docgid.ru

Интерфаза подготовка клетки к делению состоит из. Митоз – значение и стадии

Вспомните!

Как, согласно клеточной теории, происходит увеличение числа клеток?

Новые дочерние клетки образуются путем деления материнской клетки, поэтому процесс размножения организма имеет клеточную природу.

Как вы считаете, одинакова ли продолжительность жизни разных типов клеток в многоклеточном организме? Обоснуйте своё мнение.

Нет, продолжительность зависит от строения и выполняемых функций

Вопросы для повторения и задания

1. Что такое жизненный цикл клетки?

Клеточный или жизненный цикл клетки – это жизнь клетки с момента ее появления до деления или гибели. Клеточный цикл условно делят на два периода: длительный – интерфаза, и сравнительно короткий – само деление.

2. Каким образом в митотическом цикле происходит удвоение ДНК? Объясните, в чём заключается биологический смысл этого процесса.

Удвоение ДНК происходит в синтетической фазе интерфазы. Каждая молекула ДНК превращается в две одинаковые дочерние молекулы ДНК. Это нужно для того, чтобы во время деления клетки каждая дочерняя клетка получила свою копию ДНК. Фермент ДНК-хеликаза разрывает водородные связи между азотистыми основаниями, двойная цепочка ДНК расплетается на две одинарных. Затем фермент ДНК-полимераза достраивает каждую одинарную цепочку до двойной по принципу комплементарности. Каждая дочерняя ДНК содержит одну цепочку из материнской ДНК и одну новосинтезированную – это принцип полуконсервативности. Согласно принципу антипараллельности цепочки ДНК лежат друг к другу противоположными концами. ДНК может удлиняться только 3"-концом, поэтому в каждой репликационной вилке только одна из двух цепочек синтезируется непрерывно. Вторая цепочка (отстающая) растет в 5"-направлении с помощью коротких (100-200 нуклеотидов) фрагментов Оказаки, каждый из которых растет в 3"-направлении, а затем с помощью фермента ДНК-лигазы присоединяется к предыдущей цепочке. Скорость репликации у эукариот – 50-100 нуклеотидов в секунду. В каждой хромосоме имеется множество точек начала репликации, от каждой из которых расходятся 2 репликационные вилки; за счет этого вся репликация занимает около часа. Удвоением ДНК называется сложный процесс её самовоспроизведения. Благодаря свойству молекул ДНК самоудваиваться возможно размножение, а также передача наследственности организмом своему потомству, ведь полные данные о строении и функционировании находятся в закодированном виде в генной информации организмов. ДНК – является основой наследственных материалов большинства микро- и макроорганизмов. Правильное название процесса удвоения ДНК - репликация (редупликация).

3. В чём состоит подготовка клетки к митозу?

Стадия подготовки клетки к делению называется интерфаза. Она подразделяется на несколько периодов. Пресинтетический период (G1) - это наиболее продолжительный период клеточного цикла, наступающий после деления (митоза) клеток. Число хромосом и

содержание ДНК - 2n2с. У разных видов клеток период G1 может продолжаться от нескольких часов до нескольких суток. В этот период в клетке активно синтезируются белки, нуклеотиды и все виды РНК, делятся митохондрии и пропластиды (у растений), образуются рибосомы и все одномембранные органоиды, увеличивается объём клетки, накапливается энергия, идёт подготовка к редупликации ДНК. Синтетический период (S) - это важнейший период в жизни клетки, во время которого происходит удвоение ДНК (редупликация). Длительность S -периода - от 6 до 10 часов. В это же время идёт активный синтез белков-гистонов, входящих в состав хромосом, и их миграция в ядро. К концу периода каждая хромосома состоит из двух сестринских хроматид, соединённых друг с другом в области центромеры. Тем самым число хромосом не меняется (2n), а количество ДНК удваивается (4с). Постсинтетический период (G2) наступает после завершения удвоения хромосом. Это период подготовки клетки к делению. Он длится 2-6 часов. В это время активно накапливается энергия для предстоящего деления, синтезируются белки микротрубочек (тубулины) и регуляторные белки, запускающие митоз.

4. Опишите последовательно фазы митоза.

Процесс митоза принято подразделять на четыре основные фазы: профазу, метафазу, анафазу и телофазу. Так как он непрерывен, смена фаз осуществляется плавно - одна незаметно переходит в другую. В профазе увеличивается объем ядра, и вследствие спирализации хроматина формируются хромосомы. К концу профазы видно, что каждая хромосома состоит из двух хроматид. Постепенно растворяются ядрышки и ядерная оболочка, и хромосомы оказываются беспорядочно расположенными в цитоплазме клетки. Центриоли расходятся к полюсам клетки. Формируется ахроматиновое веретено деления, часть нитей которого идет от полюса к полюсу, а часть - прикрепляется к центромерам хромосом. Содержание генетического материала в клетке остается неизменным (2n4c). В метафазе хромосомы достигают максимальной спирализации и располагаются упорядоченно на экваторе клетки, поэтому их подсчет и изучение проводят в этот период. Содержание генетического материала не изменяется (2n4c). В анафазе каждая хромосома «расщепляется» на две хроматиды, которые с этого момента называются дочерними хромосомами. Нити веретена, прикрепленные к центромерам, сокращаются и тянут хроматиды (дочерние хромосомы) к противоположным полюсам клетки. Содержание генетического материала в клетке у каждого полюса представлено диплоидным набором хромосом, но каждая хромосома содержит одну хроматиду (4n4c). В телофазе расположившиеся у полюсов хромосомы деспирализуются и становятся плохо видимыми. Вокруг хромосом у каждого полюса из мембранных структур цитоплазмы формируется ядерная оболочка, в ядрах образуются ядрышки. Разрушается веретено деления. Одновременно идет деление цитоплазмы. Дочерние клетки имеют диплоидный набор хромосом, каждая из которых состоит из одной хроматиды (2n2c).

Оно состоит в том, что митоз обеспечивает наследственную передачу признаков и свойств в ряду поколений клеток при развитии многоклеточного организма. Благодаря точному и равномерному распределению хромосом при митозе все клетки единого организма генетически одинаковы. Митотическое деление клеток лежит в основе всех форм бесполого размножения как у одноклеточных, так и у многоклеточных организмов. Митоз обусловливает важнейшие явления жизнедеятельности: рост, развитие и восстановление тканей и органов и бесполое размножение организмов.

Подумайте! Вспомните!

1. Объясните, почему завершение митоза - деление цитоплазмы происходит по-разному в животных и растительных клетках.

Так как в растительных и животных организмах разные клетки и ткани. Например, клетки специализированных растительных тканей (покровных, механических, проводящих) не способны к делению. Следовательно, в растении должны быть ткани, единственная функция которых заключается в новообразовании клеток. Только от них зависит возможность роста растения. Это образовательные ткани, или меристемы (от греч. meristos - делимый).

2. Клетки, каких растительных тканей активно делятся и дают начало всем остальным тканям растения?

Образовательные ткани, или меристемы, состоят из мелких тонкостенных крупноядерных клеток, содержащих пропластиды, митохондрии и мелкие, практически неразличимые под световым микроскопом вакуоли. Меристемы обеспечивают рост растения и образование всех остальных типов тканей. Их клетки делятся путём митоза. После каждого деления одна из сестринских клеток сохраняет свойство материнской, а другая вскоре прекращает деление и приступает к начальным этапам дифференциации, в дальнейшем образуя клетки определённой ткани.

Способность клетки к репродукции – одно из фундаментальных свойств живого. Деление клеток лежит в основе эмбриогенеза и регенерации.

Закономерные изменения структурно-функциональных характеристик клетки во времени составляют содержание жизненного цикла клетки (клеточного цикла). Клеточный цикл - это период существования клетки от момента ее образования путем деления материнской клетки до собственного деления или смерти.

Важным компонентом клеточного цикла является митотический (пролиферативный) цикл - комплекс взаимосвязанных и согласованных во времени событий, происходящих в процессе подготовки клетки к делению и на протяжении самого деления. Кроме того, в жизненный цикл включается период выполнения клеткой многоклеточного организма специфических функций, а также периоды покоя. В периоды покоя ближайшая судьба клетки не определена: она может либо начать подготовку к митозу, либо приступить к специализации в определенном функциональном направлении.

Продолжительность митотического цикла для большинства клеток составляет от 10 до 50 ч. Величина его значительно варьирует: для бактерий это 20-30 минут, для туфельки 1-2 раза в сутки, для амебы около 1,5 суток. Длительность цикла регулируется путем изменения продолжительности всех его периодов. Клетки многоклеточных обладают также разной способностью к делению. В раннем эмбриогенезе они делятся часто, а во взрослом организме большей частью утрачивают эту способность, так как становятся специализированными. Но даже в организме, достигшем полного развития, многие клетки должны делиться, чтобы замещать изношенные клетки, которые постоянно слущиваются и, наконец, нужны новые клетки для заживления ран.

Следовательно, у некоторых популяций клеток деления должны происходить в течение всей жизни. Учитывая это, все клетки можно разделить на три категории:

1. В организме высших позвоночных не все клетки постоянно делятся. Есть специализированные клетки, потерявшие способность к делению (нейтрофилы, базофилы, эозинофилы, нервные клетки). К моменту рождения ребенка нервные клетки достигают высокоспециализированного состояния, утрачивая способность к делению, В процессе онтогенеза количество их непрерывно уменьшается. Это обстоятельство имеет и одну хорошую сторону; если бы нервные клетки делились, то высшие нервные функции (память, мышление) нарушились бы.

2. Другая категория клеток тоже высокоспециализированная, но в силу их постоянного слущивания замещаются новыми и эту функцию выполняют клетки этой же линии, но еще не специализированные и не утратившие способность делиться. Эти клетки называют обновляющимися. Примером являются постоянно обновляющиеся клетки кишечного эпителия, кроветворные клетки. Даже клетки костной ткани способны образовываться из неспециализированных (это можно наблюдать при репаративной регенерации костных переломов). Популяции неспециализированных клеток, сохраняющие способность к делению называются, как правило, стволовыми.

3. Третья категория клеток - исключение, когда высокоспециализированные клетки при определенных условиях могут вступить в митотический цикл. Речь идет о клетках, отличающихся большой продолжительностью жизни и где после полного завершения роста деление клеток происходит редко. Примером являются гепатоциты. Но если у экспериментального животного удалить 2/3 печени, то менее чем за две недели она восстанавливается до прежних размеров. Такими же являются и клетки желез, вырабатывающих гормоны: в нормальных условиях лишь немногие из них способны воспроизводиться, а при измененных условиях большинство из них могут начать делиться.

По двум главным событиям митотического цикла в нем выделяют репродуктивную и разделительную фазы, соответствующие интерфазе и митозу классической цитологии.

В начальный отрезок интерфазы (у эукариот 8-10 часов ) (постмитотический, пресинтетический, или G 1 -период) восстанавливаются черты организации интерфазной клетки, завершается формирование ядрышка, начавшееся еще в телофазе. Из цитоплазмы в ядро поступает значительное (до 90%) количество белка. В цитоплазме параллельно реорганизации ультраструктуры интенсифицируется синтез белка. Это способствует росту массы клетки. Если дочерней клетке предстоит вступить в следующий митотический цикл, синтезы приобретают направленный характер: образуются химические предшественники ДНК, ферменты, катализирующие реакцию редупликации ДНК, синтезируется белок, начинающий эту реакцию. Таким образом, осуществляются процессы подготовки следующего периода интерфазы - синтетического. Клетки имеют диплоидный набор хромосом 2n и 2c генетического материала ДНК (генетическая формула клетки).

В синтетическом или S-периоде (6-10 ч) удваивается количество наследственного материала клетки. За малыми исключениями редупликация (иногда удвоение ДНК обозначают термином репликация, оставляя термин редупликация для обозначения удвоения хромосом.) ДНК осуществляется полуконсервативным способом. Он заключается в расхождении биспирали ДНК на две цепи с последующим синтезом возле каждой из них комплементарной цепочки. В результате возникают две идентичные биспирали. Молекулы ДНК, комплементарные материнским, образуются отдельными фрагментами по длине хромосомы, причем неодномоментно (асинхронно) в разных участках одной хромосомы, а также в разных хромосомах. Затем участки (единицы репликации - репликоны ) новообразованной ДНК «сшиваются» в одну макромолекулу. В клетке человека содержится более 50 000 репликонов. Длина каждого из них около 30 мкм. Число их меняется в онтогенезе. Смысл редупликации ДНК репликонами становится понятным из следующих сопоставлений. Скорость синтеза ДНК составляет 0,5 мкм/мин. В этом случае редупликация нити ДНК одной хромосомы человека длиной около 7 см должна была бы занять около трех месяцев. Участки хромосом, в которых начинается синтез, называют точками инициации . Возможно, ими являются места прикрепления интерфазных хромосом к внутренней мембране ядерной оболочки. Можно думать, что ДНК отдельных фракций, о которых речь пойдет ниже, редуплицируется в строго определенной фазе S-периода. Так, большая часть генов рРНК удваивает ДНК в начале периода. Редупликация запускается поступающим в ядро из цитоплазмы сигналом, природа которого не выяснена. Синтезу ДНК в репликоне предшествует синтез РНК. В клетке, прошедшей S-период интерфазы, хромосомы содержат удвоенное количество генетического материала. Наряду с ДНК в синтетическом периоде интенсивно образуются РНК и белок, а количество гистонов строго удваивается.

Примерно 1% ДНК животной клетки находится в митохондриях. Незначительная часть митохондриальной ДНК редуплицируется в синтетическом, тогда как основная - в постсинтетическом периоде интерфазы. Вместе с тем известно, что продолжительность жизни митохондрий печеночных клеток, например, составляет 10 сут. Учитывая, что в обычных условиях гепатоциты делятся редко, следует допустить, что редупликация ДНК митохондрий может происходить независимо от стадий митотического цикла. Каждая хромосома состоит из двух сестринских хроматид (2n) , содержит ДНК 4c.

Отрезок времени от окончания синтетического периода до начала митоза занимает постсинтетический (предмитотический), или G 2 -neриод интерфазы (2n и 4c ) (3-6 ч). Он характеризуется интенсивным синтезом РНК и особенно белка. Завершается удвоение массы цитоплазмы по сравнению с началом интерфазы. Это необходимо для вступления клетки в митоз. Часть образуемых белков (тубулины) используется в дальнейшем для построения микротрубочек веретена деления. Синтетический и постсинтетический периоды связаны с митозом непосредственно. Это позволяет выделить их в особый период интерфазы - препрофазу .

Существуюттри способа деления клетки: митоз, амитоз, мейоз.

В клеточном цикле можно выделить собственно митоз и интерфазу, включающую пресинтетический (постмитотический) - G1 период, синтетический (S) период и постсинтетический (премитотический) - G2 период. Подготовка клетки к делению происходит в интерфазе. Пресинтетический период интерфазы - самый длительный. Он может продолжаться у эукариот от 10 часов до нескольких суток В пресинтетическом периоде (G1), наступающем сразу после деления, клетки имеют диплоидный (2n) набор хромосом и 2с генетического материала ДНК. В этот период начинается рост клеток, синтез белков, РНК. Происходит подготовка клеток к синтезу ДНК (S-период). Повышается активность ферментов, участвующих в энергетическом обмене В S-периоде (синтетическом) происходит репликация молекул ДНК, синтез белков - гистонов, с которыми связана каждая нить ДНК. Синтез РНК увеличивается соответственно количеству ДНК. При репликации две спирали молекулы ДНК раскручиваются, рвутся водородные связи, и каждая становится матрицей для воспроизводства новых цепей ДНК. Синтез новых молекул ДНК осуществляется при участии ферментов. Каждая из двух дочерних молекул обязательно включает одну старую и одну новую спираль. В S-периоде начинается удвоение центриолей. Каждая хромосома состоит из двух сестринских хроматид, содержит ДНК 4с. Число хромосом не меняется (2n). Продолжительность синтеза ДНК - S-период митотического цикла - длится 6 - 12 часов у млекопитающих. В постсинтетический период (G2) происходит синтез РНК, накапливается энергия АТФ, необходимая для деления клетки, завершается удвоение центриолей, митохондрий, пластид, синтезируются белки, из которых строится ахроматиновое веретено деления, заканчивается рост клетки.

Клеточное ядро Ядро было открыто и описано в 1833 г. англичанином Р. Броуном. Ядро присутствует во всех эукариотических клетках, за исключением зрелых эритроцитов и ситовидных трубок растений. Ядро необходимо для жизни клетки. В ядре хранится наследственная информация, заключенная в ДНК. Эта информация, благодаря ядру, при делении клетки передается дочерним клеткам. Ядро определяет специфичность белков, синтезируемых в клетке. В ядре содержится множество белков, необходимых для обеспечения его функций. В ядре синтезируется РНК. Ядро имеет ядерную оболочку, отделяющую его от цитоплазмы, кариоплазму (ядерный сок), одно или несколько ядрышек, хроматин. Ядерный сок (кариоплазма) - внутреннее содержимое ядра, представляет собой раствор белков, нуклеотидов, ионов, более вязкий, чем гиалоплазма. В нем присутствуют также фибриллярные белки. В кариоплазме находятся ядрышки и хроматин. В ядрышках происходит синтез р–РНК, других видов РНК и образование субъединиц рибосом. Хроматин (окрашенный материал) – плотное вещество ядра. В состав хроматина входят молекулы ДНК в комплексе с белками (гистонами и негистонами), РНК. Молекулы ДНК, содержащие наследственную информацию, способны удваиваться при репликации, и возможна передача (транскрипция) генетической информации с ДНК на и–РНК. Во время деления ядра хроматин окрашивается интенсивнее, происходит его конденсация – образование более спирализованных (скрученных) нитей, называе- мых хромосомами. Хромосомы синтетически неактивны. Каждая хромосома в метафазе митоза состоит из двух хроматид,образовавшихся в результате редупликации, и соединенных центромерой (первичной перетяжкой). В анафазе хроматиды отделены друг от друга. Из них образуются дочерние хромосомы, содержащие одинаковую генетическую информацию. Центромера делит хромосому на два плеча. Хромосомы с равными плечами называют равноплечими или метацентрическими, с плечами неодинаковой длины - неравноплечими - субметацентрическими, с одним коротким и вторым почти незаметным - палочковидными или акроцентрическими. Совокупность признаков хромосомного набора называют кариотипом Хромосомный набор специфичен и постоянен для особей каждого вида. У человека 46 хромосом. В соматических клетках, имеющих диплоидный набор хромосом, хромосомы парные. Их называют гомологичными. Одна хромосома в паре происходит от материнского организма, другая - от отцовского. Хромосомы из разных пар называют негомологичными. В кариотипе различают половые хромосомы (у человека это Х–хромосома и Y–хромосома) и аутосомы (все остальные). Половые клетки имеют гаплоидный набор хромосом. Основу хромосомы составляет молекула ДНК.

Одним из важнейших процессов в индивидуальном развитии живого организма является митоз. В данной статье мы кратко и понятно постараемся объяснить, какие процессы происходят во время деления клетки, расскажем о биологическом значении митоза.

Определение понятия

Из учебников за 10 класс по биологии мы знаем, что митоз – деление клетки, в результате которого из одной материнской клетки образуются две дочерние с тем же самым набором хромосом.

В переводе с древнегреческого языка термин «митоз» обозначает «нить». Это как связующее звено между старыми и новыми клетками, в которых сохраняется генетический код.

Процесс деления в целом начинается от ядра и заканчивается цитоплазмой. Именуется он как митотический цикл, который состоит из стадии митоза и интерфазы. В результате деления диплоидной соматической клетки образуется две дочерние клетки. Благодаря такому процессу происходит увеличение числа клеток тканей.

Стадии митоза

Исходя из морфологических особенностей, процесс деления распределяют на такие стадии:

  • Профаза ;

На данном этапе ядро уплотняется, внутри него конденсируется хроматин, который закручивается в спираль, под микроскопом просматриваются хромосомы.

ТОП-4 статьи которые читают вместе с этой

Под влиянием ферментов ядра и их оболочки растворяются, хромосомы в этом периоде беспорядочно располагаются в цитоплазме. Позднее происходит разделение центриолей к полюсам, образовывается веретено деления клеток, нити которого крепятся к полюсам и хромосомам.

Для данной стадии характерно удвоение ДНК, но пары хромосом ещё держатся друг друга.

Перед стадией профазы у растительной клетки идёт подготовительная фаза - препрофаза. В чём заключается подготовка клетки к митозу можно понять на данном этапе. Для него характерными являются образование препрофазного кольца, фрагмосомы, а также нуклеация микротрубочек вокруг ядра.

  • Прометафаза ;

На этом этапе хромосомы приходят в движение и направляются к ближайшему полюсу.

Во многих учебных пособиях препрофазу и прометофазу относят к стадии профазы.

  • Метафаза ;

На начальном этапе хромосомы находятся в экваториальной части веретена, так что давление полюсов действует на них равномерно. В ходе данной стадии число микротрубочек веретена постоянно растёт и обновляется.

Хромосомы выстраиваются парами в спираль вдоль экватора веретена в строгом порядке. Хроматиды постепенно отсоединяются, но ещё держатся за нити веретена.

  • Анафаза ;

На этом этапе происходит удлинение хроматид, которые постепенно расходятся к полюсам, так как нити веретена сокращаются. Образуются дочерние хромосомы.

По времени это самая короткая фаза. Сестринские хроматиды внезапно разделяются и отходят к разным полюсам.

  • Телофаза ;

Является последней фазой деления, когда хромосомы удлиняются, и формируется новая ядерная оболочка около каждого полюса. Нити, из которых состояло веретено, полностью разрушаются. На этом этапе делится цитоплазма.

Завершение последней стадии совпадает с разделением материнской клетки, которое называется цитокинезом. Именно от прохождения этого процесса зависит, сколько клеток образуется при делении, их может быть две и более.

Рис. 1. Стадии митоза

Значение митоза

Биологическое значение процесса деления клеток неоспоримо.

  • Именно благодаря ему возможно поддержание постоянного набора хромосом.
  • Воспроизведение идентичной клетки возможно только путём митоза. Таким способом заменяются клетки кожи, эпителия кишечника, кровяных клеток эритроцитов, жизненный цикл которых составляет всего 4 месяца.
  • Копирование, а значит и сохранение генетической информации.
  • Обеспечение развития и роста клеток, благодаря чему многоклеточный организм образуется из одноклеточной зиготы.
  • При помощи такого деления возможна регенерация частей тела у некоторых живых организмов. Например, у морской звезды восстанавливаются лучи.

Рис. 2. Регенерация морской звезды

  • Обеспечение бесполого размножения. Например, почкование гидры, а также вегетативное размножение растений.

Рис. 3. Почкование гидры

Что мы узнали?

Деление клеток называется митозом. Благодаря ему копируется и сохраняется генетическая информация клетки. Процесс происходит в несколько этапов: подготовительная фаза, профаза, метафаза, анафаза, телофаза. В результате образуется две дочерние клетки, которые полностью похожи на первоначальную материнскую клетку. В природе значение митоза велико, так как благодаря ему возможно развитие и рост одноклеточных и многоклеточных организмов, регенерация некоторых частей тела, бесполое размножение.

Тест по теме

Оценка доклада

Средняя оценка: 4.6 . Всего получено оценок: 296.

Жизненный цикл клетки

Закономерности существования клетки во времени

Способность клетки к репродукции – одно из фундаментальных свойств живого. Деление клеток лежит в основе эмбриогенеза и регенерации.

Закономерные изменения структурно-функциональных характеристик клетки во времени составляют содержание жизненного цикла клетки (клеточного цикла). Клеточный цикл - это период существования клетки от момента ее образования путем деления материнской клетки до собственного деления или смерти.

Важным компонентом клеточного цикла является митотический (пролиферативный) цикл - комплекс взаимосвязанных и согласованных во времени событий, происходящих в процессе подготовки клетки к делению и на протяжении самого деления. Кроме того, в жизненный цикл включается период выполнения клеткой многоклеточного организма специфических функций, а также периоды покоя. В периоды покоя ближайшая судьба клетки не определена: она может либо начать подготовку к митозу, либо приступить к специализации в определенном функциональном направлении.

Продолжительность митотического цикла для большинства клеток составляет от 10 до 50 ч. Величина его значительно варьирует: для бактерий это 20-30 минут, для туфельки 1-2 раза в сутки, для амебы около 1,5 суток. Длительность цикла регулируется путем изменения продолжительности всех его периодов. Клетки многоклеточных обладают также разной способностью к делению. В раннем эмбриогенезе они делятся часто, а во взрослом организме большей частью утрачивают эту способность, так как становятся специализированными. Но даже в организме, достигшем полного развития, многие клетки должны делиться, чтобы замещать изношенные клетки, которые постоянно слущиваются и, наконец, нужны новые клетки для заживления ран.

Следовательно, у некоторых популяций клеток деления должны происходить в течение всей жизни. Учитывая это, все клетки можно разделить на три категории:

1. В организме высших позвоночных не все клетки постоянно делятся. Есть специализированные клетки, потерявшие способность к делению (нейтрофилы, базофилы, эозинофилы, нервные клетки). К моменту рождения ребенка нервные клетки достигают высокоспециализированного состояния, утрачивая способность к делению, В процессе онтогенеза количество их непрерывно уменьшается. Это обстоятельство имеет и одну хорошую сторону; если бы нервные клетки делились, то высшие нервные функции (память, мышление) нарушились бы.

2. Другая категория клеток тоже высокоспециализированная, но в силу их постоянного слущивания замещаются новыми и эту функцию выполняют клетки этой же линии, но еще не специализированные и не утратившие способность делиться. Эти клетки называют обновляющимися. Примером являются постоянно обновляющиеся клетки кишечного эпителия, кроветворные клетки. Даже клетки костной ткани способны образовываться из неспециализированных (это можно наблюдать при репаративной регенерации костных переломов). Популяции неспециализированных клеток, сохраняющие способность к делению называются, как правило, стволовыми.



3. Третья категория клеток - исключение, когда высокоспециализированные клетки при определенных условиях могут вступить в митотический цикл. Речь идет о клетках, отличающихся большой продолжительностью жизни и где после полного завершения роста деление клеток происходит редко. Примером являются гепатоциты. Но если у экспериментального животного удалить 2/3 печени, то менее чем за две недели она восстанавливается до прежних размеров. Такими же являются и клетки желез, вырабатывающих гормоны: в нормальных условиях лишь немногие из них способны воспроизводиться, а при измененных условиях большинство из них могут начать делиться.

По двум главным событиям митотического цикла в нем выделяют репродуктивную и разделительную фазы, соответствующие интерфазе и митозу классической цитологии.

В начальный отрезок интерфазы (у эукариот 8-10 часов ) (постмитотический, пресинтетический, или G 1 -период) восстанавливаются черты организации интерфазной клетки, завершается формирование ядрышка, начавшееся еще в телофазе. Из цитоплазмы в ядро поступает значительное (до 90%) количество белка. В цитоплазме параллельно реорганизации ультраструктуры интенсифицируется синтез белка. Это способствует росту массы клетки. Если дочерней клетке предстоит вступить в следующий митотический цикл, синтезы приобретают направленный характер: образуются химические предшественники ДНК, ферменты, катализирующие реакцию редупликации ДНК, синтезируется белок, начинающий эту реакцию. Таким образом, осуществляются процессы подготовки следующего периода интерфазы - синтетического. Клетки имеют диплоидный набор хромосом 2n и 2c генетического материала ДНК (генетическая формула клетки).

В синтетическом или S-периоде (6-10 ч) удваивается количество наследственного материала клетки. За малыми исключениями редупликация (иногда удвоение ДНК обозначают термином репликация, оставляя термин редупликация для обозначения удвоения хромосом.) ДНК осуществляется полуконсервативным способом. Он заключается в расхождении биспирали ДНК на две цепи с последующим синтезом возле каждой из них комплементарной цепочки. В результате возникают две идентичные биспирали. Молекулы ДНК, комплементарные материнским, образуются отдельными фрагментами по длине хромосомы, причем неодномоментно (асинхронно) в разных участках одной хромосомы, а также в разных хромосомах. Затем участки (единицы репликации - репликоны ) новообразованной ДНК «сшиваются» в одну макромолекулу. В клетке человека содержится более 50 000 репликонов. Длина каждого из них около 30 мкм. Число их меняется в онтогенезе. Смысл редупликации ДНК репликонами становится понятным из следующих сопоставлений. Скорость синтеза ДНК составляет 0,5 мкм/мин. В этом случае редупликация нити ДНК одной хромосомы человека длиной около 7 см должна была бы занять около трех месяцев. Участки хромосом, в которых начинается синтез, называют точками инициации . Возможно, ими являются места прикрепления интерфазных хромосом к внутренней мембране ядерной оболочки. Можно думать, что ДНК отдельных фракций, о которых речь пойдет ниже, редуплицируется в строго определенной фазе S-периода. Так, большая часть генов рРНК удваивает ДНК в начале периода. Редупликация запускается поступающим в ядро из цитоплазмы сигналом, природа которого не выяснена. Синтезу ДНК в репликоне предшествует синтез РНК. В клетке, прошедшей S-период интерфазы, хромосомы содержат удвоенное количество генетического материала. Наряду с ДНК в синтетическом периоде интенсивно образуются РНК и белок, а количество гистонов строго удваивается.

Примерно 1% ДНК животной клетки находится в митохондриях. Незначительная часть митохондриальной ДНК редуплицируется в синтетическом, тогда как основная - в постсинтетическом периоде интерфазы. Вместе с тем известно, что продолжительность жизни митохондрий печеночных клеток, например, составляет 10 сут. Учитывая, что в обычных условиях гепатоциты делятся редко, следует допустить, что редупликация ДНК митохондрий может происходить независимо от стадий митотического цикла. Каждая хромосома состоит из двух сестринских хроматид (2n) , содержит ДНК 4c.

Отрезок времени от окончания синтетического периода до начала митоза занимает постсинтетический (предмитотический), или G 2 -neриод интерфазы (2n и 4c ) (3-6 ч). Он характеризуется интенсивным синтезом РНК и особенно белка. Завершается удвоение массы цитоплазмы по сравнению с началом интерфазы. Это необходимо для вступления клетки в митоз. Часть образуемых белков (тубулины) используется в дальнейшем для построения микротрубочек веретена деления. Синтетический и постсинтетический периоды связаны с митозом непосредственно. Это позволяет выделить их в особый период интерфазы - препрофазу .

Существуюттри способа деления клетки: митоз, амитоз, мейоз.

Загрузка...