docgid.ru

Характеристика континентов и океанов как важнейших структур земной коры. Земная кора

Материки и океаны являются наиболее крупными элементами в строении Земной коры. Говоря об океанах, следует иметь в виду строение коры в пределах участков, занимаемых океанами.

По составу земная кора континентальная и океаническая отличаются. Это в свою очередь накладывает отпечаток и на особенности их развития и строения.

Граница между материком и океаном проводится по подножию материкового склона. Поверхность этого подножия представляет собой аккумулятивную равнину с крупными холмами, которые образуются за счет подводных оползней и конусов выноса.

В строении океанов выделяют участки по степени тектонической подвижности, которая выражается в проявлениях сейсмической активности. По этому признаку выделяют:

  • сейсмически активные области (океанские подвижные пояса),
  • асейсмические области (океанские котловины).

Подвижные пояса в океанах представлены срединно-океаническими хребтами . Протяженность их до 20000 км, ширина - до 1000 км, высота достигает 2-3 км от дна океанов. В осевой части таких хребтов почти непрерывно прослеживаются рифтовые зоны . Они отмечаются высокими значениями теплового потока. Срединно-океанические хребты рассматриваются как участки растяжения земной коры или зоны спрединга .

Вторая группа структурных элементов - океанские котловины или талассократоны. Это равнинные, слабо всхолмленные участки морского дна. Мощность осадочного покрова здесь не более 1000 м.

Другим крупным элементом структуры является переходная зона между океаном и материком (континентом), часть геологов называют её подвижным геосинклинальным поясом. Это область максимального расчленения земной поверхности. Сюда входят:

1-островные дуги, 2 - глубоководные желоба, 3 - глубоководные впадины окраинных морей.

Островные дуги - это протяженные (до 3000 км) горные сооружения, образованные цепочкой вулканических сооружений с современным проявлением андезитобазальтового вулканизма. Пример островных дуг - Курило-Камчатская гряда, Алеутские острова и др. Со стороны океана островные дуги сменяются глубоководными желобами , которые представляют собой глубоководные депрессии протяженностью 1500-4000 км, глубиной 5-10 км. Ширина составляет 5-20 км. Днища желобов покрыты осадками, которые приносятся сюда мутьевыми потоками. Склоны желобов ступенчатые с разными углами наклона. Осадков на них не обнаружено.

Граница между островной дугой и склоном желоба представляет зону концентрации очагов землетрясений и называется зоной Вадати-Заварицкого-Беньофа.

Рассматривая признаки современных океанских окраин, геологи, опираясь на принцип актуализма, проводят сравнительно-исторический анализ подобных структур, формировавшихся в более древние периоды. К таким признакам относятся:

  • морской тип осадков с преобладанием глубоководных отложений,
  • линейная форма структур и тел осадочных толщ,
  • резкое изменение мощностей и вещественного состава осадочных и вулканических толщ в крест простирания складчатых структур,
  • высокая сейсмичность,
  • специфический набор осадочных и магматических формаций и наличие формаций -индикаторов.

Из перечисленных признаков, последний является одним из ведущих. Поэтому определим, что такое геологическая формация. Прежде всего - это вещественная категория. В иерархии вещества земной коры вы знаете такую последовательность:

Хим. элемент→ минерал горная порода геологическая формация

Геологическая формация - это следующая за горной породой более сложная ступень развития. Она представляет собой закономерные ассоциации горных пород, связанные единством вещественного состава и строения, которое обусловлено общностью их происхождения или сонахождения. Геологические формации выделяются в группах осадочных, магматических и метаморфических пород.

Для формирования устойчивых ассоциаций осадочных пород главными факторами являются тектоническая обстановка и климат. Примеры формаций и условия их формирования рассмотрим при анализе развития структурных элементов материков.

На материках выделяют два типа областей.

I тип совпадает с горными районами, в которых осадочные отложения смяты в складки и разбиты различными разломами. Осадочные толщи прорваны магматическими породами и метаморфизованы.

II тип совпадает с равнинными участками, на которых отложения залегают почти горизонтально.

Первый тип называют складчатой областью или складчатым поясом. Второй тип называют платформой. Это - главные элементы материков.

Складчатые области образуются на месте геосинклинальных поясов или геосинклиналей. Геосинклиналь - это подвижная протяженная область глубокого прогиба земной коры. Для неё характерно накопление мощных осадочных толщ, длительный вулканизм, резкая смена направления тектонических движений с образованием складчатых сооружений.

Геосинклинали подразделяются на:

1.Эвгеосинклиналь - представляет внутреннюю часть подвижного пояса,

2. Миогеосинклиналь - внешняя часть подвижного пояса.

Они отличаются проявлением вулканизма, накоплением осадочных формаций, складчатыми и разрывными деформациями.

В формировании геосинклинали выделяют две стадии. В свою очередь в каждой из стадий выделяют этапы, для которых характерны: определенный тип тектонических движений и геологических формаций. Рассмотрим их.

стадии

Этапы тектонических движений Знак движе ния

Формации в:

Миогеосинклиналях

Эвгеосинклиналях

1. Раннегеосинклинальная

Опускание - образуются неровности рельефа, к концу этапа частная инверсия т.е. относительное опускание и подъем отдельных участков геосинклинали

2.Позднегеосинклинальная

Обмеление моря, образование островных дуг и окраинных морей

→ ←

Аспидная (черносланцевая)

песчано-глинистая

Флишевая - ритмичное переслаивание песчаноалевролитовых осадков и известняков

Базальтовый вулканизм с кремнистыми осадками

Дифференцированная: базальт-андезит-риолитовые лавы и туфы

1.Раннеорогенная

Образование центрального поднятия и краевых прогибов, скорость движений мала. Море мелководное

2.Орогенная

Резкий подъем центрального поднятия с расколами на блоки. Межгорные впадины на срединных массивах

→ ←

→ ←

Тонкие молассы - тонкообломочные породы +соленосные и угленосные толщи

Грубая моласса

континентальные грубообломочные осадки

Внедрение гранитных батолитов

Порфировая:наземный щелочной андезит-иолитовый вулканизм, стратовулканы

Время от начала зарождения геосинклинали до завершения её развития называется этапом складчатости (тектонической эпохой). В истории формирования земной коры выделяют несколькотектонических эпох:

1.Докембрийская , объединяет несколько эпох, среди которых выделим байкальский этап складчатости, завершившийся в раннем Кембрии.

2.Каледонская складчатость - происходила в раннем палеозое, максимально проявилась в конце силура. Сформировались Скандинавские горы, Западный Саян и др.

3. Герцинская складчатость - происходила в позднем палеозое. К ней относятся складчатые сооружения Западной Европы, Урал, Аппалачи и др.

4. Мезозойская (киммерийская) - охватывает весь MZ . Сформировались Кордильеры, Верхояно-Чукотская складчатые области.

5. Альпийская складчатость - проявилась в Кайнозойскую эру и продолжается сейчас. Сформировались Анды, Альпы, Гималаи, Карпаты и др.

После завершения складчатости участок земной коры может вновь быть вовлечен в следующий геосинклинальный цикл. Но в большинстве случаев, после завершения горообразования наступает эпигеосинклинальная стадия развития складчатой области. Тектонические движения становятся медленными колебательными (огромные участки испытывают медленное опускание или подъем), вследствие чего накапливаются мощные толщи осадочных формаций. Магматическая деятельность приобретает новые формы. В этом случае мы говорим о платформенном этапе развития. А крупные участки земной коры с устойчивым тектоническим режимом развития называются платформы .

Признаки платформ:

1-морские мелководные, лагунные и наземные типы осадков;

2-пологое залегание слоев,

3-выдержанные на больших площадях состав и мощность отложений,

4-отсутствие метаморфизма осадочных толщ и др.

Общее в строении платформ - всегда присутствуют два этажа: 1- нижний складчатый и метаморфизованный, прорванный интрузиями - называется фундамент; 2- верхний, представляет горизонтально или полого залегающие мощные осадочные толщи, называется чехол.

По времени формирования платформы делятся на древние и молодые. Возраст платформ определяется возрастом складчатого фундамента.

Древние платформы - это такие, у которых складчатый фундамент представлен гранито-гнейсами архей-протерозойского возраста. Иначе еще их называют кратонами.

Наиболее крупные древние платформы:

1-Северо-Американская, 2-Южно-Американская, 3-Африкано-Аравийская, 4-Восточно-Европейская, 5-Сибирская, 6-Австралийская, 7-Антарктическая, 8-Индостанская.

На платформах выделяют два типа структур - щиты и плиты.

Щит - это участок платформы, на котором складчатый фундамент выходит на поверхность. В этих участках преобладает вертикальный подъем.

Плита - часть платформы, перекрытая осадочным чехлом. Здесь преобладают медленные вертикальные опускания. В строении плит выделяют антеклизы и синеклизы. Их образование обусловлено неровным строением поверхности складчатого фундамента.

Антеклизы - участки осадочного чехла, формирующегося над выступами складчатого фундамента. Признаки антеклизы: сокращение мощности осадочного чехла, перерывы и выклинивания слоев в сторону свода антеклизы.

Синеклиза - крупные впадины над участками погружения поверхности складчатого фундамента.

Для обеих форм характерно пологое (не >5 о) залегание слоев и изометричные формы в плане. Наряду с этим, на плитах выделяют авлакогены - это грабенообразные прогибы. Они возникают на ранней стадии развития платформенного чехла и представляют собой систему ступенчатых глубинных разломов, по которым происходит опускание пород фундамента и увеличение мощности осадочных пород чехла.

Зоны сочленения геосинклинальных и платформенных областей бывают двух типов.

Краевой шов - линейная зона глубинных разломов вдоль края платформы, возникающих при горообразовательных процессах в соседней геосинклинали.

Краевой (передовой) прогиб - линейная зона на границе платформы и геосинклинального пояса, образованная вследствие опускания краевых блоков платформы и части крыла геосинклинали. В разрезе краевой прогиб представляет асимметричную синклинальную форму, у которой крыло со стороны платформы пологое, а примыкающее к складчатому поясу - крутое.

Процесс формирования платформы можно разделить на две стадии.

Первая стадия - начало опускания складчатой орогенной области и преобразование её в фундамент платформы. Вторая стадия охватывает процесс формирования осадочного чехла, который происходит циклично. Каждый цикл разделяется на этапы, которые характеризуются собственным тектоническим режимом и набором геологических формаций.

Этапы тектонических движений

Знак

Формации

1. Погружение участков фундамента по разломам - заложение и развитие авлакогена с накоплением в нем осадков

Базальная, лагунно-континентальная в авлакогенах

2. Плитный - погружение значительной части платформы

Трансгрессивная морская терригенная (пески, глины - часто битуминозные, глинисто-карбонатные)

3 Максимальная трансгрессия

Карбонатная (известняки, доломиты с прослоями песчано-глинистых пород)

4 Обмеление моря - начало регрессии

Соленосная , угленосная или красноцветная

5 Общий подъем - континентальный режим

Континентальная

В развитии платформ выделяются эпохи тектонической активизации, в которые происходило дробление платформ по разломам и возрождение магматизма нескольких типов. Укажем на 2 основных.

1. Трещинные излияния с формированием мощных покровов основных пород - образование трапповой формации (Сибирская платформа).

2. Интрузии щелочно - ультраосновной формации (кимберлитовая) с трубками взрыва. С этой формацией связаны месторождения алмазов в Южной Африке и Якутии.

На некоторых платформах такие процессы тектонической активности сопровождаются воздыманием блоков земной коры и горообразованием. В отличие от складчатых областей их называют областями эпиплатформенного орогенеза , или глыбовыми.

Континентальная кора имеет трёхслойное строение:

1) Осадочный слой образован в основном осадочными горными породами. Здесь преобладают глины и глинистые сланцы, широко представлены песчаные, карбонатные и вулканогенные породы. В осадочном слое встречаются залежи таких полезных ископаемых, как каменный уголь, газ, нефть. Все они органического происхождения.

2) «Гранитный» слой состоит из метаморфических и магматических пород, близких по своим свойствам к граниту. Наиболее распространены здесь гнейсы, граниты, кристаллические сланцы и др. Встречается гранитный слой не везде, но на континентах, где он хорошо выражен, его максимальная мощность может достигать нескольких десятков километров.

3) «Базальтовый» слой образован горными породами, близкими к базальтам. Это метаморфизованные магматические породы, более плотные по сравнению с породами «гранитного» слоя.

22. Строение и развитие подвижных поясов.

Геосинклиналь - подвижная зона высокой активности, значительной расчлененности, характеризующаяся на ранних этапах своего развития преобладанием интенсивных погружений, а на заключительных - интенсивных поднятий, сопровождаемых значительными складчато - надвиговыми деформациями и магматизмом.

Подвижные геосинклинальные пояса являются чрезвычайно важным структурным элементом земной коры. Они обычно располагаются в зоне перехода от континента к океану и в процессе своей эволюции формируют континентальную кору. В развитии подвижных поясов, областей и систем выделяются два основных этапа: геосинклинальный и орогенный.

В первом из них различаются две главные стадии: раннегеосинклинальная и позднегеосинклинальная.

Раннегеосинклинальная стадия характеризуется процессами растяжения, расширения океанского дна путем спрединга и одновременно - сжатия в краевых зонах

Позднегеосинклинальная стадия начинается в момент усложнения внутренней структуры подвижного пояса, которое обусловлено процессами сжатия, проявляющимися все сильнее в связи с начинающимися закрытием океанского бассейна и встречным движением литосферных плит.

Орогенный этап сменяет позднегеосинклинальную стадию. Орогенный этап развития подвижных поясов состоит в том, что вначале перед фронтом растущих поднятий возникают передовые прогибы, в которых накапливаются мощные толщи тонкообломочных пород с угленосными и соленосными толщами - тонкие молассы.

23. Платформы и этапы их развития.

Платформа , в геологии - одна из главных глубинных структур земной коры, характеризующаяся малой интенсивностью тектонических движений, магматической деятельности и плоским рельефом. Это наиболее устойчивые и спокойные области континентов.

В строении платформ различают два структурных этажа:

1) Фундамент. Нижний этаж сложен метаморфическими и магматическими породами, смятыми в складки, разбитыми многочисленными разломами.

2) Чехол. Верхний структурный этаж, сложен полого залегающими неметаморфизованными слоистыми толщами - осадочными, морскими и континентальными отложениями

По возрасту, строению и истории развития континентальные платформы подразделяются на две группы:

1) Древние платформы занимают около 40 % площади континентов

2) Молодые платформы занимают значительно меньшую площадь континентов (около 5 %) и располагаются либо по периферии древних платформ, либо между ними.

Стадии развития платформ.

1) Начальная. Стадия кратонизации , характеризуется преобладанием поднятий и довольно сильным заключительным основным магматизмом.

2) Авлакогенная стадия , которая постепенно вытекает из предыдущей. Постепенно авлакогены (глубокий и узкий грабен в фундаменте древней платформы, перекрытый платформенным чехлом. Представляет собой древний рифт, заполненный осадками.) перерастают во впадины, а потом в синеклизы. Синеклизы разрастаясь, покрывают осадочным чехлом всю платформу, и наступает ее плитная стадия развития.

3) Плитная стадия. На древних платформах охватывает весь фанерозой, а на молодых начинается с юрского периода мезозойской эры.

4) Стадия активизации. Эпиплатформенные орогены (гора, горноскладчатое сооружение, возникшее наместе геосинклинали )

Работа № 1, 2016-2017 учебный год

Строения земной коры материков и океанов

Внешняя оболочка Земли называется земной корой . Нижняя граница земной коры была объективно установлена с помощью сейсмографических исследований в начале ХХ в. хорватским геофизиком А. Мохоровичичем на основании скачкообразного возрастания на определенной глубине скорости прохождения волн. Это указывало на увеличение плотности пород и изменение их состава. Граница получила название поверхности Мохоровичича (Мохо). Ниже этой границы действительно залегают плотные ультраосновные породы верхней мантии, обедненные кремнеземом и обогащенные магнием (перидотиты, дуниты и др.). По глубине залегания поверхности Мохо определяют мощность земной коры, которая под континентом толще, чем под океанами.

При изучении земной коры было обнаружено также неодинаковое строение ее под материками, включая их подводные окраины, океаническими впадинами.

Континентальная (материковая) кора состоит из маломощного прерывистого осадочного слоя; второго гранитно-метаморфического слоя (граниты, гнейсы, кристаллические сланцы и др.) и третьего, так называемого базальтового слоя , который, вероятнее всего, состоит из плотных метаморфических (гранулиты, эклогиты) и магматических (габбро) пород. Максимальная мощность континентальной земной коры 70-75 км под высокими горами – Гималаями, Андами и др.

Океаническая кора тоньше, и в ней нет гранитно-метаморфического слоя. Сверху залегает маломощный слой неуплотненных осадков. Ниже второй – базальтовый слой, в верхней части которого базальтовые подушечные лавы чередуются с тонкими прослоями осадочных пород, в нижней – комплекс параллельных даек базальтового состава. Третий слой состоит из магматических кристаллических пород преимущественно основного состава (габбро и др.). Мощность океанической коры 6-10 км.

В переходных зонах от материков к ложу океанов – современных подвижных поясах – выделяют переходные субконтинентальный и субокеанический типы земной коры средней мощности.

Основную массу земной коры слагают магматические и метаморфические породы, хотя их выходы на дневную поверхность невелики. Из магматических пород наиболее распространены интрузивные породы – граниты и эффузивные – базальты, из метаморфических – гнейсы, глинистые сланцы, кварциты и др.

На поверхности Земли за счет многих внешних факторов скапливаются различные осадки, которые потом в течение нескольких миллионов лет в результате диагенеза (уплотнения и физико-биохимических изменений) превращаются в осадочные горные породы: глинистые, обломочные, химические и др.

Внутренние рельефообразующие процессы

Горы, равнины и возвышенности отличаются высотой, характером залегания горных пород, временем и способом образования. В их создании участвовали и внутренние и внешние силы Земли. Все современные рельефообразующие факторы разделяются на две группы: внутренние (эндогенные ) и внешние (экзогенные ).

Энергетической основой внутренних рельефообразующих процессов является энергия, идущая из глубин земли - ротационная, радиоактивный распад и энергия геохимических аккумуляторов. Ротационная энергия связана с освобождением энергии при замедлении вращения Земли вокруг своей оси из-за влияния трения (доли секунд за тысячелетия). Энергия геохимических аккумуляторов - это накопившаяся за многие тысячелетия в горных породах энергия Солнца, которая высвобождается при погружении пород во внутренние слои.

Экзогенные (внешние силы) называются так потому, что основной источник их энергии находятся вне Земли - это энергия, непосредственно поступающая от Солнца. Для проявления действия экзогенных сил должны быть задействованы неровности земной поверхности, создающие разность потенциалов и возможность перемещения частиц под действием силы тяжести.

Внутренние силы, стремятся к созданию неровностей, а внешние - к выравниванию этих неровностей.

Внутренние силы создают структуру (основу) рельефа, а внешние силы выступают в роли скульптора, обрабатывая" созданные внутренними силами неровности. Поэтому эндогенные силы иногда называют первичными, а внешние - вторичными. Но это не значит, что внешние силы слабее внутренних. За геологическую историю результаты проявления этих сил сопоставимы.

Происходящие внутри Земли процессы мы можем наблюдать в тектонических движениях, землетрясениях и вулканизме. Тектоническими движениями называют всю совокупность горизонтальных и вертикальных движений литосферы. Они сопровождаются возникновением разломов и складок земной коры.

Долгое время в науке господствовала "платформенно-геосинклинальная" концепция развития рельефа Земли. Суть ее заключается в выделении спокойных и подвижных участков земной коры, платформ и геосинклиналей. Предполагается, что эволюция структуры земной коры идет от геосинклиналей к платформам. В развитии геосинклиналей различают два крупных этапа.

Первый (основной по продолжительности) этап погружения с морским режимом, накоплением мощной (до 15-20 км) толщи осадочных и вулканических горных пород, излиянием лав, метаморфизмом, а впоследствии со складчатостью. Второй этап (меньший по продолжительности) - складкообразование и разрывы при общем поднятии (горообразование), в результате чего образуются горы. Горы в последствии разрушаются под действием экзогенных сил.

В последние десятилетия большинство ученых придерживается другой гипотезы - гипотезы литосферных плит . Литосферные плиты - это обширные участки земной коры, которые движутся по астеносфере со скоростью 2-5 см/год. Различают материковые и океанические плиты, при их взаимодействии более тонкий край океанической плиты погружается под край континентальной плиты. В результате образуются горы, глубоководные желоба, островные дуги (например, Курильский желоб и Курильские острова, Атакамский желоб и горы Анды). При столкновении континентальных плит образуются горы (к примеру, Гималаи при столкновении Индо-Австралийской и Евразийской плит). Перемещения плит могут вызываться конвективными движениями вещества мантии. В местах подъема этого вещества образуются разломы, и плиты начинают двигаться. Внедряющаяся по разломам магма застывает и наращивает края расходящихся плит - так образуются срединно-океанические хребты , протянувшиеся по дну всех океанов и образовавшие единую систему протяженностью 60 000 км. Высота их достигает 3 км, а ширина тем больше, чем больше скорость раздвижения.
Количество литосферных плит непостоянно - они соединяются и разделяются на части при образовании рифтов, крупных линейных тектонических структур, типа глубоких ущелий в осевой части срединно-океанических хребтов. Считают, что в палеозое, например, современные южные материки представляли собой один материк - Гондвану , северные -Лавразию , а еще раньше существовал единый суперматерик - Пангея и один океан.
Наряду с медленными горизонтальными движениями в литосфере происходят и вертикальные. При столкновении плит или при изменении нагрузки на поверхность, например, вследствие таяния больших ледниковых покровов происходит поднятие (Скандинавский полуостров до сих пор испытывает поднятие). Такие колебания называются гляциоизостатическими .

Тектонические движения земной коры неоген-четвертичного времени называются неотектоническими. Эти движения проявлялись и проявляются с разной интенсивностью практически повсюду на Земле.

Тектонические движения сопровождаются землетрясениями (толчками и быстрыми колебаниями земной поверхности) и вулканизмом (внедрением магмы в земную кору и излиянием ее на поверхность).

Землетрясения характеризуются глубиной очага (места смещения в литосфере, от которого сейсмические волны распространяются во все стороны) и силой землетрясения, оцениваемой по степени вызванных им разрушений в баллах по шкале Рихтера (от 1 до 12). Наибольшей силы землетрясения достигают непосредственно над очагом - в эпицентре. В вулканах выделяют магматический очаг и канал или трещины, по которым поднимается лава.

Большинство землетрясений и действующих вулканов приурочено к окраинам литосферных плит - так называемым сейсмическим поясам . Один из них опоясывает по периметру Тихий океан, другой протягивается через Среднюю Азию от Атлантического океана до Тихого.

Внешние рельефообразующие процессы

Возбуждаемые энергией солнечных лучей и силой тяжести экзогенные силы, с одной стороны, разрушают формы, созданные эндогенными силами, с другой - создают новые формы. В этом процессе выделяют:

1) разрушение горных пород (выветривание - оно не создает формы рельефа, а подготавливает материал);

2) удаление разрушенного материала, обычно это снос вниз по склону (денудация); 3) переотложение (аккумуляция) сносимого материала.

Важнейшими агентами проявления внешних сил являются воздух и вода.

Различают физическое, химическое и биогенное выветривание .

Физическое выветривание происходит из-за неодинакового расширения и сжатия частиц горных пород при колебаниях температуры. Особенно интенсивно оно в переходные сезоны и в районах с континентальным климатом, большими суточными амплитудами температур - на нагорьях Сахары или в горах Сибири, при этом часто формируются целые каменные реки - курумы. Если в трещины пород проникает вода, а затем, застывая и расширяясь, увеличивает эти трещины, говорят о морозном выветривании.

Химическое выветривание - это разрушение горных пород и минералов под действием содержащихся в воздухе воде, породах и почвах активных веществ (кислорода, углекислоты, солей, кислот, щелочей и др.) в результате химических реакций. Для химического выветривания, напротив, благоприятны влажные и теплые условия, характерные для приморских районов, влажных тропиков и субтропиков.

Биогенное выветривание часто сводится к химическому и физическому воздействию на горные породы организмов.

Обычно, наблюдается одновременно несколько видов выветривания, и когда говорят о физическом или химическом выветривании это не значит, что другие силы при этом не участвуют - просто название дается по ведущему фактору.

Вода - "скульптор лика земного" и один, из самых мощных агентов перестройки рельефа. Текучие воды воздействуют на рельеф, разрушая горные породы. Временные и постоянные водные потоки, реки и ручьи миллионы лет "вгрызаются" в земную поверхность, размывают ее (эрозия), перемещают и переоткладывают смытые частицы. Если бы не происходило постоянного поднятия земной коры, хватило бы всего 200 млн. лет, чтобы вода смыла все выступающие над морем участки и вся поверхность нашей планеты представляла бы единый безбрежный океан. Наиболее распространенными эрозионными формами рельефа являются формы линейной эрозии : речные долины, овраги и балки.

Для понимания процессов формирования таких форм важным является осознание того факта, что базис эрозии (место, куда стремится вода, уровень, на котором поток теряет свою энергию - для рек это устье или место впадения, или скальный участок в русле) изменяет свое положение с течением времени. Обычно он понижается при размывании рекой тех горных пород, по которым она протекает, особенно интенсивно это происходит при увеличении водности рек или тектонических колебаниях.

Овраги и балки образованы временными водотоками, возникающими после таяния снега или выпадения ливневых дождей. Между собой они отличаются тем, что овраги - это постоянно растущие, врезающиеся в рыхлые породы, узкие крутосклонные рытвины, а балки - имеющие широкое днище и прекратившие свое развитие ложбины, заняты лугами или лесами.

Самые разнообразные формы рельефа создают реки. В речных долинах выделяют следующие формы: коренной берег (в его строении не участвуют речные наносы), пойму (часть долины, затопляемая в паводки или половодья), террасы (бывшие поймы, поднявшиеся над урезом в результате понижения базиса эрозии), старицы (участки реки, отделившиеся в результате меандрирования от прежнего русла).

Кроме природных факторов (наличия уклонов поверхности, легко размываемых грунтов, обильных осадков и т. д.), образованию эрозионных форм способствует нерациональная деятельность человека - сплошная вырубка лесов и распашка склонов.

Кроме воды важным фактором экзогенных сил является ветер. Обычно он обладает меньшей, чем вода силой, но работая с рыхлым материалом может творить чудеса. Формы, созданные ветром, называются эоловыми . Они преобладают в засушливых районах, или там, где засушливые условия были в прошлом (реликтовые эоловые формы ). Это барханы (песчаные холмы серповидной формы) и дюны (холмы овальной формы), обточенные скалы .

Задания

Задание 1.

Исходя из имеющейся информации, представленной в таблице, предположите, в какой горной системе количество высотных поясов будет наибольшим. Свой ответ обоснуйте.

Задание 2.

Корабль в точке с координатами 30 ю. ш. 70 в. д. потерпел крушение, радист передал координаты своего корабля и попросил помощь. В район бедствия направились 2 корабля «Надежда» (30 ю. ш. 110 в. д.) и «Вера» (20 ю. ш. 50 в. д.). Какой корабль придет быстрее на помощь гибнущему судну?

Задание 3.

Где находятся: 1) конские широты; 2) ревущие широты; 3) неистовые широты? Какие явления природы характерны для этих мест? Объясните происхождение их названий.

Задание 4.

В разных странах их называют по-разному: ушкуйники, корсары, флибустьеры. Когда был их золотой век? Где был главный район их сосредоточения? В каких районах они промышляли в России? Почему именно здесь? Назовите самого знаменитого в мире, чье имя запечатлено на картах. Чем интересен этот географический объект?

Задание 5.

Перед тем как отправиться в 1886 г. в кругосветное плавание на этом корвете, его капитан записал в своем дневнике: «Дело командира – составить имя своему судну …» Ему удалось добиться поставленной цели – океанографические исследования, выполненные в ходе длившейся почти три года экспедиции, настолько прославили корвет, что в дальнейшем вошло в традицию называть его именем научно-исследовательские суда.

Как назывался корвет? Какими достижениями науки и географическими открытиями прославились четыре судна, в разное время носившие это гордое имя? Что вы знаете о капитане, выдержка из дневника которого приведена в задании?

Тесты

1 . Согласно теории тектоники литосферных плит, земная кора и верхняя мантия разделены на крупные блоки. Россия расположена на литосферной плите

1) Африканской 2) Индо-Австралийской 3) Евразийской 4) Тихоокеанской

2. Укажите неверное утверждение:

1) Солнце в полдень в Северном полушарии находится на юге;

2) лишайники растут гуще с северной стороны ствола;
3) азимут отсчитывается от направления на юг против часовой стрелки;
4) прибор, с помощью которого можно ориентироваться, называется компас.

3. Определите примерную высоту горы, если известно, что у ее подножия температура воздуха составила +16ºС, а на ее вершине –8ºС:

1) 1,3 км; 2) 4 км; 3) 24 км; 4) 400 м.

4. Какое утверждение о литосферных плитах является верным?

1) К зоне расхождения океанических литосферных плит приурочены срединные океанические хребты

2) Границы литосферных плит точно совпадают с контурами материков
3) Строение материковых и океанических литосферных плит одинаково
4) При столкновении литосферных плит образуются обширные равнины

5. Каков численный масштаб плана, на котором расстояние от автобусной остановки до стадиона, составляющее 750 м, изображено отрезком длиной 3 см.

1) 1: 25 2) 1: 250 3) 1: 2500 4) 1: 25 000 5) 1: 250 000

6 . Какая стрелка на фрагменте карты мира соответствует направлению на юго-восток?

7. Наука, изучающая географические названия:

1) геодезия; 2) картография; 3) топонимика; 4) топография.

8. Назовите удивительных «зодчих», в результате неутомимой деятельности которых на Земле господствуют разнообразные формы рельефа. __________________________________________________________________

9. Укажите верное утверждение.

1) Восточно-Европейская равнина имеет плоскую поверхность;

2) Алтайские горы расположены на материке Евразия;

3) Вулкан Ключевская Сопка расположен на Скандинавском полуострове;

4) Гора Казбек – самая высокая вершина Кавказа.

10. Какая из перечисленных форм рельефа имеет ледниковое происхождение?

1) моренная гряда 2) бархан 3) плато 4) дюна

11. Какой научной гипотезе посвящены строки Владимира Высоцкого?

«Сначала было слово печали и тоски,

Рождалась в муках творчества планета –

Рвались от суши в никуда огромные куски

И островами становились где-то»

1) поиски Атлантиды; 2) гибель Помпеи; 3) дрейфа материков;

4) формирование солнечной системы.

12. Линии тропиков и полярных кругов являются границами…

1) климатических поясов; 2) природных зон; 3) географических районов;

4) поясов освещенности.

13. Абсолютная высота вулкана Килиманджаро – 5895 м. Вычислите его относительную высоту, если он образовался на равнине, поднимающейся на 500 м над уровнем моря:

1) 5395 м; 2) 5805м; 3) 6395; 4) 11,79 м

14 . Скорость движения литосферных плит относительно друг друга

составляет 1-12

1) мм/год 2) см/месяц 3) см/год 4) м/год

15 . Расположите объекты по их географическому положению с запада на восток:

1) пустыня Сахара; 2) Атлантический океан; 3) г. Анды; 4)о. Новая Зеландия.

Земля - космическое тело, входящее в состав Солнечной системы. Рассматривая происхождение материков и океанов, стоит коснуться вопроса возникновения планеты.

Как образовалась наша планета

Происхождение материков и океанов - вопрос второй. Первый состоит в объяснении причин и способа образования Земли. Его решением занимались еще ученые мужи древности. Выдвинуто немало гипотез, объясняющих Их рассмотрение - прерогатива астрономии. Одной из самых распространенных является гипотеза О.Ю. Шмидта, в которой утверждается, что наша планета возникла из холодного облака из газа и пыли. Частицы, входящие в его состав, во время вращения вокруг Солнца контактировали друг с другом. Они слипались, и получившийся комок увеличивался в размерах, плотность его возрастала, структура менялась.

Есть и другие гипотезы, объясняющие появление планет. Некоторые из них предполагают, что космические тела, в том числе Земля - результат взрывов в космическом пространстве большой мощности, к которым привел распад звездного вещества. Поиском истины в вопросе происхождения планеты до сих пор занимаются многие ученые.

Строение земной коры под материками и океанами

Изучает происхождение материков и океанов 7 класс средней школы. Даже учащиеся знают, что верхний слой литосферы называется земной корой. Она является подобием «накидки», закрывающей бурлящие недра планеты. Если сравнивать ее с прочими то она покажется тончайшей пленкой. Ее средняя толщина равняется лишь 0,6% радиуса планеты.

Происхождение материков и впадин океанов, определяющих внешний вид Земли, станет понятнее, если сначала изучить строение литосферы. состоит из материковых и океанических плит. Первые состоят из трех слоев (снизу-вверх): базальтового, гранитного и осадочного. Океанические плиты лишены двух последних, поэтому их толщина существенно меньше.

Различия в структуре плит

Вопрос, который изучает география (7 класс) - происхождение материков и океанов, а также отличительные черты их структуры. По мнению подавляющего большинства ученых, на Земле изначально возникли лишь океанические плиты. Под действием процессов, происходящих в земных недрах, поверхность стала складчатой, появились горы. Кора сделалась толще, начали появляться выступы, превратившиеся впоследствии в материки.

Дальнейшее превращения континентов и океанических впадин не так однозначно. Мнения ученых по данному вопросу разделились. Согласно одной гипотезе, материки не двигаются, по другой - постоянно перемещаются.

Недавно была обоснована еще одна гипотеза структуры земной коры. Основанием для нее послужила теория перемещения континентов, автором которой был А. Вегенер еще в начале XX века. Ему в свое время не удалось ответить на закономерные вопросы о силах, которые заставляют материки дрейфовать.

Литосферные плиты

Верхний слой мантии в совокупности с земной корой - это литосфера. Происхождение материков и океанов тесно связано с теорией плит, которые способны двигаться, а не скованны монолитно. множество трещин, достигающих мантии. Они разбивают литосферу на огромные области, имеющие толщину 60-100 км.

Стыки плит совпадают с океаническими хребтами, проходящими посередине океанов. Они похожи на огромные валы. Граница может быть в виде ущелий, проходящих по дну океана. Трещины существуют и на территории материков, проходят по горным массивам (Гималаи, Урал и др.). Можно сказать, что это старые шрамы на теле Земли. Существуют и относительно свежие разломы, к ним относятся расщелины на востоке Африки.

Найдено 7 огромных блоков и десятки, имеющих небольшие площади. Основное количество плит захватывают океаны и материки.

Движение плит литосферы

Под плитами находится достаточно мягкая и пластичная мантия, которая делает возможным их дрейф. Гипотеза происхождения материков и океанов гласит, что блоки приводятся в движение за счет сил, возникающих от перемещения субстанции в верхней части мантии.

Сильные потоки, направленные от центра Земли, вызывают разрывы литосферы. Увидеть этот тип разломов можно на материках, но основная их часть находится в зоне срединно-океанических хребтов под толщей океанических вод. В этом месте кора земли намного тоньше. Вещества в расплавленном состоянии поднимаются из глубины мантии и, растолкав плиты, увеличивают толщину литосферы. А края плит отодвигаются в противоположные стороны.

Части земной коры движутся от хребтов на дне океанов к желобам. Скорость их перемещения составляет 1-6 см/год. Цифры эти получены благодаря спутниковым снимкам, сделанным в разные годы. Соприкасающиеся плиты движутся навстречу, вдоль или расходятся. Их перемещение по верхнему слою мантии напоминает льдины на воде.

Когда две плиты движутся навстречу друг другу (океаническая и материковая), то первая, сделав изгиб, уходит под вторую. Результатом являются глубокие желоба, архипелаги, горные массивы. Примеры: острова Японии, Анды, Курильский желоб.

При столкновении материковых плит образуется складчатость в результате сминания краев, содержащих осадочные слои. Так появились Гималайские горы на стыке Индо-Австралийской и Евразийской плит.

Эволюция материков

Почему география происхождение материков и океанов изучает? Потому что понимание этих процессов необходимо для восприятия остальной информации, относящейся к этой науке. Теория литосферных плит говорит о том, что на планете сначала появился один единственный материк, остальная была занята Мировым океаном. Появившиеся глубокие разломы коры привели к его делению на два континента. В северном полушарии разместилась Лавразия, а в южном - Гондвана.

Все новые трещины появлялись в земной коре, они привели к делению и этих континентов. Возникли материки, существующие сейчас, а также океаны: Индийский и Атлантический. Основой современных континентов являются платформы - выровненные, очень древние и устойчивые области коры. Другими словами, это плиты, которые образовались по геологическим меркам давно.

В местах, где участки земной коры сталкивались, получились горы. На отдельных континентах видны следы контакта нескольких плит. Площадь их поверхности плавно возрастала. Подобным образом возник Евразийский материк.

Прогноз движения плит

Теория литосферных плит предполагает расчеты их будущего перемещения. Вычисления, которые были сделаны учеными, говорят о том, что:

  • Индийский и Атлантический океаны увеличатся.
  • Африканский континент окажется смещенным в сторону северного полушария.
  • Тихий океан станет меньше.
  • Австралийский материк преодолеет экватор и присоединится к Евразийскому.

По прогнозам это произойдет не раньше, чем через 50 млн. лет. Однако эти результаты необходимо уточнять. Происхождение материков и океанов, а также их движение - процесс очень медленный.

В срединных океанических хребтах происходит образование новых литосферных плит. Возникшая кора океанического типа плавно расходится в стороны от разлома. Через 15 или 20 млн. лет эти блоки достигнут материка и уйдут под него в мантию, которая их и создала. Круговорот литосферных плит на этом замыкается.

Сейсмические пояса

Изучает происхождение материков и океанов 7 класс общеобразовательной школы. Знание основ поможет учащимся разобраться в более сложных вопросах по предмету. Стыки между плитами литосферы получили название сейсмических поясов. Эти места наглядно демонстрируют процессы, происходящие на границе плит. Подавляющее большинство извержений вулканов, землетрясений приурочено к этим областям. Сейчас на планете действует около 800 вулканов.

Происхождение материков и океанов необходимо знать для прогнозирования стихийных бедствий и поиска полезных ископаемых. Есть предположение, что в местах контакта плит в результате попадания магмы в кору образуются разные руды.

Строение планеты, на которой мы живем, издавна занимало умы ученых. Было высказано множество наивных суждений и гениальных догадок, однако доказать правоту или ошибочность любой гипотезы убедительными фактами до самого последнего времени никто не мог. Да и в наши дни, несмотря на колоссальные успехи науки о Земле, в первую очередь благодаря развитию геофизических методов исследования ее недр, не существует единого и окончательного мнения о строении внутренних частей земного шара.

Правда, в одном все специалисты сходятся между собой: Земля состоит из нескольких концентрических слоев, или оболочек, внутри которых расположено шаровидное ядро. Новейшие методы позволили с большой точностью измерить толщину каждой из этих вложенных друг в друга сфер, но что они собой представляют и из чего состоят, пока до конца еще не установлено.

Некоторые свойства внутренних частей Земли известны доподлинно, о других можно пока только догадываться. Так, с помощью сейсмического метода удалось установить скорость прохождения сквозь планету упругих колебаний (сейсмических волн), вызванных землетрясением или взрывом. Величина этой скорости, в общем, очень велика (несколько километров в секунду), но в более плотной среде она возрастает, в рыхлой — резко снижается, а в жидкой среде такие колебания быстро гаснут.

Сейсмические волны могут пройти сквозь Землю менее чем за полчаса. Однако, достигнув границы раздела слоев с различной плотностью, они частично отражаются и возвращаются к поверхности, где время их прибытия можно зарегистрировать чувствительными приборами.

О том, что под верхней твердой оболочкой нашей планеты расположен другой слой, догадывались еще в глубокой древности. Первым об этом сказал древнегреческий философ Эмпедокл, живший в V веке до нашей эры. Наблюдая за извержением знаменитого вулкана Этна, он увидел расплавленную лаву и пришел к выводу, что под твердой холодной оболочкой земной поверхности находится слой расплавленной магмы. Смелый ученый погиб при попытке проникнуть в жерло вулкана, чтобы получше узнать его устройство.

Идея об огненно-жидком строении глубоких земных недр получила наиболее яркое развитие в середине XVIII века в теории немецкого философа И. Канта и французского астронома П. Лапласа. Эта теория просуществовала до конца XIX века, хотя никому не удавалось измерить, на какой глубине кончается холодная твердая кора и начинается жидкая магма. В 1910 году югославский геофизик А. Мохоровичич сделал это, применив сейсмический метод. Изучая землетрясение в Хорватии, он обнаружил, что на глубине 60—70 километров скорость сейсмических волн резко меняется. Выше этого раздела, который был позднее назван границей Мохоровичича (или просто «Мохо»), скорость волн не превышает 6,5—7 километров в секунду, тогда как ниже она скачкообразно возрастает до 8 километров в секунду.

Таким образом, оказалось, что непосредственно под литосферой (корой) находится вовсе не расплавленная магма, а, напротив, стокилометровый слой, еще более плотный, чем кора. Его подстилает астеносфера (ослабленный слой), вещество которой находится в размягченном состоянии.

Некоторые исследователи считают, что астеносфера представляет собой смесь твердых гранул с жидким расплавом.

Если судить по скорости распространения сейсмических волн, то под астеносферой, вплоть до глубины 2900 километров, находятся сверхплотные слои.

Что представляет собой эта многослойная внутренняя оболочка (мантия), находящаяся между поверхностью «Мохо» и ядром, сказать трудно. С одной стороны, она имеет признаки твердого тела (в ней быстро распространяются сейсмические волны), с другой — мантия обладает несомненной текучестью.

Следует учесть, что физические условия в этой части недр нашей планеты совершенно необычны. Там господствуют высокая температура и колоссальное давление порядка сотен тысяч атмосфер. Известный советский ученый, академик Д. Щербаков считает, что вещество мантии хотя и твердое, но обладает пластичностью. Может быть, его можно сравнить с сапожным варом, который под ударами молотка разбивается на осколки с острыми краями. Однако со временем даже на морозе начинает растекаться подобно жидкости и течь под небольшой уклон, а достигнув края поверхности, капать вниз.

Центральная часть Земли, ее ядро, таит в себе еще больше загадок. Какое оно, жидкое или твердое? Из каких веществ состоит? Сейсмическими методами установлено, что ядро неоднородно и разделяется на два главных слоя — внешний и внутренний. Согласно одним теориям оно состоит из железа и никеля, согласно другим — из сверхуплотненного кремния. В последнее время выдвинута идея, будто центральная часть ядра железоникелевая, а наружная — кремниевая.

Понятно, что наиболее хорошо из всех геосфер известны те, которые доступны непосредственному наблюдению и исследованию: атмосфера, гидросфера и кора. Мантия, хотя она и близко подходит к земной поверхности, по-видимому, нигде не обнажается. Поэтому даже о ее химическом составе нет единого мнения. Правда, академик А. Яншин считает, что некоторые редкие минералы из так называемой группы мер-рихбита-реддерита, известные прежде лишь в составе метеоритов и недавно найденные в Восточных Саянах, представляют собой выходы мантии. Но эта гипотеза еще требует тщательной проверки.

Земная кора материков изучена геологами с достаточной полнотой. Большую роль в этом сыграли глубинные бурения. Верхний слой континентальной коры образован осадочными породами. Как показывает само название, они имеют водное происхождение, то есть частицы, образовавшие этот слой земной коры, осели из водной взвеси. Подавляющее большинство осадочных пород образовалось в древних морях, реже они обязаны своим происхождением пресноводным водоемам. В очень редких случаях осадочные породы возникли как результат выветривания непосредственно на суше.

Главнейшие осадочные породы — это пески, песчаники, глины, известняки, иногда каменная соль. Толщина осадочного слоя коры различна в разных частях земной поверхности. В отдельных случаях она достигает 20—25 километров, но кое-где осадков вовсе нет. В этих местах на «дневную поверхность» выходит следующий слой земной коры — гранитный.

Он получил такое название потому, что слагается как из самих гранитов, так и из близких к ним горных пород — гранитоидов, гнейсов и слюдистых сланцев.

Гранитный слой достигает толщины 25—30 километров и обычно прикрыт сверху осадочными породами. Самый нижний слой земной коры — базальтовый — для непосредственного изучения уже недоступен, так как на дневную поверхность нигде не выходит и глубокие скважины его не достигают. О строении и свойствах базальтового слоя судят исключительно по геофизическим данным. С большой степенью достоверности предполагается, что этот нижний слой коры состоит из магматических пород, близких к базальтам, происходящим из остывшей вулканической лавы. Мощность базальтового слоя достигает 15—20 километров.

До недавнего времени считалось, что строение земной коры повсюду одинаково и лишь в области гор она возвышается, образуя складки, а под океанами опускается, образуя гигантские чаши. Одним из результатов научно-технической революции было бурное развитие в середине XX века целого ряда наук, в том числе морской геологии. В этой отрасли человеческих знаний сделано немало кардинальных открытий, в корне изменивших прежние представления о строении коры под ложем океана. Было установлено, что если под окраинными морями и вблизи материков, то есть в области шельфа, кора еще в какой-то степени похожа на континентальную, то океаническая кора совершенно иная. Во-первых, она имеет совсем незначительную толщину: от 5 до 10 километров. Во-вторых, под дном океана она состоит не из трех, а всего лишь из двух слоев — осадочного толщиной 1—2 километра и базальтового. Гранитный слой, столь характерный для континентальной коры, продолжается в сторону океана только до материкового склона, где и обрывается.

Эти открытия резко активизировали интерес геологов к изучению океана. Появилась надежда обнаружить на морском дне выходы таинственного базальта, а может быть, и мантии. Крайне заманчиво выглядят и перспективы подводного бурения, с помощью которого можно добраться до глубинных слоев через сравнительно тонкий и легко преодолимый слой осадков.

Загрузка...