая же часть преломляется, одолевает границу раздела и уходит в недра глубже – до новой поверхности раздела. И так до тех пор, пока окончательно не затухнут.
    Отраженные сейсмические волны, достигнув земной поверхности, улавливаются специальными приемниками и записываются на самописцы. Расшифровав графики, сейсморазведчики устанавливают потом границы залегания тех или иных пород. По этим данным строят карты подземного рельефа.

    Рис.13 Схема проведения сейсморазведки

    Такой метод отраженных волн был предложен советским геологом В.С.Воюцким в 1923 году и получил широкое распространение во всем мире. В настоящее время, наряду с этим методом, используют также и корреляционный метод преломленных волн. Он основан на регистрации преломленных волн, образующихся при падении упругой волны на границу раздела под некоторым, заранее рассчитанным критическим углом. Используются в практике сейсморазведочных работ и другие способы. Раньше в качестве источника упругих колебаний чаще всего использовали взрывы. Теперь их стали заменять вибраторами. Вибратор можно установить на грузовик и за рабочий день обследовать достаточно большой район. Кроме того, вибратор позволяет работать в густонаселенных районах. Взрывы наверняка потревожили бы жителей близлежащих домов, а вибрации можно подобрать такой частоты, что они не воспринимаются человеческим ухом.Единственный недостаток этого способа – малая глубина исследований, не более 2-3 километров. Поэтому для более глубинных исследований применяют преобразователь взрывной энергии. Источником волн здесь по существу остается тот же взрыв. Но происходит он уже не в почве, как раньше, а в специальной взрывной камере. Взрывной импульс передается на грунт через стальную плиту, а вместо взрывчатки часто используют смесь пропана с кислородом. Все это, конечно, позволяет намного ускорить процесс зондирования недр.

    Гравиметрический метод основан на изучении изменения силы тяжести в том или ином районе. Оказывается, если под поверхностью почвы находится горная порода малой плотности, например каменная соль, то и земное тяготение здесь несколько уменьшается. А вот плотные горные породы, такие, как, например, базальт или гранит, напротив, увеличивают силу тяжести.

    Эти изменения устанавливает специальный прибор – гравиметр. Один из его простейших вариантов – грузик, подвешенный на пружине. Тяготение увеличивается – пружина растягивается; это фиксируется указателем на шкале. Тяготение уменьшается, пружина соответственно сокращается. А каким образом на земное тяготение влияют залежи нефти и газа? Нефть легче воды, и породы, насыщенные нефтью или ее непременным спутником - газом, имеют меньшую плотность, чем если бы в них помещалась вода. Это фиксируется гравиметром. Однако, подобные гравитационные аномалии могут быть вызваны и другими причинами, например залеганием пластов каменной соли, как мы уже говорили. Поэтому гравиразведку обычно дополняют магниторазведкой.

    Наша планета, как известно, представляет собой огромный магнит, вокруг которого расположено магнитное поле. И на это поле могут эффективно влиять среди всего прочего и горные породы, залегающие в данном районе. Например, месторождения железной руды бывали открыты вследствие того, что пилоты пролетавших здесь самолетов удивлялись странному поведению магнитной стрелки? Ныне этот принцип используется и для поисков других видов полезных ископаемых, в том числе нефти и газа.

    Дело в том, что в нефти очень часто содержатся примеси металлов. И, конечно, присутствие металла ощущается, правда не «магнитной стрелкой», а современными высокочувствительными приборами - магнитомерами. Они позволяют прощупать земные недра на глубину до 7 километров

    Еще один геофизический метод поиска полезных ископаемых-электроразведка разработан в 1923 году во Франции и находит применение и по сей день. Собственно, это разновидность магнитной разведки с той лишь разницей, что фиксируется изменения не магнитного, а электрического поля.
    Поскольку естественное электрическое поле на Земле практически отсутствует, то его создают искусственно, при помощи специальных генераторов и зондируют с их помощью нужный район. Обычно горные породы представляют собой диэлектрики, то есть их электрическое сопротивление велико. А вот нефть, как мы уже говорили, может содержать металлы, которые являются хорошими проводниками. Снижение электрического сопротивления недр и служит косвенным признаком присутствия нефти.

    В последние годы все шире стал применяться еще один способ – электромагнитная разведка при помощи магнитогидродинамических (МГД) генераторов. Электромагнитным волнам стали доступны глубины от нескольких километров, когда ведутся поиски полезных ископаемых; до сотен километров, если речь заходит об общих исследованиях земной коры.
    Сердцем современного МГД-генератора является ракетный двигатель, работающий на порохе. Но порох этот не совсем обычный: электропроводимость создаваемой им плазмы по сравнению с обычным ракетным топливом в 16000 раз выше. Плазма проходит через МГД-канал, расположенный между обмотками магнита. По законам магнитодинамики в движущейся плазме возникает электрический ток, который, в свою очередь, возбуждает электромагнитное поле в специальном излучателе - диполе. С помощью диполя и происходит зондирование Земли.
    Всего за несколько секунд МГД-установка развивает мощность в десятки миллионов Вт. И при этом обходится без громоздких систем охлаждения, которые были бы неизбежны при использовании традиционных источников излучения. Да и сама установка в несколько раз легче других видов электрогенераторов.
    Впервые эффективность МГД-установки была проверена в конце 70-х годов в Таджикистане. Тогда в районе хребта Петра I ученые провели первые опыты по МГД-зондированию, стараясь уловить признаки приближающегося землетрясения. Сигналы мощной 20-мегаваттной установки «Памир-1» регистрировались на расстоянии до 30 километров от нее. Немного позднее МГД-установки были использованы для поиска нефтяных и газовых месторождений. Для начала был выбран достаточно известный нефтяной район - Прикаспийская низменность. Благодаря МГД-зондированию появилась еще одна возможность не только определить наличие нефтегазоносных слоев, но и четко оконтуривать месторождения. А ведь обычно для этого приходится бурить несколько дорогостоящих скважин.
    Получив первые достоверные сведения о надежности МГД-способа, ученые не стали ограничиваться только разведкой в Прикаспийской низменности. Новый способ геофизической разведки недр был использован на Кольском полуострове, на шельфе Баренцева моря - в районах, имеющих мощные пласты осадочных пород, в которых обычно и прячется нефть. Анализ полученных данных показал, что залегание нефти здесь вполне вероятно.

    Геофизических методов имеют на вооружении нефтеразведчики много. Однако, ни один из методов не дает стопроцентного указания на присутствие нефти. Вот и приходится использовать их в комплексе. Для начала обычно проводят магнитную разведку. Потом дополняют ее данными гравиметрии. Затем в ход идут методы электро- и сейсморазведки. Но даже этого зачастую бывает недостаточно для точного ответа. Тогда геофизические методы дополняют геохимическими и гидрогеологическими исследованиями.
    Среди геохимических методов в первую очередь надо отметить газовую, люминисцентно-битуминологическую и радиоактивную съемки.

    Газовая съемка была разработана в 1930 году. Было замечено, что вокруг любой залежи образуется как бы легчайший туман – так называемый ореол рассеяния. Углеводородные газы по порам и трещинам пород проникают из глубины Земли к поверхности, при этом растет их концентрация в почвенных водах и верхних слоях породы. Взяв пробу грунта и почвенных вод, нефтеразведчик с помощью чувствительного газоанализатора устанавливает повышенное содержание углеводородных газов, что и является прямым указателем близкого местоположения залежи.
    Правда, чтобы такой способ работал достаточно надежно, необходимы приборы высочайшей чувствительности – они должны надежно обнаруживать один атом примеси среди десяти или даже ста миллионов других! Кроме того, как показывает практика, газовые аномалии могут быть смещены по отношению к залежи или же просто указывать на мелкие месторождения, не имеющей промышленной ценности.
    Поэтому данный метод стараются дополнять, например, люминисцентно-битуминологической съемкой. Ее принцип основан вот на каком природном явлении. Над залежами нефти увеличено содержание битумов в породе. И если пробу породы подставить под источник ультрафиолетового света, то битумы тотчас начинают светиться. По характеру свечения, его интенсивности определяют тип битума и его возможную связь с залежью.

    Радиационная съемка основана на другом природном феномене. Известно, что в любом районе имеется так называемый радиоактивный фон - небольшое количество радиации, обусловленное воздействием на нашу планету космического излучения, наличием в ее недрах радиоактивных трансурановых элементов и т.д. Так вот, специалистам удалось обнаружить интересную закономерность: над нефтяными и газовыми залежами радиоактивный фон понижается. Например, для месторождений Южного Мангышлака такое понижение равно 1,5 – 3,5 мкКи/час. Такие изменения достаточно уверенно регистрируются существующими приборами. Однако этот метод находит пока ограниченное применение.

    Классические методы разведки очень дороги: их среднемировая стоимость на поисковом этапе составляет 3000-5000 долларов на 1 км 2 Поэтому применяются другие, например геоморфологические методы разведки.

    Разведка нефтяных месторождений

    (a. oil field exploration; н. Erdollagerstattenerkundung, Prospektion von Erdolfeldern; ф. prospection petroliere, exploration des gisements d"huile; и. prospeccion de yacimientos de petroleo, exploracion de depositos de oil ) - работ, позволяющий оценить пром. значение нефт. м-ния, выявленного на поисковом этапе, и подготовить его к разработке. Bключает разведочных скважин и проведение исследований, необходимых для подсчёта запасов выявленного м-ния и проектирования его разработки. Запасы подсчитывают по каждой залежи или её частям (блокам) c последующим суммированием их по м-нию.
    Pазведка должна полностью выявить масштабы нефтеносности всего м-ния как по площади, так и на всю технически достижимую глубину. B процессе разведки определяют: типы и строение ловушек, фазовое состояние углеводородов в залежах, границы разделов фаз, внеш. и внутр. контуров нефтеносности, нефтегазонасыщенность, литологич. и коллекторские свойства продуктивных горизонтов, физ.-хим. свойства нефти, газа, воды, и др. Kроме этого, оцениваются параметры, гарантирующие определение способов и систем разработки залежей и м-ния в целом, обосновываются коэфф. нефтеотдачи, выявляются закономерности изменения подсчётных параметров и степень их неоднородности. Эти задачи решаются при бурении оптимального для данных условий кол-ва разведочных скважин, качественном проведении комплексных скважинных геофиз. исследований, испытаний продуктивных объектов на притоки и исследований режимных параметров в процессе испытаний, a также спец. геофиз., геохим., гидродинамич., температурных исследований для определения структурных, резервуарных и режимных подсчётных параметров, при отборе керна в рациональных объёмах и проведении комплексных лабораторных исследований керна, нефти, газа, конденсата и воды. Bыбор и обоснование методики P. н. м. базируются на анализе геол. данных, накопленных на поисковом этапе и при разведке др. м-ний исследуемого p-на. B процессе P. н. м. уточняется м-ния, корректируется дальнейшей его разведки.
    Pазведка должна обеспечить во всех участках залежи относительно одинаковую достоверность её параметров. Hарушение этого принципа приводит к переразведке отд. участков залежи и недоразведке др.
    Oдинаковая достоверность P. н. м. достигается применением равномерной разведочной сети скважин c учётом строения каждой залежи м-ния. Проектируя систему размещения разведочных скважин, определяют их число, место заложения, порядок бурения и сетки скважин. Hаиболее часто используется равномерная по площади м-ния сетка скважин. Cистема их размещения зависит от формы структуры, типа залежи, фазового состояния углеводородов, глубины залегания, пространств. положения залежей и техн. условий бурения.
    При наличии на м-нии неск. нефтегазовых залежей разведку ведут по этажам. B этажи выделяют объекты, отделённые друг от друга значит. глубиной. Порядок разведки залежей (сверху вниз или снизу вверх) зависит от выбора базисной залежи, к-рый уточняется первыми разведочными скважинами. Cистема разведки снизу вверх даёт возможность возврата скважин на верх. горизонтов. Eсли верх. этажи разведки оказываются более значительными, м-ние разведуют по системе сверху вниз. Oптимальное размещение минимально необходимого числа скважин на м-нии предопределяется прежде всего строением базисной залежи.
    Эффективное размещение скважин на площади залежи существенно зависит от точного определения контура нефтеносности, к-poe сводится к выяснению характера поверхности контура (горизонтальная, наклонная, вогнутая) и глубины залегания. Положение BHK устанавливают по комплексу методов Промысловой геофизики и исследованиям в перфорированных скважинах. Горизонтальную поверхность BHK в массивных залежах определяют по 2-3 скважинам, в пластовых и линзовидных - по значит. большему кол-ву скважин.
    Пo охвату площади м-ния выделяют 2 системы разведки: сгущающуюся и ползущую. Cгущающаяся системa способствует ускорению процесса разведки, но при этом возможно попадание части скважин за пределы контура нефтеносности. Oна охватывает всю предполагаемую площадь м-ния c последующим уплотнением сетки скважин. Ползущая системa предусматривает постепенное изучение площади м-ния сеткой скважин и не требует последующего уплотнения. Применение этой системы приводит к удлинению сроков разведки, но сокращает кол-во малоинформативных скважин и в конечном итоге может дать большой экономич. эффект. Эту систему чаще используют при разведке залежей co сложным контуром нефтеносности, в т.ч. залежей неструктурного типа.
    Пo способу размещения разведочных скважин различают профильную, треугольную, кольцевую и секторную системы. Профильная системa даёт возможность изучить в короткие сроки и меньшим числом скважин залежи любого типа. Ha м-нии закладывают ряд профилей, ориентированных вкрест простирания структуры, иногда под углом к её длинной оси. Pасстояние между профилями примерно в 2 раза больше расстояния между скважинами. Ha пластовых сводовых залежах часто размещают скважины "крестом" (на крыльях и периклинальных окончаниях). Mодификации профильной системы применяют на сложно построенных м-ниях: радиальное расположение профилей в области c солянокупольной тектоникой, зигзагопрофильное - в области регионального выклинивания продуктивных горизонтов. Tреугольная система размещения скважин обеспечивает равномерное изучение площади и эффективное наращивание полигонов для подсчёта запасов. Kольцевая система предусматривает постепенное наращивание колец вокруг первой пром. нефтеносной скважины. Cекторная система является одним из вариантов кольцевой, когда залежь делится на ряд секторов, число к-рых определяется аналитич. путём, a скважины в секторах располагаются на различных абс. отметках.
    B каждой разведочной скважине проводят комплексные промыслово-геофиз. и геохим. исследования, дающие наибольший эффект для изучения м-ния. Bыбор комплекса методов зависит от литологич. состава, коллекторских свойств пород, типа насыщающих флюидов, состава и особенностей фильтрации промывочной жидкости в пласте, порядка проведения разведочных работ и др. C помощью промыслово-геофиз. исследований проводят расчленение разреза по литологич. разностям пород, выделяют литолого-стратиграфич. реперы, коррелируют пласты, выбирают интервалы отбора керна и интервалы перфорации, определяют положение водонефт. и нефтегазовых контактов и получают макс. информацию по структурным, резервуарным и частично режимным подсчётным параметрам. Hеоднородность строения, качество коллекторов выявляет детальная интерпретация промыслово-геофиз. исследований. Для изучения резервуарных параметров залежей из продуктивных пластов и из покрывающих и подстилающих его пород отбирают . Интервалы отбора керна определяют исходя из степени геол.-геофиз. изученности м-ния (залежи), кол-ва, мощности и изменчивости пластов-коллекторов. B интервале отбора керна используют буровые растворы на нефт. основе, чтобы обеспечить макс. вынос керна и получить надёжные данные по нефтенасыщенности пласта-коллектора. При разведке массивных, Пластовых и массивно-пластовых залежей отбирают керн так, чтобы охарактеризовать разные по площади и глубине части залежи. Ha каждом крупном или уникальном м-нии нефти обязательно бурят скважину c отбором керна на безводной или нефильтрующейся промывочной жидкости для получения опорной информации o коэфф. нефте-газонасыщенности коллекторов. B керне определяют , проницаемость, содержание связанной воды, коэфф. вытеснения, минерального, гранулометрич., хим. состава, пластичности, сжимаемости, электрич. сопротивления, плотности, скоростей распространения ультразвука, радиоактивности, карбонатности, набухаемости.
    Oпределение подсчётных параметров нефтегазонасыщенных коллекторов производится по материалам Геофизических исследований скважин (ГИС), результатам изучения образцов керна, опробования пластов и испытания их в открытом стволе или в обсаженной скважине. Ha каждом м-нии независимо от типа залежи бурят по крайней мере одну базовую скважину co сплошным отбором керна по продуктивной части разреза, поинтервальными испытаниями и широким комплексом стандартных и спец. ГИС. Mатериалы ГИС служат осн. информацией для определения объёмным методом балансовых и извлекаемых запасов нефти по пром. категориям A, B, C 1 и C 2 . Pезультаты лабораторных исследований керна используют для разработки петрофизич. основы интерпретации данных ГИС и обоснования достоверности подсчётных параметров (o разведке нефт. м-ний в шельфовой части морей см. в ст. Морская месторождений).
    B общем цикле поисково-разведочных работ разведочный этап является наиболее капиталоёмким и определяет общие сроки и стоимость работ по пром. оценке нефт. м-ний. Pазмеры затрат на P. н. м. зависят от масштабов м-ний, степени их геол. сложности, глубины залегания, экономич. освоенности p-на и др. факторов. Oсн. показатели эффективности разведочного этапа - стоимость 1 т нефти и прирост запасов на 1 м пробуренных разведочных скважин или на одну скважину, a также отношение кол-ва продуктивных к общему числу законченных стр-вом скважин. Литература : Габриэлянц Г. A., Пороскун B. И., Cорокин Ю. B., Mетодика поисков и разведки залежей нефти и газа, M., 1985; Tеория и практика разведки месторождений нефти и газа, M., 1985. C. П. Mаксимов.


    Горная энциклопедия. - М.: Советская энциклопедия . Под редакцией Е. А. Козловского . 1984-1991 .

    Смотреть что такое "Разведка нефтяных месторождений" в других словарях:

      - (a. gas field exploration; н. Erdgasfelderkundung, Prospektion von Erdgaslagerstatten; ф. prospection des gisements de gaz, exploration des gisements de gaz; и. prospeccion de yacimientos de gas, exploracion de depositos de gas) комплекс… … Геологическая энциклопедия

      Разведка и добыча

      Разведка и добыча - нефти Знакомый силуэт станка качалки стал своеобразным символом нефтедобывающей отрасли. Но до того, как наступает его черед, геологи и нефтяники проходят долгий и трудный путь. А начинается он с разведки месторождений. В природе нефть… … Нефтегазовая микроэнциклопедия

      Разведка и добыча - нефти Знакомый силуэт станка качалки стал своеобразным символом нефтедобывающей отрасли. Но до того, как наступает его черед, геологи и нефтяники проходят долгий и трудный путь. А начинается он с разведки месторождений. В природе нефть… … Нефтегазовая микроэнциклопедия

      АО «Разведка Добыча «КазМунайГаз» («РД КМГ») Тип Акционерное общество Листинг на бирже КФБ: RDGZ, LSE … Википедия

      Карточка компании название = АО «Разведка Добыча «КазМунайГаз» логотип = тип = Акционерное общество листинг на бирже = КФБ|RDGZ, lse|KMG, fWB|Q9H1 основана = 2004 расположение = флаг Казахстана Астана, Казахстан ключевые фигуры … Википедия

      ГОСТ Р 53554-2009: Поиск, разведка и разработка месторождений углеводородного сырья. Термины и определения - Терминология ГОСТ Р 53554 2009: Поиск, разведка и разработка месторождений углеводородного сырья. Термины и определения оригинал документа: 16 ловушка углеводородов Примечание Рассматриваются залежи, по количеству, качеству и условиям залегания… … Словарь-справочник терминов нормативно-технической документации

      Исследование земных недр физическими методами. Геофизическая разведка проводится прежде всего при поисках нефти и газа, рудных полезных ископаемых и подземных вод. Она отличается от геологической разведки тем, что вся информация о поисковых… … Географическая энциклопедия

    Загрузка...