docgid.ru

Ацетилхолин механизм действия. Судороги — важный сигнал организма о серьезных нарушениях

Нам очень малоизвестно о головном мозге и интеллектуальных способностях. Однако можно с полной уверенностью говорить, что один нейромедиатор, ацетилхолин, способен повысить когнитивные способности человека. В соответствии с теорией Дарвина этот нейромедиатор должен синтезироваться с каждым новым поколением более активно. Безусловно, это утверждение справедливо в том случае, если человек не деградирует.

Однако сегодня мы не будет рассуждать на тему эволюции, а расскажем об этом медиаторе более подробно, не забыв упомянуть и о способах повышения его концентрации. Следует сказать, что повышение уровня ацетилхолина не сделает вас счастливыми, но способен ускорить процесс усвоения новой информации. Говоря проще, вы будете лучше обучаться.

Ацетилхолин: что это?

Нейромедиатор отвечает не только за интеллектуальные способности человека, но и нейро-мускульные связи, включая вегетативные. Заметим, что это одно из первых вещество данной группы, которое было открыто учеными, а произошло это еще в начале прошлого века. Важно помнить, что высокие дозировки ацетилхолина приводят к замедлению организма, а малые способствуют его ускорению. Процесс синтеза нейромедиатора активируются во время получения новой информации либо воспроизводстве старой.

Производится вещество нервными терминалями аксонами, которые представляют собой участок соединения двух нейронов. Для синтеза ацетилхолина необходимо два вещества:

Ацетилкофермент (КоА) - производится из глюкозы.

Холин - содержится в некоторых продуктах питания.

После этого нейромедиатор помещается в своеобразные контейнеры круглой формы, называемые везикулами, и отправляется в пресинаптическое окончание нейрона. После слияния везикул с мембраной клетки, ацетилхолин высвобождается, попадая в синаптическую щель.

Ацетилхолин может быть задержан в синаптической щели, проникнуть в следующий нейрон либо возращен назад. В последнем случае нейромедиатор снова помещается в везикулы. Любой нейромедиатор стремиться соединиться со своими рецепторами, расположенными на втором нейроне. Образно говоря, рецептор является дверью, а нейромедиатор ключом от нее.

В данном случае есть два вида ключей, каждый из которых способен открыть «дверь» определенного типа - мускариновую и никотиновую. Для полного описания процесса необходимо добавить, что за балансом вещества в синаптической щели следит специальный фермент - ацетилхолинэнестераза. Если вы будете в большом количестве употреблять ноотропы, то после повышения концентрации ацетилхолина до определенного уровня, данный фермент вступит в работу и разрушит избыток нейромедиатора на составные элементы.

Заболевание Альцгеймера резко ухудшает память, что как раз и связано с чрезмерной активностью ацетилэнестеразы. Сейчас при лечении этой болезни достаточно хорошие результаты показывают препараты, способные ингибировать фермент. Однако у ингибиторов ацетилэнестеразы есть один недостаток - высокая концентрация ацетилхолина может принести организму вред.

Причем побочные эффекты могут быть достаточно серьезными, вплоть до летального исхода. К ингибиторам ацетилэнестеразы можно причислить некоторые нервнопаралитические газы. Под их воздействием концентрация нейромедиатора превышает допустимые пределы, что приводит к сокращению мускулов.

Положительные эффекты ацетилхолина и его недостатки

Начнем с положительных эффектов, которыми обладает рассматриваемый нами сегодня нейромедиатор:

Повышается когнитивная способность мозги и человек становится умнее.

Улучшается память.

Улучшается работа нейро-мускульных связей - это крайне полезно в спорте. Так как организм быстрее адаптируется к стрессам.

Ни какие наркотические вещества не могут повысить уровень нейромедиатора, а приведут к прямо противоположному эффекту - производство ацетилхолина максимально подавляется галлюциногенами.

Помогает составлять грамотные планы, и вы совершите меньше глупых ошибок из-за принятия импульсивных решений.

Недостатков у данного нейромедиатора всего два:

Вреден при стрессовой ситуации, так как замедляет способность принимать быстрые решения.

При высокой концентрации замедляет работу всего организма.

Однако здесь необходимо внести небольшую поправку - все люди индивидуальны, если у вас сочетаются высокие концентрации ацетилхолина и глутамата, то вы будете более быстрым и решительным. При этом интеллектуальный потенциал серьезных изменений не претерпит.

Также отметим, что нейромедиатор начинает активнее производиться не только при поступлении новой информации, но также благодаря тренировкам мозга и тела.

Чтобы увеличить концентрацию нейромедиатора можно использовать следующие добавки: ацетил л-карнитин, DMAE, лецитин, гиперзин, медпрепараты от болезни Альцгеймера, гиперзин. Уменьшить уровень вещества помогут скополамин, атропин и димедрол. Также рекомендуем правильно питаться, чтобы концентрация ацетилхолина была высокой и в первую очередь обращайте внимание на яйца с орехами.

Если вы занимаетесь спортом, то ацетилхолин поможет вам добиться более высоких результатов.

АЦЕТИЛХОЛИН - медиатор нервного возбуждения. Синтезируется в организме из аминоспирта холина и уксусной кислоты. Биологически очень активное вещество.

Ацетилхолин оказывает многостороннее действие на организм. Основная функция - медиация нервных импульсов. Нервные волокна и соответствующие им нейроны, осуществляющие передачу нервных импульсов посредством ацетилхолина, называются холинергическими. К ним относятся мотонейроны, иннервирующие скелетные мышцы; преганглионарные нейроны парасимпатических и симпатических нервов; постганглионарные нейроны всех парасимпатических и некоторых симпатических нервов (матки, потовых желез) и некоторые нейроны центральной нервной системы. Все холинергические волокна содержат холинацетилтрансферазу - специфический фермент, с помощью которого происходит синтез ацетилхолина. Ацетилхолин находится в нервных окончаниях в пузырьках, из которых он изливается в синаптическую щель в момент прихода нервного импульса. Освобождение ацетилхолина нервными окончаниями носит квантовый характер. По-видимому, содержимое пузырька и составляет ту наименьшую порцию ацетилхолина (квант), которая может быть выделена. В нормальных условиях каждый нервный импульс вызывает выделение нескольких сотен квантов ацетилхолина. Взаимодействуя со специфической макромолекулой на постсинаптической мембране - холинорецептором, ацетилхолин повышает проницаемость мембраны для ионов: возникает постсинаптический потенциал, который изменяет возбудимость эффекторной клетки, а в случае нервно-мышечного синапса является непосредственной причиной генерации потенциала действия. Эффект ацетилхолина прекращается под влиянием фермента ацетилхолинэстеразы (см. Холинэстеразы), который гидролизует ацетилхолин на малоактивный холин и уксусную кислоту, а также вследствие простой диффузии ацетилхолина из синаптической щели. В молекуле ацетилхолина есть две активные группы, обеспечивающие взаимодействие с холинорецептором: заряженная триметиламмониевая группа (катионная «головка»), которая реагирует с анионной группой в холинорецепторе, и сильно поляризованная сложноэфирная группа, реагирующая с так называемым эстерофильным участком холинорецептора.

Различают два вида действия ацетилхолина: мускариноподобное и никотиноподобное. Мускариноподобное действие проявляется эффектами, аналогичными тем, которые возникают при раздражении парасимпатических нервов гладких мышц, сердца, желез, и снимается атропином; никотиноподобное выражается возбуждением вегетативных ганглиев и мозгового вещества надпочечников, а также скелетной мускулатуры и снимается большими дозами никотина, гексонием, тубокурарином. В соответствии с этим холинореактивные системы разных органов обозначают как м-холинореактивные (мускариночувствительные) и н-холинореактивные (никотиночувствительные) .

В обычных условиях преобладает мускариноподобное действие ацетилхолина. При инстилляции ацетилхолина в глаз происходит сужение зрачка и спазм аккомодации, снижается внутриглазное давление. При попадании в общий кровоток наблюдается снижение кровяного давления, вызванное расширением сосудов (коронарные сосуды человека ацетилхолин суживает) и в меньшей степени замедлением сердечной деятельности, усиление двигательной активности желудочно-кишечного тракта, сокращение мускулатуры бронхов, желчного и мочевого пузыря, матки, усиление секреции желез с холинергической иннервацией, особенно слюнных и потовых.

Никотиноподобное действие ацетилхолина на вегетативные ганглии и надпочечники проявляется после атропинизации и при использовании более высоких доз. Оно выражается в прессорном эффекте. Ацетилхолин также стимулирует никотиночувствительные системы каротидных клубочков и рефлекторно возбуждает дыхание.

Все эффекты ацетилхолина можно усилить путем предварительного введения антихолинэстеразных веществ (эзерин, прозерин и др.). При обычных путях введения ацетилхолин не проникает через гемато-энцефалический барьер и не оказывает влияния на центральную нервную систему. Многообразие эффектов ацетилхолина, среди которых могут оказаться нежелательные, ослабляющие друг друга, а также кратковременность действия крайне ограничивают его применение в медицинской практике. Ацетилхолин широко используют при экспериментальном исследовании функций холинергических структур в виде хорошо растворимой соли - ацетилхолина хлорида (Acetylcholini chloridum, Acetylcholinum chloratum; список Б). Форма выпуска: ампулы по 5 мл, содержащие 0,2 г препарата.

Ацетилхолин как медиатор аллергических реакций

Сходство картины отравления ацетилхолином у собак с картиной развития у них анафилактического шока (см.) позволило предположить непосредственное участие холинергических процессов, имеющих место в деятельности некоторых органов, в механизме аллергических реакций этих органов. Таким органом является, напр., язык собаки, имеющий парасимпатическую иннервацию. Предполагалось, что точкой приложения антигена в сенсибилизированном органе служат окончания парасимпатических нервов. Это было подтверждено экспериментально. Введение антигена в сосуды языка сенсибилизированной собаке вызывает явный сосудорасширяющий эффект. В норме эти явления не наблюдаются. При выключении парасимпатической иннервации половины языка путем предварительного (за месяц до опыта) вылущения подчелюстной и подъязычных слюнных желез и вместе с ними подчелюстных и подъязычных периферических узлов парасимпатического иннервационного аппарата сосудов языка собаки полностью снимается описанная выше реакция сосудов этой половины языка на антиген. Вместе с тем при перерезке язычного нерва характер сосудистой реакции на антиген не меняется, что свидетельствует об отсутствии реакции на антиген чувствительных окончаний соматических нервов. Участие ацетилхолина в процессах распространения отравления в организме маловероятно. Роль анафилактического яда в этом смысле выполняют, очевидно, более стойкие продукты распада ткани, к которым относятся активные кинины, серотонин, гистамин и др. Таким образом, ацетилхолиновая гипотеза патогенеза аллергии ни в какой степени не противоречит представлению об участии гистамина в качестве одного из важных звеньев в механизме аллергической альтерации ткани. Участие ацетилхолина и холинергических процессов в механизме «органной» аллергии, то есть в условиях его действия in loco nascendi в соответствующих холинергических синапсах, имеет значение существенного, а в ряде структур и основного звена в определении функциональных выражений аллергии. К таким структурам относятся синаптические связи в вегетативной и центральной нервной системе, парасимпатическая сосудодвигательная иннервация, иннервация сердца и т. д. Вероятно, в них изменяется активность холинэстеразы, увеличивается скорость освобождения ацетилхолина при возбуждении их специфическим антигеном и, что самое важное, в них появляется возбудимость к специфическому антигену, который совершенно или почти совершенно отсутствовал в нормальном состоянии.

Библиография: Аничков С. В. и Гребенкина М. А. Фармакологическая характеристика холинорецепторов центральной нервной системы, Бюлл. эксперим. биол, и мед., т. 22, № 3, с. 28, 1946; Кибяков А. В. Химическая передача нервного возбуждения, М.- Л., 1964, библиогр.; Михельсон М. Я. и Зеймаль Э.В. Ацетилхолин, о молекулярном механизме действия, Л., 1970, библиогр.; Руководство по фармакологии, под ред. Н. В. Лазарева, т. 1, с. 137, Л., 1961; Турпаев Т. М. Медиаторная функция ацетилхолина и природа холино-рецептора, М., 1962; Э к к л с Д. Физиология синапсов, пер. с англ., М., 1966, библиогр.; Central cholinergic transmission and its behavioral aspects, Fed. Proc., v. 28, p. 89, 1969, bibliogr.; Dale H.H. The action of certain esters and ethers of choline, and their relation to muscarine, J. Pharmacol., v. 6, p. 147, 1914; Goodman L. S. a. G i 1 m a n A. Pharmacological basis of therapeutics, N. Y., 1970; Katz B. The release of neural transmitter substances, Springfield, 1969, bibliogr.; Michelson M. J. a. Danilov A. F. Cholinergic transmissions, в кн.: Fundament. biochem. Pharmacol., ed. by Z. M. Bacq, p. 221, Oxford a. o., 1971.

H. Я. Лукомская, М. Я. Михельсон; А. Д. Адо (алл.).

Ацетилхолин - это нейротрансмиттер, считающийся естественным фактором, который модулирует бодрствование и сон. Его предшественником является холин, проникающий из межклеточного пространства во внутреннее пространство нервных клеток.

Ацетилхолин является основным посланником холинергической системы, также известной как парасимпатическая система, которая является подсистемой вегетативной нервной системы, ответственной за остальную часть тела и улучшающей пищеварение. Ацетилхолин не используется в медицине.

Ацетилхолин является так называемым нейрогормон. Это первый обнаруженный нейротрансмиттер. Этот прорыв произошел в 1914 году. Первооткрывателем ацетилхолина был английский физиолог Генри Дейл. Австрийский фармаколог Отто Лоуи внес значительный вклад в изучение этого нейротрансмиттера и его популяризацию. Открытия обоих исследователей были удостоены Нобелевской премии в 1936 году.

Ацетилхолин (АХ) является нейротрансмиттером (т.е., химическое вещество, молекулы которого отвечают за процесс передачи сигнала между нейронами через синапсы и нейрональные клетки). Он находится в нейроне, в небольшом пузыре, окруженном мембраной. Ацетилхолин является липофобным соединением и плохо проникает в гематоэнцефалический барьер. Состояние возбуждения, вызванное ацетилхолином, является результатом действия на периферические рецепторы.

Ацетилхолин действует одновременно на два типа вегетативных рецепторов:

  • M (мускариновые) - расположены в различных тканях, таких как гладкие мышцы, структуры мозга, эндокринные железы, миокард;
  • N (никотин) - расположены в ганглиях вегетативной нервной системы и нервно-мышечных переходов.

После входа в кровоток он стимулирует всю систему с преобладанием стимуляции симптомов общей системы. Эффекты ацетилхолина недолговечны, неспецифичны и слишком токсичны. Поэтому в настоящее время он не является целебным.

Как образуется ацетилхолин?

Ацетилхолин (C7H16NO2) представляет собой сложный эфир уксусной кислоты (CH3COOH) и холина (C5H14NO +), которая образована холинацетилтрансферазой. Холин доставляется в ЦНС вместе с кровью, откуда он переносится в нервные клетки посредством активного транспорта.

Ацетилхолин может храниться в синаптических везикулах. Этот нейротрансмиттер за счет деполяризации клеточной мембраны (электроотрицательным уменьшить электрический потенциал клеточной мембраны) высвобождается в синаптическое пространство.

Ацетилхолин деградирует в центральной нервной системе ферментами с гидролитическими свойствами, так называемыми холинэстеразы. Катаболизм (общая реакция, приводящая к деградации сложных химических соединений на более простые молекулы) ацетилхолина, это связано с ацетилхолинэстеразы (АХЭ - фермент, который разрушает ацетилхолин, чтобы холина и остаток уксусной кислоты) и бутирилхолинэстеразы (BuChE, - фермент, который катализирует реакцию ацетилхолина + H2O → холина + анион кислоты карбоновая кислота), которые отвечают за реакцию гидролиза(реакция двойного обмена, которая проходит между водой и растворенным в ней веществом) в нервно-мышечных соединениях. Это является результатом действия ацетилхолинэстеразы и бутирилхолинэстераза-обратно всасывается в нервных клетках в результате активной работы транспортера для холина.

Влияние ацетилхолина на организм человека

Ацетилхолин показывает, среди прочих действие на тело, такое как:

  • снижение уровня артериального давления,
  • расширение кровеносных сосудов,
  • уменьшая силу сокращения миокарда,
  • стимуляция железистой секреции,
  • сжимающие свет дыхательных путей,
  • высвобождение частоты сердечных сокращений,
  • миоз,
  • сокращение гладких мышц кишечника, бронхов, мочевого пузыря,
  • вызывая сокращение поперечно-полосатых мышц,
  • влияющие на процессы памяти, способность концентрироваться, процесс обучения,
  • сохраняя состояние бодрствования,
  • обеспечивая связь между различными областями центральной нервной системы,
  • стимуляция перистальтики в желудочно-кишечном тракте.

Дефицит ацетилхолина приводит к ингибированию передачи нервных импульсов, вследствие чего происходит паралич мышц. Его низкий уровень означает проблемы с памятью и обработкой информации. Доступны препараты ацетилхолина, использование которых положительно влияет на когнитивные процессы, настроение и поведение и задерживает начало нейропсихиатрических изменений. Кроме того, они предотвращают образование старческих бляшек. Увеличение концентрации ацетилхолина в переднем мозге приводит к улучшению когнитивной функции и замедлению нейродегенеративных изменений. Это предотвращает болезнь Альцгеймера или миастению. Редкое состояние избыточного ацетилхолина в организме.

Также возможно аллергия на ацетилхолин, который отвечает за холинергическую крапивницу. Болезнь в основном поражает молодых людей. Развитие симптомов происходит в результате раздражения аффективных холинергических волокон. Это происходит во время чрезмерного усилия или потребления горячей пищи. Изменения кожи в виде маленьких пузырьков, окруженных красной границей, сопровождаются зудом. Холинергическая крапива исчезает после использования антигистаминов, седативных средств и препаратов против чрезмерного потоотделения.

Роль ацетилхолина в организме.

Образующийся в организме (эндогенный) ацетилхолин играет важную роль в процессах жизнедеятельности: он способствует передаче нервного возбуждения в ЦНС, вегетативных ганглиях, окончаниях парасимпатических (двигательных) нервов. Ацетилхолин является химическим передатчиком (медиатором) нервного возбуждения; окончания нервных волокон, для которых он служит медиатором, называются холинергическими, а рецепторы, взаимодействующие с ним, - холинорецепторами. Холинорецепторы - сложные белковые молекулы (нуклеопротеиды) тетрамерной структуры, локализованные на внешней стороне постсинаптической (плазматической) мембраны. По природе они неоднородны. Холинорецепторы, расположенные в области постганглионарных холинергических нервов (сердца, гладких мышц, желез) обозначают как м-холинорецепторы (мускариночувствительные), а находящиеся в области ганглионарных синапсов и в соматических нервно-мышечных синапсах - как н-холинорецепторы (никотиночувствительные) (С. В. Аничков). Такое деление связано с особенностями реакций, возникающих при взаимодействии ацетилхолина с этими биохимическими системами, мускариноподобных (снижение артериального давления, брадикардия, усиленная секреция слюнных, слезных, желудочных и других экзогенных желез, сужение зрачков и т. д.) в первом случае и никотиноподобных (сокращение скелетной мускулатуры и т. п.) во втором. М- и н-холинорецепторы локализованы в разных органах и системах организма, включая ЦНС. Мускариновые рецепторы стали делить в последние годы на ряд подгрупп (м1, м2, м3, м4, м5). Наиболее изучена в настоящее время локализация и роль м1- и м2-рецепторов. Ацетилхолин не оказывает строго избирательного действия на различные холинорецепторы. В той или другой степени он влияет на м- и н-холинорецепторы и на подгруппы м-холинорецепторов. Периферическое мускариноподобное действие ацетилхолина проявляется в замедлении сердечных сокращений, расширении периферических кровеносных сосудов и снижении артериального давления, активизации перистальтики желудка и кишечника, сокращении мускулатуры бронхов, матки, желчного и мочевого пузыря, увеличении секреции пищеварительных, бронхиальных, потовых и слезных желез, сужении зрачков (миоз). Последний эффект связан с усилением сокращения круговой мышцы радужной оболочки, которая иннервируется постганглионарными холинергическими волокнами глазодвительного нерва (n. oculomotorius). Одновременно в результате сокращения ресничной мышцы и расслабления цинновой связки ресничного пояска наступает спазм аккомодации. Сужение зрачка, обусловленное действием ацетилхолина, сопровождается обычно снижением внутриглазного давления. Этот эффект частично объясняется расширением при сужении зрачка и уплощении радужной оболочки шлеммова канала (венозный синус склеры) и фонтановых пространств (пространства радужно-роговичного угла), за счет чего улучшается отток жидкости из внутренних сред глаза. Не исключено, однако, что в снижении внутриглазного давления принимают участие и другие механизмы. Благодаря способности снижать внутриглазное давление вещества, действующие подобно ацетилхолину (холиномиметики, антихолинэстеразные препараты), широко применяются для лечения глаукомы1. Периферическое никотиноподобное действие ацетилхолина связано с его участием в передаче нервных импульсов с преганглионарных волокон на постганглионарные в вегетативных узлах, а также с двигательных нервов на поперечнополосатую мускулатуру. В малых дозах он является физиологическим передатчиком нервного возбуждения, в больших - может вызывать стойкую деполяризацию в области синапсов и блокировать передачу возбуждения. Ацетилхолину принадлежит также важная роль как медиатору в ЦНС. Он участвует в передаче импульсов в разных отделах мозга, при этом в малых концентрациях облегчает, а в больших - тормозит синаптическую передачу. Изменения в обмене ацетилхолина могут привести к нарушению функций мозга. Некоторые центральнодействующие его антагонисты являются психотропными препаратами. Передозировка антагонистов ацетилхолина может вызвать нарушения высшей нервной деятельности (галлюциногенный эффект и др.). Для применения в медицинской практике и экспериментальных исследований выпускается ацетилхолина хлорид (Acetylcholini chloridum).

Источник: "Лекарственные средства " под редакцией М.Д. Машковского.

Ацетилхолиновые рецепторы.

Трансмембранные рецепторы, лигандом которых является ацетилхолин. Ацетилхолин служит нейротрансмиттером как в пре-, так и в постганглионарных синапсах парасимпатической системы и в преганглионарных симпатических синапсах, в ряде постганглионарных симпатических синапсов, нервно-мышечных синапсах (соматическая нервная система), а также в некоторых участках ЦНС. Нервные волокна, выделяющие ацетилхолин из своих окончаний, называются холинергическими.

Синтез ацетилхолина происходит в цитоплазме нервных окончаний; запасы его хранятся в виде пузырьков в пресинаптических терминалях. Возникновение пресинаптического потенциала действия ведет к высвобождению содержимого нескольких сотен пузырьков в синаптическую щель. Ацетилхолин, выделяющийся из этих пузырьков, связывается со специфическими рецепторами на постсинаптической мембране, что повышает ее проницаемость для ионов натрия, калия и кальция и приводит к появлению возбуждающего постсинаптического потенциала. Действие ацетилхолина ограничивается путем его гидролиза с помощью фермента ацетилхолинэстеразы.

Типы ацетилхолиновых рецепторов:

    Никотиновый ацетилхолиновый рецептор.

Никотин

Никотиновый ацетилхолиновый рецептор (н-холинорецептор, nACh-receptor) - подвид ацетилхолиновых рецепторов, который обеспечивает передачу нервного импульса через синапсы и активируется никотином (кроме ацетилхолина).

Никотиновый ацетилхолиновый рецептор был открыт в начале XX века, как «рецепторную структуру никотина», приблизительно за 25-30 лет до того, как была исследованная его роль в проведении нервных сигналов, генерированных с помощью ацетилхолина. При попадании ацетилхолина (ACh) на молекулу данного рецептора приоткрывается проницаемый для катионов канал, что приводит к деполяризации клеточной мембраны и генерации нервного импульса в нейроне или сокращение мышечного волокна (в случае нервно-мышечного синапса).

Данный рецептор найден в химических синапсах как в центральной, так и в периферической нервной системе, в нервно-мышечных синапсах, а также в эпителиальных клетках многих видов животных.

Физиология и фармакология

Электрофизиологическая характеристика никотиновых рецепторов мышечной ткани впервые была дана благодаря внутриклеточному отводу электрических потенциалов; кроме того, никотиновый рецептор был одним из первых, на которые удалось записать электрические токи, которые проходят через единичный рецепторный канал. Используя последний подход удалось доказать, что ионный канал данного рецепора существует в дискретных открытом и закрытом состояниях. В открытом состоянии рецептор может пропускать ионы Na+ , К+ и, в меньшей мере, двухвалентные катионы; проводимость ионного канала при этом является постоянной величиной. Тем не менее, время существования канала в открытом состоянии является характеристикой, которая зависит от напряжения приложенного к рецептору потенциала, при этом рецептор стабилизируется в открытом состоянии при переходе от малых значений напряжения (деполяризация мембраны) к большим (гиперполяризация). Долгодействующая аппликация ацетилхолина и других агонистов рецептора приводит к снижению его чувствительности к рецепторной молекуле и увеличению времени пребывания ионного канала в закрытом состоянии - то есть у никотинового рецептора наблюдается явление десенсетизации.

Классической характеристикой никотиновых рецепторов в нервных ганглиях и в главном мозге есть холинергического ответа на электрическое раздражение, которые блокируются дигидро-β-эритроидином; кроме того, для этих рецепторов характерное високоафинноне связывание с тритий-меченным никотином. αBGT-чувствительные рецепторы в нейронах гиппокампа характеризуются низкой чувствительностью к ацетилхолину, в отличие от αBGT-нечувствительных рецепторов. Селективным и оборотным конкурентным антагонистом αBGT-чувствительных рецепторов является метилликаконитин, а некоторые производные анабезиина вызывают селективное активационное влияние на эту группу рецепторов. Проводимость ионного канала αBGT-чувствительных рецепторов является довольно высокой (73pS); также им присущая относительно высокая проводимость ионов кальция сравнительно с ионами цезия. Данный рецептор обладает необыкновенными вольт-зависимыми свойствами: обще-клеточный ток, записанный в физиологическом состоянии, при наложении деполяризационных величин электрического потенциала указывает на достоверное уменьшение прохождение ионов через ионные каналы; при этом это явление регулируется концентрацией в растворе ионов Mg2+. Для сравнения, никотиновые рецепторы на мышечных клетках не претерпевают никаких изменений ионного тока при изменении значений мембранного электрического потенциала, а N-метил-D-аспартатний рецептор, которому также присущая высокая относительная проницаемость для ионов Са2+ (PCa/PCs 10.1), обладает обратной картиной изменения ионных токов в ответ на смену электрического потенциала и наличие ионов магния: при повышении электрического потенциала до гиперполяризущих величин и повышении концентрации ионов Mg2+ ионный ток через данный рецептор блокируется.

Другое важное свойство αBGT-чувствительных нейрональных никотиновых рецепторов - это их реакция на стимуляцию. Экспозиция высоких концентраций ацетилхолина приводит к очень быстрой десенсетизации ответа отдельного канала и быстрого падения электрического ответа всей клетки. Повторная экспозиция коротких импульсов ацетилхолина также приводит к уменьшению максимальной амплитуды рецепторного ответа. При этом энергетический подкорм клетки высокоэнергоёмкими молекулами (АТФ, фосфокреатин, креатин-фосфокиназа) или промежуточными продуктами их метаболизма способно предотвратить такое уменьшение. Почти все аспекты функционирования αBGT-чувствительных никотиновых рецепторов, включая эффективность агонистов, кооперативные эффекты, а также фракционирование по активности и десенсетизация, регулируются внешнеклеточной концентрацией Са2+. Такая регуляция может быть особенно важной в случаях, когда рецепторы расположены на дендритах.

В дополнение к селективной активации рецепторов ацетилхолинподобными агонистами, все подтипы никотиновых рецепторов активируются производными физостигмина; тем не менее, такая активация присущая только низкочастотным токам единичных рецепторов, которые не могут быть приглушены антагонистами ацетилхолина.

Ацетилхолин

Общие
Систематическое наименование N,N,N-триметил-2-аминоэтанола ацетат
Сокращения ACh
Химическая формула СH 3 CO 2 CH 2 CH 2 N(СH 3) 3
Эмпирическая формула C 7 H 16 N O 2
Физические свойства
Молярная масса 146.21 г/моль
Термические свойства
Классификация
Рег. номер CAS 51-84-3
Рег. номер PubChem 187
SMILES O=C(OCC(C)(C)C)C

Свойства

Физические

Бесцветные кристаллы или белая кристаллическая масса. Расплывается на воздухе. Легко растворим в воде и спирте. При кипячении и длительном хранении растворы разлагаются.

Медицинские

Периферическое мускариноподобное действие ацетилхолина проявляется в замедлении сердечных сокращений, расширении периферических кровеносных сосудов и понижении артериального давления , усилении перистальтики желудка и кишечника , сокращении мускулатуры бронхов, матки, желчного и мочевого пузыря, усилении секреции пищеварительных, бронхиальных, потовых и слёзных желез, миоз . Миотический эффект связан с усилением сокращения круговой мышцы радужной оболочки, которая иннервируется постганглионарными холинергическими волокнами глазодвигательного нерва . Одновременно в результате сокращения ресничной мышцы и расслабления цинновой связки ресничного пояска наступает спазм аккомодации.

Сужение зрачка, обусловленное действием ацетилхолина, сопровождается обычно понижением внутриглазного давления. Этот эффект частично объясняется тем, что при сужении зрачка и уплощении радужной оболочки расширяется шлеммов канал (венозный синус склеры) и фонтановы пространства (пространства радужно-роговичного угла), что обеспечивает лучший отток жидкости из внутренних сред глаза. Не исключено, что в понижении внутриглазного давления принимают участие и другие механизмы. В связи со способностью снижать внутриглазное давление вещества, действующие подобно ацетилхолину (холиномиметики, антихолинэстеразные препараты), имеют широкое применение для лечения глаукомы . Следует учитывать, что при введении этих препаратов в конъюктивальный мешок они всасываются в кровь и, оказывая резорбтивное действие, могут вызвать характерные для этих препаратов побочные явления. Следует также иметь в виду, что длительное (в течение ряда лет) применение миотических веществ может иногда привести к развитию стойкого (необратимого) миоза , образованию задних петехий и другим осложнениям, а длительное применение в качестве миотиков антихолинэстеразных препаратов может способствовать развитию катаракты .

Ацетилхолину принадлежит также важная роль как медиатору ЦНС . Он участвует в передаче импульсов в разных отделах мозга, при этом малые концентрации облегчают, а большие - тормозят синаптическую передачу . Изменения в обмене ацетилхолина могут привести к нарушению функций мозга. Недостаток его во многом определяет клиническую картину такого опасного нейродегенеративного заболевания, как болезнь Альцгеймера . Некоторые центральнодействующие антагонисты ацетилхолина (см. Амизил) являются психотропными препаратами (см. также Атропин). Передозировка антагонистов ацетилхолина может вызвать нарушения высшей нервной деятельности (оказывать галлюциногенный эффект и др.).

Применение

Общее применение

Для применения в медицинской практике и для экспериментальных исследований выпускается ацетилхолин-хлорид (лат. Acetylcholini chloridum ). Как лекарственное средство ацетилхолин-хлорид широкого применения не имеет.

Лечение

При приёме внутрь ацетилхолин неэффективен, так как он быстро гидролизуется. При парентеральном введении оказывает быстрый, резкий, но непродолжительный эффект. Как и другие четвертичные соединения, ацетилхолин плохо проникает через гематоэнцефалический барьер и не оказывает существенного влияния на ЦНС . Иногда пользуются ацетилхолином как сосудорасширяющим средством при спазмах периферических сосудов (эндартериит , перемежающаяся хромота, трофические расстройства в культях и т. д.), при спазмах артерий сетчатки . В редких случаях вводят ацетилхолин при атонии кишечника и мочевого пузыря. Ацетилхолин применяют также иногда для облегчения рентгенологической диагностики ахалазии пищевода.

Форма применения

Препарат назначают под кожу и внутримышечно в дозе (для взрослых) 0,05 г или 0,1 г. Инъекции в случае необходимости можно повторять 2-3 раза в день. При инъекции следует убедиться, что игла не попала в вену . Внутривенное введение не допускается из-за возможности резкого понижения артериального давления и остановки сердца .

Высшие дозы под кожу и внутримышечно для взрослых:

  • разовая 0,1 г,
  • суточная 0,3 г.

Опасность применения при лечении

При применении ацетилхолина следует учитывать, что он вызывает сужение венечных сосудов сердца. При передозировке могут наблюдаться резкое понижение артериального давления с брадикардией и нарушениями сердечного ритма , профузный пот , миоз , усиление перистальтики кишечника и другие явления. В этих случаях следует немедленно ввести в вену или под кожу 1 мл 0,1 % раствора атропина (при необходимости повторно) или другой холинолитический препарат (см. Метацин).

Участие в процессах жизнедеятельности

Образующийся в организме (эндогенный) ацетилхолин играет важную роль в процессах жизнедеятельности: он принимает участие в передаче нервного возбуждения в ЦНС , вегетативных узлах, окончаниях парасимпатических и двигательных нервов. Ацетилхолин связан с функциями памяти. Снижение ацетилхолина при болезни Альцгеймера приводит к ослаблению памяти у пациентов. Ацетилхолин играет важную роль в засыпании и пробуждении. Пробуждение происходит при увеличении активности холинергических нейронов в базальных ядрах переднего мозга и стволе головного мозга .

Физиологические свойства

Ацетилхолин является химическим передатчиком (медиатором) нервного возбуждения; окончания нервных волокон, для которых он служит медиатором, называются холинергическими, а рецепторы, взаимодействующие с ним, называют холинорецепторами. Холинорецептор (по современной зарубежной терминологии - «холиноцептор») является сложной белковой макромолекулой (нуклеопротеидом), локализованной на внешней стороне постсинаптической мембраны. При этом холинорецептор постганглионарных холинергических нервов (сердца, гладких мышц, желез) обозначают как м-холинорецепторы (мускариночувствительные), а расположенные в области ганглионарных синапсов и в соматических нервномышечных синапсах - как н-холинорецепторы (никотиночувствительнные). Такое деление связано с особенностями реакций, возникающих при взаимодействии ацетилхолина с этими биохимическими системами: мускариноподобных в первом случае и никотиноподобных - во втором; м- и н-холинорецепторы находятся также в разных отделах ЦНС .

По современным данным, мускариночувствительные рецепторы делят на М1-, М2- и М3-рецепторы, которые по-разному распределяются в органах и разнородны по физиологическому значению (см. Атропин , Пиренцепин).

Ацетилхолин не оказывает строгого избирательного действия на разновидности холинорецепторов. В той или другой степени он действует на м- и н-холинорецепторы и на подгруппы м-холинорецепторов. Периферическое никотиноподобное действие ацетилхолина связано с его участием в передаче нервных импульсов с преганглионарных волокон на постганглионарные в вегетативных узлах, а также с двигательных нервов на поперечнополосатую мускулатуру. В малых дозах он является физиологическим передатчиком нервного возбуждения, в больших дозах может вызвать стойкую деполяризацию в области синапсов и блокировать передачу возбуждения.

Противопоказания

Ацетилхолин противопоказан при бронхиальной астме , стенокардии , атеросклерозе , органических заболеваниях сердца, эпилепсии .

Форма выпуска

Форма выпуска: в ампулах ёмкостью 5 мл, содержащих 0,1 и 0,2 г сухого вещества. Препарат растворяют непосредственно перед применением. Вскрывают ампулу и шприцем вводят в неё необходимое количество (2-5 мл) стерильной воды для

Загрузка...