docgid.ru

Точки разрыва и их классификация. Точки разрыва функции – определения, классификация и примеры

4.1. Основные теоретические сведения

Определение. Функция у = f (x ) называется непрерывной в точке х 0 , если эта функция определена в какой-нибудь окрестности точки х 0 и если

то есть бесконечно малому приращению аргумента в окрестности точки х 0 соответствует бесконечно малое приращение функции.

Определение. Функция у= f (x ) непрерывна в точке х 0 , если она определена в некоторой окрестности этой точки и если предел функции при стремлении независимой переменной х к х 0 существует и равен значению функции при х=х 0 , то есть

Определение. Пусть х х 0 , оставаясь все время слева от х 0 . Если при этом условии f (x ) стремится к пределу, то он называется левым пределом функции f (x ) в точке х 0 , то есть

Аналогично определяется и правый предел

Определение. Функция непрерывна в точке х 0 если:

    функция определена в точке х 0 ;

    существуют левый и правый пределы функции f (x ) при х х 0 ;

    все три числа 0 ), f (x 0 –0), f (x 0 +0) совпадают, то есть

Определение. Функция называется непрерывной на интервале, если она непрерывна в каждой его точке.

Теорема . Если две функции f (x ) и g (x ) определены в одном и том же

интервале и обе непрерывны в точке х 0 , то в той же точке будут непрерывны и функции

Теорема. Сложная функция, состоящая из конечного числа непрерывных функций, является непрерывной.

Все основные элементарные функции непрерывны в своей области определения.

Определение. Если в какой-либо точке х 0 функция не является непрерывной, то точка х 0 называется точкой разрыва функции, а сама функция – разрывной в этой точке.

Определение. Если в точке х 0 существует конечный lim f (x ) = А

(левосторонний и правосторонний пределы существуют, конечны и равны между собой), но он не совпадает со значением функции в точке, или же функция в точке не определена, то точка х 0 называется точкой устранимого разрыва. Принятое изображение точки устранимого разрыва представлено на рис. 1.

Определение. Точкой разрыва первого рода или точкой конечного разрыва называется такая точка х 0 , в которой функция имеет левый и правый конечные пределы, но они не равны между собой.

На рис. 2 приведено графическое представление разрыва функции первого рода в точке х 0

Определение. Если хотя бы один из пределов f (x 0 0) или f (x 0 + 0) не существует или бесконечен, то точка х 0 называется точкой разрыва, второго рода.

Графические представления разрывов функций второго рода в точке х 0 приведены на рис. 3 (а, б, в).

Приведенные выше определения непрерывности функции f (x ) в точке х 0

представлены на рис. 4, где отмечено, что основной посылкой при определении непрерывности функции (необходимым условием) в точке х 0 является то, что f (x ) определена в точке и ее окрестности.

Пример Исследовать на непрерывность, определить характер точек разрыва,

изобразить в окрестности точек разрыва функцию

Это рациональная функция Она определена и непрерывна при всех значениях х, кроме х = 1, так как при х = 1 знаменатель обращается, в нуль. В точке х = 1 функция терпит разрыв. Вычислим предел этой функции при

х → 1, имеем

Конечный предел функции при х → 1 существует, а функция в точке

х = 1 не определена; значит точка х = 1 является точкой устранимого разрыва.

Если доопределить функцию, то есть положить f (1) = 5, то функция

будет непрерывной.

х = 1 изображено на рис. 4.

Замечание. Данная функция

неопределенная при х = 1, совпадает с непрерывной функцией

во всех точках кроме х =1

Исследовать на непрерывность функцию и определить характер ее точек разрыва

Область определения функции – вся числовая ось. На интервалах(–, 0), (0,+) функция непрерывна. Разрыв возможен только в точке х = 0, в которой изменяется аналитическое задание функции.

Найдем односторонние пределы функции:

Левый и правый пределы хотя и конечны, но не равны между собой. Поэтому в точке х = 0 функция имеет разрыв первого рода. Скачок функции в точке разрыва равен

Поведение функции в окрестности точки х = 0 изображено на рис. 5.

Рис. 5

Пример Исследовать функцию f (x ) на непрерывность, определить характер ее точек разрыва, изобразить ее поведение в окрестности точек разрыва.

Функция определена и непрерывна на всей числовой оси, кроме точек х , = –2 и х 2 = 2, причем

не существует.

Вычисляем односторонние пределы в точке х , = –2.

Итак, в точке х = – 2 функция терпит разрыв второго рода. Исследуем характер разрыва функции в точке х 2 = 2. Имеем

В точке х 2 = 2 функция также терпит разрыв второго рода.

Поведение функции в окрестности точек х х = 2 и х 2 = 2 изображено на рис. 6.

Исследовать функцию f (x ) = e x + i на непрерывность, определить характер точек разрыва, изобразить поведение функции в окрестности точек разрыва.

Функция неопределена прих = –3, поэтому функция
непрерывна при всех
кромех = –3. Определим характер разрыва функции. Имеем

то есть один из пределов равен бесконечности, а значит функция терпит разрыв

второго рода.

Поведение функции f (x ) = e x +3 в окрестности точки разрыва х = –3 изображено на рис. 7

4.2. Упражнения для самостоятельной работы студентов

1. Исследовать функции на непрерывность, определить характер их точек разрыва, изобразить графически поведение функций в окрестности































2. Исследовать функции на непрерывность, определить характер их точек разрыва, изобразить графически поведение функций в окрестности точек разрыва

Определение. Пусть на некотором промежутке определена функция f(x) и x 0 – точка этого промежутка. Если , то f(x) называется непрерывной в точке x 0 .
Из определения следует, что о непрерывности можно говорить лишь по отношению к тем точкам, в которых f(x) определена (при определении предела функции такого условия не ставилось). Для непрерывных функций , то есть операции f и lim перестановочны. Соответственно двум определениям предела функции в точке можно дать два определения непрерывности – «на языке последовательностей» и «на языке неравенств» (на языке ε-δ). Предлагается это сделать самостоятельно.
Для практического использования иногда более удобно определение непрерывности на языке приращений.
Величина Δx=x-x 0 называется приращением аргумента, а Δy=f(x)-f(x 0) – приращением функции при переходе из точки x 0 в точку x.
Определение. Пусть f(x) определена в точке x 0 . Функция f(x) называется непрерывной в точке x 0 , если бесконечно малому приращению аргумента в этой точке соответствует бесконечно малое приращение функции, то есть Δy→0 при Δx→0.

Пример 1. Доказать, что функция y=sinx непрерывна при любом значении x.
Решение. Пусть x 0 – произвольная точка. Придавая ей приращение Δx, получим точку x=x 0 +Δx. Тогда . Получаем .
Определение. Функция y=f(x) называется непрерывной в точке x 0 справа (слева), если
.
Функция, непрерывная во внутренней точке, будет одновременно непрерывной справа и слева. Справедливо и обратное утверждение: если функция непрерывна в точке слева и справа, то она будет непрерывной в этой точке. Однако функция может быть непрерывной только с одной стороны. Например, для , , f(1)=1, следовательно, эта функция непрерывна только слева (график этой функции см. выше в пункте 5.7.2).
Определение. Функция называется непрерывной на некотором промежутке, если она непрерывна в каждой точке этого промежутка.
В частности, если промежутком является отрезок , то на его концах подразумевается односторонняя непрерывность.

Свойства непрерывных функций

1. Все элементарные функции непрерывны в своей области определения.
2. Если f(x) и φ(x), заданные на некотором промежутке, непрерывны в точке x 0 этого промежутка, то в этой точке будут также непрерывны функции .
3. Если y=f(x) непрерывна в точке x 0 из X, а z=φ(y) непрерывна в соответствующей точке y 0 =f(x 0) из Y, то и сложная функция z=φ(f(x)) будет непрерывной в точке x 0 .

Разрывы функции и их классификация

Признаком непрерывности функции f(x) в точке x 0 служит равенство , которое подразумевает наличие трех условий:
1) f(x) определена в точке x 0 ;
2) ;
3) .
Если хотя бы одно из этих требований нарушено, то x 0 называют точкой разрыва функции. Другими словами, точкой разрыва называется точка, в которой эта функция не является непрерывной. Из определения точек разрыва следует, что точками разрыва функции являются:
а) точки, принадлежащие области определения функции, в которых f(x) теряет свойство непрерывности,
б) точки, не принадлежащие области определения f(x), которые являются смежными точками двух промежутков области определения функции.
Например, для функции точка x=0 есть точка разрыва, так как функция в этой точке не определена, а функция имеет разрыв в точке x=1, являющейся смежной для двух промежутков (-∞,1) и (1,∞) области определения f(x) и не существует.

Для точек разрыва принята следующая классификация.
1) Если в точке x 0 имеются конечные и , но f(x 0 +0)≠f(x 0 -0), то x 0 называется точкой разрыва первого рода , при этом называют скачком функции .

Пример 2. Рассмотрим функцию
Разрыв функции возможен только в точке x=2 (в остальных точках она непрерывна как всякий многочлен).
Найдем , . Так как односторонние пределы конечны, но не равны друг другу, то в точке x=2 функция имеет разрыв первого рода. Заметим, что , следовательно функция в этой точке непрерывна справа (рис. 2).
2) Точками разрыва второго рода называются точки, в которых хотя бы один из односторонних пределов равен ∞ или не существует.

Пример 3. Функция y=2 1/ x непрерывна для всех значений x, кроме x=0. Найдем односторонние пределы: , , следовательно x=0 – точка разрыва второго рода (рис. 3).
3) Точка x=x 0 называется точкой устранимого разрыва , если f(x 0 +0)=f(x 0 -0)≠f(x 0).
Разрыв «устраним» в том смысле, что достаточно изменить (доопределить или переопределить) значение функции в этой точке, положив , и функция станет непрерывной в точке x 0 .
Пример 4. Известно, что , причем этот предел не зависит от способа стремления x к нулю. Но функция в точке x=0 не определена. Если доопределим функцию, положив f(0)=1, то она окажется непрерывной в этой точке (в остальных точках она непрерывна как частное непрерывных функций sinx и x).
Пример 5. Исследовать на непрерывность функцию .
Решение. Функции y=x 3 и y=2x определены и непрерывны всюду, в том числе и в указанных промежутках. Исследуем точку стыка промежутков x=0:
, , . Получаем, что , откуда следует, что в точке x=0 функция непрерывна.
Определение. Функция, непрерывная на промежутке за исключением конечного числа точек разрыва первого рода или устранимого разрыва, называется кусочно-непрерывной на этом промежутке.

Примеры разрывных функций

Пример 1. Функция определена и непрерывна на (-∞,+∞) за исключением точки x=2. Определим тип разрыва. Поскольку и , то в точке x=2 разрыв второго рода (рис. 6).
Пример 2. Функция определена и непрерывна при всех x, кроме x=0, где знаменатель равен нулю. Найдем односторонние пределы в точке x=0:
Односторонние пределы конечны и различны, следовательно, x=0 – точка разрыва первого рода (рис. 7).
Пример 3. Установить, в каких точках и какого рода разрывы имеет функция
Эта функция определена на [-2,2]. Так как x 2 и 1/x непрерывны соответственно в промежутках [-2,0] и , то разрыв может быть только на стыке промежутков, то есть в точке x=0. Поскольку , то x=0 является точкой разрыва второго рода.

Пример 4. Можно ли устранить разрывы функций:
а) в точке x=2;
б) в точке x=2;
в) в точке x=1?
Решение. О примере а) сразу можно сказать, что разрыв f(x) в точке x=2 устранить невозможно, так как в этой точке бесконечные односторонние пределы (см. пример 1).
б) Функция g(x) хотя имеет конечные односторонние пределы в точке x=2

(,),


но они не совпадают, поэтому разрыв также устранить нельзя.
в) Функция φ(x) в точке разрыва x=1 имеет равные односторонние конечные пределы: . Следовательно, разрыв может быть устранен переопределением функции в точке x=1, если положить f(1)=1 вместо f(1)=2.

Пример 5. Показать, что функция Дирихле


разрывна в каждой точке числовой оси.
Решение. Пусть x 0 – любая точка из (-∞,+∞). В любой ее окрестности найдутся как рациональные, так и иррациональные точки. Значит, в любой окрестности x 0 функция будет иметь значения, равные 0 и 1. В таком случае не может существовать предела функции в точке x 0 ни слева, ни справа, значит функция Дирихле в каждой точке числовой оси имеет разрывы второго рода.

Пример 6. Найти точки разрыва функции


и определить их тип.
Решение. Точками, подозрительными на разрыв, являются точки x 1 =2, x 2 =5, x 3 =3.
В точке x 1 =2 f(x) имеет разрыв второго рода, так как
.
Точка x 2 =5 является точкой непрерывности, так как значение функции в этой точке и в ее окрестности определяется второй строкой, а не первой: .
Исследуем точку x 3 =3: , , откуда следует, что x=3 – точка разрыва первого рода.

Для самостоятельного решения.
Исследовать функции на непрерывность и определить тип точек разрыва:
1) ; Ответ: x=-1 – точка устранимого разрыва;
2) ; Ответ: Разрыв второго рода в точке x=8;
3) ; Ответ: Разрыв первого рода при x=1;
4)
Ответ: В точке x 1 =-5 устранимый разрыв, в x 2 =1 – разрыв второго рода и в точке x 3 =0 - разрыв первого рода.
5) Как следует выбрать число A, чтобы функция

была бы непрерывной в точке x=0?
Ответ: A=2.
6) Можно ли подобрать число A так, чтобы функция

была бы непрерывной в точке x=2?
Ответ: нет.

Определение точки разрыва функции
Конечная точка x 0 называется точкой разрыва функции f(x) , если функция определена на некоторой проколотой окрестности точки x 0 , но не является непрерывной в этой точке.

То есть, в точке разрыва, функция либо не определена, либо определена, но хотя бы один односторонний предел в этой точке или не существует, или не равен значению f(x 0 ) функции в точке x 0 . См. «Определение непрерывности функции в точке ».

Определение точки разрыва 1-го рода
Точка называется точкой разрыва первого рода , если является точкой разрыва и существуют конечные односторонние пределы слева и справа :
.

Определение скачка функции
Скачком Δ функции в точке называется разность пределов справа и слева
.

Определение точки устранимого разрыва
Точка называется точкой устранимого разрыва , если существует предел
,
но функция в точке или не определена, или не равна предельному значению: .

Таким образом, точка устранимого разрыва - это точка разрыва первого рода, в которой скачек функции равен нулю.

Определение точки разрыва 2-го рода
Точка разрыва называется точкой разрыва второго рода , если она не является точкой разрыва 1-го рода. То есть если не существует, хотя бы одного одностороннего предела, или хотя бы один односторонний предел в точке равен бесконечности.

Исследование функций на непрерывность

При исследовании функций на непрерывность мы используем следующие факты.

  • Элементарные функции и обратные к ним непрерывны на своей области определения. К ним относятся следующие функции:
    , а также постоянная и обратные к ним функции. См. «Справочник по элементарным функциям ».
  • Сумма, разность и произведение непрерывных, на некотором множестве функций, является непрерывной, функцией на этом множестве.
    Частное двух непрерывных, на некотором множестве функций, является непрерывной, функцией на этом множестве, за исключением точек, в которых знаменатель дроби обращается в нуль. См. «Арифметические свойства непрерывных функций »
  • Сложная функция непрерывна в точке , если функция непрерывна в точке , а функция непрерывна в точке . См. «Предел и непрерывность сложной функции »

Примеры

Пример 1

Задана функция и два значения аргумента и . Требуется: 1) установить, является ли данная функция непрерывной или разрывной для каждого из данных значений аргумента; 2) в случае разрыва функции найти ее пределы в точке разрыва слева и справа, установить вид разрыва; 3) сделать схематический чертеж.
.

Заданная функция является сложной. Ее можно рассматривать как композицию двух функций:
, . Тогда
.

Рассмотрим функцию . Она составлена из функции и постоянных с помощью арифметических операций сложения и деления. Функция является элементарной - степенной функцией с показателем степени 1 . Она определена и непрерывна для всех значений переменной . Поэтому функция определена и непрерывна для всех , кроме точек, в которых знаменатель дроби обращается в нуль. Приравниваем знаменатель к нулю и решаем уравнение:
.
Получаем единственный корень .
Итак, функция определена и непрерывна для всех , кроме точки .

Рассмотрим функцию . Это показательная функция с положительным основанием степени. Она определена и непрерывна для всех значений переменной .
Поэтому заданная функция определена и непрерывна для всех значений переменной , кроме точки .

Таким образом, в точке , заданная функция является непрерывной.

График функции y = 4 1/(x+2) .

Рассмотрим точку . В этой точке функция не определена. Поэтому она не является непрерывной. Установим род разрыва. Для этого находим односторонние пределы.

Используя связь между бесконечно большими и бесконечно малыми функциями , для предела слева имеем:
при ,
,
,
.

Здесь мы использовали следующие общепринятые обозначения:
.
Также мы использовали свойство показательной функции с основанием :
.

Аналогично, для предела справа имеем:
при ,
,
,
.

Поскольку один из односторонних пределов равен бесконечности, то в точке разрыв второго рода.

В точке функция непрерывна.
В точке разрыв второго рода,
.

Пример 2

Задана функция . Найти точки разрыва функции, если они существуют. Указать род разрыва и скачек функции, если есть. Сделать чертеж.
.

График заданной функции.

Функция является степенной функцией с целым показателем степени, равным 1 . Такую функцию также называют линейной. Она определена и непрерывна для всех значений переменной .

В входят еще две функции: и . Они составлены из функции и постоянных с помощью арифметических операций сложения и умножения:
, .
Поэтому они также непрерывны для всех .

Поскольку функции, входящие в состав непрерывны для всех , то может иметь точки разрыва только в точках склейки ее составляющих. Это точки и . Исследуем на непрерывность в этих точках. Для этого найдем односторонние пределы.

Рассмотрим точку . Чтобы найти левый предел функции в этой точке, мы должны использовать значения этой функции в любой левой проколотой окрестности точки . Возьмем окрестность . На ней . Тогда предел слева:
.
Здесь мы использовали тот факт, что функция является непрерывной в точке (как и в любой другой точке). Поэтому ее левый (как и правый) предел равен значению функции в этой точке.

Найдем правый предел в точке . Для этого мы должны использовать значения функции в любой правой проколотой окрестности этой точки. Возьмем окрестность . На ней . Тогда предел справа:
.
Здесь мы также воспользовались непрерывностью функции .

Поскольку, в точке , предел слева не равен пределу справа, то в ней функция не является непрерывной - это точка разрыва. Поскольку односторонние пределы конечны, то это точка разрыва первого рода. Скачек функции:
.

Теперь рассмотрим точку . Тем же способом вычисляем односторонние пределы:
;
.
Поскольку функция определена в точке и левый предел равен правому, то функция непрерывна в этой точке.

Функция имеет разрыв первого рода в точке . Скачек функции в ней: . В остальных точках функция непрерывна.

Пример 3

Определить точки разрыва функции и исследовать характер этих точек, если
.

Воспользуемся тем, что линейная функция определена и непрерывна для всех . Заданная функция составлена из линейной функции и постоянных с помощью арифметических операций сложения, вычитания, умножения и деления:
.
Поэтому она определена и непрерывна для всех , за исключением точек, в которых знаменатель дроби обращается в нуль.

Найдем эти точки. Приравниваем знаменатель к нулю и решаем квадратное уравнение :
;
;
; .
Тогда
.

Используем формулу:
.
С ее помощью, разложим числитель на множители:
.

Тогда заданная функция примет вид:
(П1) .
Она определена и непрерывна для всех , кроме точек и . Поэтому точки и являются точками разрыва функции.

Разделим числитель и знаменатель дроби в (П1) на :
(П2) .
Такую операцию мы можем проделать, если . Таким образом,
при .
То есть функции и отличаются только в одной точке: определена при , а в этой точке не определена.

Чтобы определить род точек разрыва, нам нужно найти односторонние пределы функции в точках и . Для их вычисления мы воспользуемся тем, что если значения функции изменить, или сделать неопределенными в конечном числе точек, то это не окажет ни какого влияние на величину или существование предела в произвольной точке (см. «Влияние значений функции в конечном числе точек на величину предела »). То есть пределы функции в любых точках равны пределам функции .

Рассмотрим точку . Знаменатель дроби в функции , при в нуль не обращается. Поэтому она определена и непрерывна при . Отсюда следует, что существует предел при и он равен значению функции в этой точке:
.
Поэтому точка является точкой устранимого разрыва первого рода.

Рассмотрим точку . Используя связь бесконечно малых и бесконечно больших функций , имеем:
;
.
Поскольку пределы бесконечные, то в этой точке разрыв второго рода.

Функция имеет точку устранимого разрыва первого рода при , и точку разрыва второго рода при .

Использованная литература:
О.И. Бесов. Лекции по математическому анализу. Часть 1. Москва, 2004.

Устранимый разрыв.

Определение . Точка a называется точкой устранимого разрыва функции y=f(x) , если предел функции f(x) в этой точке существует, но в точке a функция f(x) либо не определена, либо имеет частное значение f(a) , отличное от предела f(x) в этой точке.

Пример . Например, функция

имеет в точке x=0 устранимый разрыв. Действительно, предельное значение этой функции в точке х=0 равно 1. Частное же значение равно 2.

Если функция f(x) имеет в точке a устранимый разрыв, то этот разрыв можно устранить, не изменяя при этом значений функции в точках, отличных от a . Для этого достаточно положить значение функции в точке a равным ее предельному значению в этой точке. Так, в рассмотренном выше примере достаточно положить f(0)=1 и тогда , т.е. функция f(x) станет непрерывной в точке x=0 .

Разрыв первого рода.

Определение . Точка a называется точкой разрыва, первого рода, если в этой точке функция f(x) имеет конечные, но не равные друг другу правый и левый пределы

Приведем некоторые примеры.

Пример . Функция y=sgn x имеет в точке x=0 разрыв первого рода. Действительно, и, таким образом, эти пределы не равны между собой.

Пример . Функция , определенная всюду, кроме точки x=1 , имеет в точке x=1 разрыв первого рода. В самом деле, .

Разрыв второго рода.

Определение . Точка a называется точкой разрыва второго рода, если в этой точке функция f(x) не имеет по крайней мере одного из односторонних пределов или если хотя бы один из односторонних пределов бесконечен.

Пример . Функция f(x)=tg x , очевидно, имеет разрыв второго рода в каждой из точек x k =π/2+π k , k=0, ± 1, ± 2,… , ибо в каждой такой точке

Пример . Функция имеет разрыв второго рода в точке x=0 , ибо в этой точке у нее не существует ни правого, ни левого пределов.

Непрерывность функции на отрезке

Определение . Функция, определенная на отрезке и непрерывная в каждой его точке, называется непрерывной на этом отрезке.

При этом под непрерывность в точке a понимается непрерывность справа, а под непрерывностью в точке b - непрерывность слева.

Будем говорить, что функция y=f(x) , определенная на множестве {x} достигает на нем своей верхней (нижней) грани , если существует такая точка x 0 ∈{x} , что f(x 0)=β (f(x 0)=α ).

Теорема [Вейерштрасса] . Всякая непрерывная на отрезке функция ограничена и достигает на нем своей верхней грани и своей нижней грани.

Теорема [Больцано-Коши] . Если функция y=f(x) непрерывна на отрезке и f(a)=A , f(b)=B , то для любого C , заключенного между A и B , существует такая точка ξ∈ , что f(ξ)=C .

Другими словами, непрерывная на отрезке функция, принимая какие-либо два значения, принимает и любое лежащее между ними значение.

Следствие . Если функция непрерывна на отрезке и на его концах принимает значения разных знаков, то на этом отрезке существует хотя бы одна точка, в которой функция обращается в нуль.

Следствие . Пусть функция y=f(x) непрерывна на отрезке и , . Тогда функция f(x) принимает все значения из отрезка и только эти значения.

Таким образом, множество всех значений функции, заданной и непрерывной на некотором отрезке, представляет собой также отрезок.

Если функция f (x ) не является непрерывной в точке x = a , то говорят, что f (x ) имеетразрыв в этой точке. На рисунке 1 схематически изображены графики четырех функций, две из которых непрерывны при x = a , а две имеют разрыв.

Непрерывна при x = a .

Имеет разрыв при x = a .

Непрерывна при x = a .

Имеет разрыв при x = a .

Рисунок 1.

Классификация точек разрыва функции

Все точки разрыва функции разделяются наточки разрыва первого и второго рода .

Говорят, что функция f (x ) имеетточку разрыва первого рода при x = a , если в это точке

При этом возможно следующие два случая:

Функция f (x ) имеетточку разрыва второго рода при x = a , если по крайней мере один из односторонних пределов не существует или равен бесконечности.

Пример3 .13 Рассмотрим функцию(функция Хевисайда ) на отрезке,. Тогданепрерывна на отрезке(несмотря на то, что в точкеона имеет разрыв первого рода).


Рис.3 .15 .График функции Хевисайда

Аналогичное определение можно дать и для полуинтервалов видаи, включая случаии. Однако можно обобщить данное определение на случай произвольного подмножестваследующим образом. Введём сначала понятиеиндуцированной набазы: пусть -- база, все окончаниякоторой имеют непустые пересечения с. Обозначимчерези рассмотрим множество всех. Нетрудно тогда проверить, что множествобудет базой. Тем самым дляопределены базы,и, где,и -- базы непроколотых двусторонних (соответственно левых, правых) окрестностей точки(их определение см. в начале текущей главы).

Свойства функций, непрерывных на отрезке.

Свойство 1: (Первая теорема Вейерштрасса (Вейерштрасс Карл (1815-1897)- немецкий математик)). Функция, непрерывная на отрезке, ограничена на этом отрезке, т.е. на отрезке [ a , b ] выполняется условие - M £ f (x ) £ M .

Доказательство этого свойства основано на том, что функция, непрерывная в точке х 0 , ограничена в некоторой ее окрестности, а если разбивать отрезок [ a , b ] на бесконечное количество отрезков, которые “стягиваются” к точке х 0 , то образуется некоторая окрестность точки х 0 .

Свойство 2: Функция, непрерывная на отрезке [ a , b ], принимает на нем наибольшее и наименьшее значения.

Т.е. существуют такие значения х 1 и х 2 , что f (x 1 ) = m , f (x 2 ) = M , причем

m £ f (x ) £ M

Отметим эти наибольшие и наименьшие значения функция может принимать на отрезке и несколько раз (например - f (x ) = sinx ).

Разность между наибольшим и наименьшим значением функции на отрезке называетсяколебанием функции на отрезке.

Свойство 3: (Вторая теорема Больцано - Коши). Функция, непрерывная на отрезке [ a , b ], принимает на этом отрезке все значения между двумя произвольными величинами.

Свойство 4: Если функция f (x ) непрерывна в точке х = х 0 , то существует некоторая окрестность точки х 0 , в которой функция сохраняет знак.

Свойство 5: (Первая теорема Больцано (1781-1848) - Коши). Если функция f (x )- непрерывная на отрезке [ a , b ] и имеет на концах отрезка значения противоположных знаков, то существует такая точка внутри этого отрезка, где f (x ) = 0.

Т . е . если sign(f(a)) ¹ sign(f(b)), то $ х 0 : f(x 0) = 0.

Определение. Функция f (x ) называетсяравномерно непрерывной на отрезке [ a , b ], если для любого e >0 существует D >0 такое, что для любых точек х 1 Î [ a , b ] и x 2 Î [ a , b ] таких, что

ï х 2 - х 1 ï < D

верно неравенство ï f (x 2 ) - f (x 1 ) ï < e

Отличие равномерной непрерывности от “обычной” в том, что для любого e существует свое D , не зависящее от х, а при “обычной” непрерывности D зависит от e и х.

Свойство 6: Теорема Кантора (Кантор Георг (1845-1918)- немецкий математик). Функция, непрерывная на отрезке, равномерно непрерывна на нем.

(Это свойство справедливо только для отрезков, а не для интервалов и полуинтервалов.)

Пример .

Загрузка...