docgid.ru

Атмосфера Марса — химический состав, погодные условия и климат в прошлом. Атмосфера Марса: тайна четвертой планеты

Сегодня о полётах на Марс и его возможной колонизации говорят не только фантасты в своих рассказах, но и реальные ученые, бизнесмены, политики. Зонды и марсоходы дали ответы об особенностях геологии. Однако для пилотируемых миссий следует разобраться, есть ли у Марса атмосфера и какая она по своей структуре.


Общие сведения

У Марса есть своя атмосфера, но она составляет всего 1% от земной. Как и у Венеры, состоит преимущественно из углекислого газа, но опять же, намного тоньше. Относительно плотный слой составляет 100 км (для сравнения у Земли 500 — 1000 км по разным оценкам). Из-за этого отсутствует защита от солнечной радиации, а температурный режим практически не регулируется. Воздуха на Марсе в привычном нам понимании нет.

Учёные установили точный состав:

  • Двуокись углерода — 96%.
  • Аргон — 2,1%.
  • Азот — 1,9%.

В 2003 году обнаружен метан. Открытие подстегнуло интерес к Красной планете, многие страны запустили программы исследования, которые привели к разговорам о полётах и колонизации.

Из-за маленькой плотности температурный режим не регулируется, поэтому перепады составляют в среднем 100 0 С. В дневное время устанавливаются достаточно комфортные условия +30 0 С, а ночью температура поверхности падает до -80 0 С. Давление составляет 0,6 кПа (1/110 от земного показателя). На нашей планете подобные условия встречаются на высоте 35 км. Это главная опасность для человека без защиты — его убьёт не температура или газы, а давление.

У поверхности постоянно присутствует пыль. Из-за маленькой силы тяжести облака поднимаются до 50 км. Сильные перепады температуры приводят к появлению ветров с порывами до 100 м/с, поэтому пылевые бури на Марсе обычное дело. Серьезной угрозы они не представляют из-за маленькой концентрации частиц в воздушных массах.

Из каких слоев состоит атмосфера Марса?

Сила тяжести меньше земной, поэтому у Марса атмосфера не так явно делится на слои по плотности и давлению. Однородный состав сохраняется до отметки 11 км, далее атмосфера начинает разделяться на слои. Выше 100 км плотность снижается до минимальных значений.

  • Тропосфера — до 20 км.
  • Стратомезосфера — до 100 км.
  • Термосфера — до 200 км.
  • Ионосфера — до 500 км.

В верхней атмосфере присутствуют лёгкие газы — водород, углерод. В этих слоях скапливается кислород. Отдельные частицы атомарного водорода распространяются на расстояние до 20 000 км, формируя водородную корону. Чёткого разделения между крайними областями и космическим пространством нет.

Верхняя атмосфера

На отметке более 20-30 км располагается термосфера — верхние области. Состав остается стабильным до высоты 200 км. Здесь наблюдается высокое содержание атомарного кислорода. Температура достаточно низкая — до 200-300 К (от -70 до -200 0 С). Далее идет ионосфера, в которой ионы вступают в реакцию с нейтральными элементами.

Нижняя атмосфера

В зависимости от времени года граница этого слоя меняется, и эта зона именуется тропопаузой. Далее простирается стратомезосфера, температура которой в среднем составляет -133 0 С. На Земле здесь содержится озон, защищающий от космического излучения. На Марсе он скапливается на высоте 50-60 км и далее практически отсутствует.

Состав атмосферы

Земная атмосфера состоит из азота (78%) и кислорода (20%), в небольших количествах присутствует аргон, углекислый газ, метан и т.д. Такие условия считаются оптимальными для возникновения жизни. Состав воздуха на Марсе существенно отличается. Основным элементом марсианской атмосферы является углекислый газ — порядка 95%. На азот приходится 3%, а на аргон 1,6%. Общее количество кислорода — не более 0,14%.

Такой состав сформировался из-за слабого притяжения Красной планеты. Наиболее устойчивым оказался тяжёлый углекислый газ, который постоянно пополняется в результате вулканической активности. Лёгкие газы рассеиваются в космосе, вследствие низкой силы притяжения и отсутствия магнитного поля. Азот удерживается гравитацией в виде двухатомной молекулы, но расщепляется под воздействием радиации, и виде одиночных атомов улетает в космос.

С кислородом схожая ситуация, но в верхних слоях он вступает в реакцию с углеродом и водородом. Однако учёные до конца не понимают особенности реакций. По расчётам количество угарного газа СО должно быть больше, но в итоге он окисляется до углекислого СО2 и опускается к поверхности. Отдельно молекулярный кислород О2 появляется только после химического распада углекислого газа и воды в верхних слоях под воздействием фотонов. Он относится к неконденсирующимся на Марсе веществам.

Учёные полагают, что миллионы лет назад количество кислорода было сопоставимо с земным — 15-20%. Пока неизвестно точно, почему условия изменились. Однако отдельные атомы не так активно улетучиваются, и из-за большего веса он даже накапливается. В некоторой степени наблюдается обратный процесс.

Остальные важные элементы:

  • Озон — практически отсутствует, имеется одна область скопления в 30-60 км от поверхности.
  • Вода — содержание в 100-200 раз меньше, чем в самом засушливом регионе Земли.
  • Метан — наблюдаются выбросы неизвестной природы, и пока наиболее обсуждаемое вещество для Марса.

Метан на Земле относится к биогенным веществам, поэтому потенциально может быть связан с органикой. Природа появления и быстрого разрушения пока не объяснена, поэтому ученые ищут ответы на эти вопросы.

Что случилось с атмосферой Марса в прошлом?

На протяжении миллионов лет существования планеты атмосфера меняется по составу и структуре. В результате исследований появились доказательства того, что в прошлом на поверхности существовали жидкие океаны. Однако сейчас вода осталась в небольших количествах в виде пара или льда.

Причины исчезновения жидкости:

  • Низкое атмосферное давление не способно сохранять воду в жидком состоянии длительное время, как это происходит на Земле.
  • Гравитация не достаточна сильная, чтобы удерживать облака пара.
  • Из-за отсутствия магнитного поля вещество уносится частицами солнечного ветра в космос.
  • При значительных перепадах температуры вода может сохраняться только в твёрдом состоянии.

Иными словами, атмосфера Марса не достаточно плотная, чтобы сохранять воду в виде жидкости, а маленькая сила притяжения не способна удержать водород и кислород.
По оценкам специалистов благоприятные условия для жизни на Красной планете могли сформироваться около 4 млрд. лет назад. Возможно, в то время существовала жизнь.

Называют следующие причины разрушения:

  • Отсутствие защиты от излучения солнца и постепенно истощение атмосферы на протяжении миллионов лет.
  • Столкновение с метеоритом или иным космическим телом, моментально уничтожившим атмосферу.

Первая причина на данный момент пока более вероятна, так как следов глобальной катастрофы пока не обнаружено. Подобные выводы удалось сделать благодаря исследованием автономной станции Curiosity. Марсоход установил точный состав воздуха.

Древняя атмосфера Марса содержала много кислорода

Сегодня у учёных практически нет сомнений, что раньше на Красной планете была вода. На многочисленных виды очертания океанов. Визуальные наблюдения подтверждаются конкретными исследованиями. Марсоходы брали анализы грунта в долинах бывших морей и рек, и химический состав подтвердил первоначальные предположения.

В нынешних условиях любая жидкая вода на поверхности планеты моментально испарится, потому что давление слишком низкое. Однако если в древности существовали океаны и озёра, то условия были иными. Одно из предположений — иной состав с долей кислорода порядка 15-20%, а также увеличенной долей азота и аргона. В таком виде Марс становится практически идентичным нашей родной планете — с жидкой водой, кислородом и азотом.

Другие учёные высказывают предположении о существовании полноценного магнитного поля, способного защитить от солнечного ветра. Его мощность сопоставима с земным, а это ещё один фактор, говорящий в пользу наличия условия для зарождения и развития жизни.

Причины истощения атмосфера

Вершина развития приходится на Гесперийскую эру (3,5-2,5 млрд. лет назад). На равнине находился солёный океан, сопоставимый по размерам с Северным Ледовитым океаном. Температура у поверхности достигала 40-50 0 С, а давление было около 1 атм. Высока вероятность существования живых организмов в тот период. Однако период “процветания” был недостаточно долгим, чтобы возникла сложная и тем более разумная жизнь.

Одна из основных причин — маленькие размеры планеты. Марс меньше Земли, поэтому гравитация и магнитное поле слабее. В результате солнечный ветер активно выбивал частицы и буквально срезал оболочку слой за слоем. Состав атмосферы начал меняться на протяжении 1 млрд лет, после чего климатические изменения стали катастрофическими. Уменьшение давления приводило к испарению жидкости и перепадам температуры.

Основные характеристики Марса

© Владимир Каланов,
сайт
"Знания-сила".

Атмосфера Марса

Состав и другие параметры атмосферы Марса к настоящему времени определены достаточно точно. Атмосфера Марса состоит из углекислого газа (96%), азота (2,7%) и аргона (1,6%). Кислород присутствует в ничтожном количестве (0,13%). Водяные пары́ представлены в виде следов (0,03%). Давление на поверхности составляет всего 0,006 (шесть тысячных) от давления на поверхности Земли. Марсианские облака́ состоят из паро́в воды и углекислого газа и выглядят примерно как перистые облака́ над Землёй.

Цвет марсианского неба красноватый из-за присутствия в воздухе пы́ли. Крайне разреженный воздух слабо переносит тепло, поэтому в разных районах планеты велика́ разница температур.

Несмотря на разреженность атмосферы, нижние её слои представляют достаточно серьёзную преграду для космических аппаратов. Так, конусные защитные оболочки спускаемых аппаратов «Маринер-9» (1971 г.) при прохождении марсианской атмосферы от самых верхних её слоёв до расстояния 5 км от поверхности планеты нагревались до температуры 1500°C . Марсианская ионосфера простирается в пределах от 110 до 130 км над поверхностью планеты.

О движении Марса

Марс можно увидеть с Земли невооружённым глазом. Его видимая звёздная величина достигает −2,9m (при максимальном сближении с Землёй), уступая по яркости лишь Венере, Луне и Солнцу, но бо́льшую часть времени Юпитер для земного наблюдателя является более ярким, чем Марс. Марс движется вокруг Солнца по эллиптической орбите, то удаляясь от светила на 249,1 млн. км, то приближаясь к нему до расстояния 206,7 млн. км.

При внимательном наблюдении за движением Марса можно заметить, что в течение года направление его движения по небосклону меняется. Кстати, это заметили ещё древние наблюдатели. В определённый момент кажется, что Марс движется в обратном направлении. Но это движение лишь кажущееся с Земли. Никакого обратного движения по своей орбите Марс, естественно, совершать не может. А видимость обратного движения создается потому, что орбита Марса по отношению к орбите Земли внешняя, а средняя скорость движения по орбите вокруг Солнца у Земли выше (29,79 км/с), чем у Марса (24,1 км/с). В момент, когда Земля начинает обгонять Марс в своём движении вокруг Солнца, и создаётся впечатление, что Марс начал обратное или, как называют астрономы, ретроградное движение. Схема обратного (ретроградного) движения хорошо иллюстрирует это явление.

Основные характеристики Марса

Наименование параметров Количественные показатели
Среднее расстояние до Солнца 227,9 млн. км
Минимальное расстояние до Солнца 206,7 млн. км
Максимальное расстояние до Солнца 249,1 млн. км
Диаметр экватора 6786 км (Марс почти вдвое меньше Земли по размерам - его экваториальный диаметр составляет ~53 % земного)
Средняя орбитальная скорость вращения вокруг Солнца 24,1 км/с
Период вращения вокруг собственной оси (Сидерический экваториальный период вращения) 24ч 37 мин 22,6 с
Период обращения вокруг Солнца 687 сут
Известные естественные спутники 2
Масса (Земля = 1) 0,108 (6,418×10 23 кг)
Объём (Земля = 1) 0,15
Средняя плотность 3,9 г/см³
Средняя температура поверхности минус 50°С (перепад температур составляетот −153 °C на полюсе зимой и до +20 °C на экваторе в полдень)
Наклон оси 25°11"
Наклон орбиты по отношению к эклиптике 1°9"
Давление на поверхности (Земля = 1) 0,006
Состав атмосферы СО 2 - 96%, N - 2,7%, Ar - 1,6%, O 2 - 0,13%, H 2 O (пары) - 0,03%
Ускорение свободного падения на экваторе 3,711 м/с² (0,378 земного)
Параболическая скорость 5,0 км/с (для Земли 11,2 км/с)

Из таблицы видно, с какой высокой точностью определены основные параметры планеты Марс. Это не вызывает удивления, если иметь ввиду, что для астрономических наблюдений и исследований теперь используются самые современные научные методы и высокоточная аппаратура. Но совсем с другим чувством мы относимся к таким фактам из истории науки, когда учёные прошлых веков, часто не имевшие в своём распоряжении никаких астрономических приборов, кроме самых простых телескопов с небольшим увеличением (максимум в 15-20 раз), производили точные астрономические вычисления и даже открывали законы движения небесных тел.

Для примера вспомним, что итальянский астроном Джандоменико Кассини уже в 1666 году (!) определил время вращения планеты Марс вокруг своей оси. Его вычисления дали результат 24 часа 40 минут. Сравните этот результат с периодом вращения Марса вокруг своей оси, определённым с помощью современных технических средств (24 часа 37 мин. 23 секунды). Нужны ли тут наши комментарии?

Или такой пример. в самом начале XVII века открыл законы движения планет, не располагая ни точными астрономическими приборами, ни математическим аппаратом для вычисления площадей таких геометрических фигур как эллипс и овал. Страдая от дефекта зрения, он проводил точнейшие астрономические измерения.

Подобные примеры показывают большое значение активности и воодушевления в науке, а также преданности делу, которому человек служит.

© Владимир Каланов,
"Знания-сила"

Уважаемые посетители!

У вас отключена работа JavaScript . Включите пожалуйста скрипты в браузере, и вам откроется полный функционал сайта!

Атмосфера Марса , как и атмосфера Венеры, в основном состоит из углекислого газа, хотя и существенно тоньше. После обнаружения метана в 2003 г. исследования атмосферы возобновились с большим азартом. Наличие метана косвенно может указывать на наличие жизни на Марсе, хотя больше вероятности, что это следы вулканической или гидротермальной активности планеты.

Атмосфера на 96% состоит из двуокиси углерода, 2.1% из аргона и 1.9% из азота. Так же были найдены следы кислорода, метана, монооксида и двуокиси углерода,и небольшое количество водяного пара в виде холодных облаков. Концентрация углекислого газа на Марсе в 23 раза превышает земной показатель. Это делает невозможным существование любой жизни на Марсе. По крайне мере той жизни, к которой мы все привыкли на родной Земле.

Состав атмосферы Марса.

Состав атмосферы, а так же ее масса сильно колеблется в течение марсианского года. Зимой большая часть углекислого газа конденсируется в полярных шапках , поэтому атмосфера становится более разряженной. Летом же эта часть испаряется, и плотность атмосферы увеличивается.

Но и зимой и летом плотность атмосферы не настолько большая, чтобы сглаживать температурные колебания. В течение одного марсианского дня скачки температуры превышают 100 o C. Днем она поднимается до +30 o C, а ночью опускается до -80 o C. На полюсах минимальная температура опускается еще ниже, до -150 o C.

Атмосферное давление на Марсе составляет 600 Па. Для сравнения на Земле атмосферное давление составляет 101 Па, а на Венере огромные 9.3 МПа. На вулкане Олимп , самой высокой точкой на Марсе, атмосферное давление составляет жалкие 30 Па. А в самой глубой точке планеты, в равнине Эллада, достигает 1155 Па.

Наблюдения марсохода "Mars Exploration Rover" с поверхности Марса показали, что несмотря на разряженность атмосферы, воздух довольно пыльный. Марсианское небо постоянно окрашено с светло-коричневый и оранжевый цвет. Взвешенные частицы песка и пыли поднимаются на высоту 1.5 км. над поверхностью планеты и из-за низкого давления оседают довольно долго.

История атмосферы

Ученые полагают, что атмосфера Марса менялась в течение жизни планеты. Есть доказательства, что на планете были огромные океаны несколько миллиардов лет назад. Но в настоящее время вода может существовать только в виде пара или льда. Во-первых, атмосферное давление способно "удерживать" воду в жидком состоянии только в самых низких точках планеты. А во-вторых, средняя температура на поверхности составляет -63 o C, поэтому вода может существовать только в твердом состоянии.

Тем не менее, в начале своей истории Марс имел более благоприятные условия. В начале 2013 г. было объявлено, что атмосфера Марса была богата кислородом около 4 миллиардов лет назад (). Среди возможных причин истощения кислорода в атмосфере называют следующие:

  1. Постепенное разрушение атмосферы солнечным ветром.
  2. Столкновение с огромным метеоритом или кометой, имевшее катастрофические последствия для Марса.
  3. Низкая гравитация Марса, не позволяющая удержать атмосферу.

Потенциал для использования людьми

Как же человек может использовать атмосферу Марса? Этот вопрос задается все чаще, поскольку колонизация Марса сейчас уже не выглядит неосуществимой фантастической мечтой. Да, вопросов пока больше, чем ответов. Но и решать вопросы нужно по одному, а не все сразу.

Двуокись углерода из атмосферы Марса можно использовать для создания ракетного топлива для обратного полета на Землю. Есть несколько вариантов использования такого богатого объема CO 2 , один из них - процесс Сабатье. Этот химический процесс представляет собой реакцию двуоксида углерода с водородом при никелевом катализаторе. В результате этой реакции получается кислород и метан.

Реакция Сабатье уже "примеряется" учеными из НАСА для переработки углекислого газа на Международной космической станции, оставшегося после дыхания космонавтов. Поэтому на Марсе нам, возможно, и не понадобиться кислород в атмосфере - мы его произведем сами.

Доктор геолого-минералогических наук, профессор А. ПОРТНОВ

"Есть ли жизнь на Марсе, нет ли жизни на Марсе - науке неизвестно" - это не просто удачный афоризм из популярной кинокомедии "Карнавальная ночь", который широко вошел в наш разговорный язык и стал ходячей шуткой. Главное здесь в том, что эта фраза очень долгое время отражала наш действительный уровень знаний о существовании жизни на Красной планете. И вот только теперь, в последние годы, когда собраны и обработаны новейшие научные наблюдения, исследования, факты, все это позволяет сказать: "Жизнь на Марсе была!"

Почему Марс красный?

Марс с незапамятных времен называют "Красной планетой". Яркий красный диск, висящий в ночном небе в годы Великих противостояний, когда эта планета максимально приближена к Земле, всегда вызывал у людей какое-то тревожное чувство. Не случайно еще вавилоняне, а потом древние греки и древние римляне ассоциировали планету Марс с богом войны Аресом или Марсом и верили в то, что время Великих противостояний бывает связано с наиболее жестокими войнами. Эта мрачная примета, как ни странно, иногда сбывается и в наше время: так, например, Великое противостояние Марса в 1940-1941 годах совпало с первыми годами Второй мировой войны.

Но почему Марс красный? Откуда этот цвет крови? Как ни странно, сходство окраски планеты и крови объясняется одной и той же причиной: обилием оксида железа. Оксиды железа окрашивают гемоглобин крови; оксиды трехвалентного железа, соединенные с песком и пылью, покрывают поверхность Марса. Советские и американские космические станции, совершавшие мягкую посадку в марсианских пустынях, передали на Землю цветные изображения каменистых равнин, засыпанных красным железистым песком. Хотя марсианская атмосфера очень разрежена (по плотности она соответствует атмосфере Земли на высоте 30 километров), пылевые бури здесь необычайно сильные. Иногда случается, что из-за пыли астрономы месяцами не могут увидеть поверхность этой планеты.

Американские станции передали сведения о химическом составе марсианского грунта и коренных горных пород: на Марсе преобладают глубинные темные породы - андезиты и базальты с высоким содержанием закиси железа (около 10 процентов), входящего в состав силикатов; эти породы перекрыты грунтом - продуктом выветривания глубинных пород. В грунте резко повышено содержание серы и оксидов железа - до 20 процентов. Это указывает на то, что красный марсианский грунт состоит из оксидов и гидроксидов железа с примесью железистых глин и сульфатов кальция и магния. На Земле грунты такого типа тоже встречаются довольно часто. Их называют красноцветными корами выветривания. Образуются они в условиях теплого климата, обилия воды и свободного кислорода атмосферы.

По всей вероятности, и на Марсе красноцветные коры выветривания возникали в сходных условиях. Марс красный потому, что его поверхность покрыта мощным слоем "ржавчины", разъедающей темные глубинные породы. Здесь можно лишь удивиться проницательности средневековых алхимиков, которые сделали астрономический знак Марса символом железа.

А вообще-то "ржавчина" - оксидная пленка на поверхности планеты - редчайшее явление в Солнечной системе. Она существует лишь на Земле и на Марсе. На остальных планетах и многочисленных крупных спутниках планет, даже на тех, на которых, как полагают, есть вода (в форме льда), глубинные породы практически миллиарды лет сохраняются неизмененными.

Красные пески Марса, развеиваемые ураганами, - это частицы коры выветривания глубинных пород. На Земле в наше время такую пыль проклинают водители на грунтовых дорогах Африки, Индии. А в прошлые эпохи, когда на нашей планете был оранжерейный климат, красноцветные коры, как лишайники, покрывали поверхность всех континентов. Поэтому красноцветные пески и глины встречаются в отложениях всех геологических эпох. Суммарная масса красноцветов Земли очень велика.

Красноцветные коры порождены жизнью

Красноцветные коры выветривания на Земле возникли очень давно, но только лишь после того, как в атмосфере появился свободный кислород. Подсчитано, что весь кислород земной атмосферы (1200 триллионов тонн) зеленые растения производят по геологическим меркам почти мгновенно - за 3700 лет! Но если земная растительность погибнет - свободный кислород очень быстро исчезнет: он снова соединится с органическим веществом, войдет в состав углекислоты, а также окислит железо в горных породах. В атмосфере Марса сейчас лишь 0,1 процента кислорода, но 95 процентов углекислого газа; остальное - азот и аргон. Для превращения Марса в "Красную планету" нынешнего количества кислорода в его атмосфере было бы явно недостаточно. Следовательно, "ржавчина" в таких больших количествах возникла там не сейчас, а много раньше.

Попробуем подсчитать, сколько свободного кислорода должно было быть изъято из атмосферы Марса для образования марсианских красноцветов? Поверхность Марса составляет 28 процентов от поверхности Земли. Для образования коры выветривания суммарной мощностью 1 километр из атмосферы Марса было изъято около 5000 триллионов тонн свободного кислорода. Это дает основание предполагать, что когда-то в атмосфере Марса свободного кислорода было не меньше, чем на Земле. Значит, была и жизнь!

Замерзшие реки Марса

Воды на Марсе было много. Об этом свидетельствуют полученные космическими аппаратами фотографии разветвленной речной сети и грандиозных речных долин, похожих на знаменитый каньон Колорадо в США. Замерзшие моря и озера Марса сейчас, вероятно, засыпаны красными песками. Похоже, что Марс пережил вместе с Землей эпохи Великих оледенений. На Земле последнее грандиозное оледенение завершилось всего 12-13 тысяч лет назад. И сейчас мы живем в эпоху глобального потепления. Фотографии Марса показывают, что там тоже происходит оттаивание многокилометрового слоя вечной мерзлоты. Об этом свидетельствуют гигантские оползни тающего красноцветного грунта по склонам речных долин. Поскольку климат Марса гораздо холоднее земного, то из эпохи последнего оледенения он выходит существенно позднее нас.

Итак, совместное воздействие воды и кислорода атмосферы да еще более теплый, чем ныне, климат могли привести к тому, что Марс покрылся таким мощным слоем "ржавчины", а теперь за многие сотни миллионов километров виден как "красный глаз". И еще одно условие: эта "ржавчина" могла возникнуть лишь в том случае, если на "Красной планете" когда-то была пышная растительность.

Есть ли какие-либо доказательства тому, что так оно и было? Американцы обнаружили во льдах Антарктиды метеорит, заброшенный каким-то страшным взрывом с поверхности Марса. В этом камне сохранилось что-то похожее на остатки примитивных бактерий. Их возраст - около трех миллиардов лет. Ледяной панцирь Антарктиды начал формироваться лишь 16 миллионов лет назад. Но ведь неизвестно, сколько времени крутился в Космосе обломок марсианской породы, прежде чем упал на Землю. Сильные взрывы на Марсе, по мнению многих специалистов, происходили не так уж давно - 30-35 миллионов лет назад.

История развития жизни на Земле показывает, что всего за 200 миллионов лет примитивные синезеленые водоросли докембрия превратились в могучие леса каменноугольного периода. Значит, и на Марсе времени для развития сложных форм жизни (от тех примитивных бактерий, что отпечатались на камне, до пышных непроходимых лесов) было более, чем достаточно.

Вот почему на вопрос: "Есть ли жизнь на Марсе?.." - мне думается, надо отвечать: "Жизнь на Марсе БЫЛА!" Сейчас она, видимо, практически отсутствует, потому что содержание кислорода в марсианской атмосфере ничтожно.

Что же могло погубить жизнь на этой планете? Вряд ли это произошло из-за Великих оледенений. История Земли достаточно убедительно показывает, что к оледенениям жизнь все-таки ухитряется приспособиться. Вероятнее всего, жизнь на "Красной планете" была уничтожена ударами гигантских астероидов. А свидетельствует об этих ударах красная магнитная окись железа, составляющая более половины железистых оксидов в красноцветах Марса.

Маггемит на Марсе и на Земле

Анализ красных песков Марса выявил удивительную их особенность: они магнитны! Красноцветы Земли, имеющие такой же химический состав, немагнитны. Эта резкая разница в физических свойствах объясняется тем, что в качестве "красителя" в земных красноцветах выступает оксид железа - минерал гематит (от греческого "гематос" - кровь) с примесью лимонита (гидроксид железа), а на Марсе основным красителем служит минерал маггемит. Это красная магнитная окись железа, имеющая структуру магнитного минерала магнетита.

Гематит и лимонит - широко распространенные на Земле руды железа, а маггемит среди земных горных пород встречается редко. Он образуется иногда при окислении магнетита. Маггемит - минерал неустойчивый, при нагревании выше 220 о С он теряет свои магнитные свойства и превращается в гематит.

Современная промышленность в больших количествах производит синтетический маггемит - магнитную окись железа. Ее используют, например, как звуконоситель в магнитофонных лентах. Красновато-бурый цвет магнитофонных лент обусловлен примесью тончайшего порошка магнитной окиси железа, которую получают, прокаливая гидроксид железа (аналог минерала лимонита) до 800-1000 о С. Такая магнитная окись железа стабильна и не теряет своих магнитных свойств при повторном прокаливании.

Маггемит считался на Земле минералом редким до тех пор, пока геологи не обнаружили, что территория Якутии буквально засыпана огромным количеством магнитной окиси железа. Это неожиданное открытие было сделано нашей геологической группой, когда при поисках алмазоносных кимберлитовых трубок выявилось множество "ложных аномалий". Они были весьма схожи с кимберлитовыми трубками, но отличались повышенной концентрацией магнитной окиси железа. Это был тяжелый красно-бурый песок, который после прокаливания оставался магнитным, подобно своему синтетическому аналогу. Я описал его как новую минеральную разновидность и назвал "стабильным маггемитом". Но возникало много вопросов: почему он отличается по свойствам от "обычного" маггемита, почему похож на синтетическую магнитную окись железа, почему его так много именно в Якутии, но нет среди многочисленных красноцветов древних отложений или в экваториальном поясе Земли?.. Не означает ли это, что какой-то могучий поток энергии прокалил когда-то поверхность северо-востока Сибири?

Ответ мне видится в сенсационной находке гигантского метеоритного кратера в бассейне сибирской реки Попигай. Диаметр Попигайского кратера - 130 км, а юго-восточнее есть еще и следы других "звездных ран", тоже немалых - диаметром в десятки километров. Эта страшная катастрофа произошла около 35 миллионов лет назад. Возможно, она определила границу двух геологических эпох - эоцена и олигоцена, на границе которых археологи находят следы резкого изменения типов жизни.

Энергия космического удара была поистине чудовищной. Диаметр астероида 8-10 км, масса - около трех триллионов тонн, скорость - 20-30 км/с. Он пробил атмосферу, как пуля лист бумаги. Энергия удара расплавила 4-5 тысяч кубических километров горных пород, смешав воедино базальты, граниты, осадочные породы. В радиусе нескольких тысяч километров погибло все живое, испарилась вода рек и озер, а поверхность Земли была прокалена космическим пламенем.

О том, что температура и давление в момент удара были чудовищными, свидетельствуют особые минералы, которые сейчас встречаются в горных породах Попигайского кратера. Они могли возникнуть лишь при "неземных" давлениях в сотни тысяч атмосфер. Это тяжелые модификации кремнезема - коэсит и стишовит, а также гексагональная модификация алмаза - лонсдейлит. Попигайский кратер - крупнейшее в мире месторождение алмазов, но только не кубических, как в кимберлитовых трубках, а гексагональных. К сожалению, качество этих кристаллов такое низкое, что их нельзя использовать даже в технике. И, наконец, еще один результат мощного прокаливания. Выходившие на поверхность красноцветные лимонитовые коры получили такой ожог, что гидроксиды железа превратились в красную магнитную окись железа - стабильный маггемит.

Находка в Якутии огромных количеств красной магнитной окиси железа - ключ к разгадке магнитности красноцветных кор на Марсе. Ведь на этой планете более сотни метеоритных кратеров, каждый из которых крупнее Попигайского, а более мелких - и не счесть.

Марсу "крепко досталось" от метеоритных бомбардировок. Причем многие кратеры - сравнительно молодые. Поскольку поверхность Марса почти вчетверо меньше земной, то ясно, что она подверглась мощному прокаливанию, космическому ожогу, при котором произошло омагничивание железистых кор выветривания. Содержание маггемита в грунте Марса - 5-8 процентов. Нынешняя разреженная атмосфера этой планеты тоже может быть объяснена астероидной атакой: газы при высоких температурах превращались в плазму и навсегда были выброшены в Космос. Кислород атмосферы Марса, похоже, реликтовый: это ничтожный остаток того кислорода, который породила уничтоженная астероидами жизнь.

Третий спутник Марса?

Почему астероиды так яростно атаковали "Красную планету"? Только ли потому, что она ближе других расположена к "поясу астероидов" - обломкам загадочной планеты Фаэтон, возможно, некогда существовавшей на этой орбите? Астрономы предполагают, что спутники Марса Фобос и Деймос когда-то были захвачены гравитационным полем планеты из пояса астероидов.

Фобос вращается вокруг Марса по кольцевой орбите на расстоянии всего лишь 5920 км от поверхности планеты. За марсианские сутки (24 часа 37 минут) он успевает трижды облететь планету. По некоторым расчетам, Фобос почти вплотную приблизился к так называемому "пределу Роша", то есть к тому критическому расстоянию, на котором гравитационные силы разрывают спутник на части. По форме Фобос похож на картофелину. Его длина - 27 км, ширина - 19 км. Развал и падение осколков такой гигантской "картофелины" вызовут страшные удары по Марсу и новое прокаливание его поверхности. Остатки атмосферы, конечно, будут сорваны и уйдут в космос в виде потока раскаленной плазмы.

Возникает мысль, что в прошлом Марс уже испытал нечто подобное. Вполне возможно, что у него был, по крайней мере, еще один спутник. Лучшее название для него было бы Танатос - Смерть. Танатос прошел через предел Роша, опередив гибнущий сейчас Фобос. Очень может быть, что именно эти обломки уничтожили на Марсе все живое. Они стерли с поверхности Марса растительную жизнь, уничтожили плотную кислородную атмосферу. При их падении произошло омагничивание красноцветной коры Марса.

Нескольких последующих миллионов лет оказалось достаточно для того, чтобы Марс превратился в безжизненную пустыню с замерзшими морями и реками, засыпанными красным магнитным песком. Подобные или меньшие катаклизмы - вовсе не чудо в мире планет. Разве кто-нибудь на Земле сейчас помнит, что на месте гигантской пустыни Сахары всего-навсего 6 тысяч лет назад текли многоводные реки, шумели леса и кипела жизнь?..

Литература

Портнов А. М., Федоткин А. Ф. Глинистые минералы и маггемит как причина аэрогеофизических аномалий-помех. Разведка и охрана недр. "Недра" № 4, 1986.

Портнов А. М., Коровушкин В. В., Якубовская Н. Ю. Стабильный маггемит в коре выветривания Якутии. Докл. АН СССР, т. 295, 1987.

Портнов А. М. Магнитные красноцветы - индикатор астероидной атаки. Известия ВУЗов. Серия геологическая. № 6, 1998.

Характеристики: Атмосфера Марса более разряжена, чем воздушная оболочка Земли. По составу она напоминает атмосферу Венеры и на 95% состоит из углекислого газа. Около 4% приходится на долю азота и аргона. Кислорода и водяного пара в марсианской атмосфере меньше 1% (Точный состав см ). Среднее давление атмосферы на уровне поверхности около 6,1 мбар. Это в 15000 раз меньше, чем на Венере, и в 160 раз меньше, чем у поверхности Земли. В самых глубоких впадинах давление достигает 10 мбар.
Средняя температура на Марсе значительно ниже чем на Земле, - около -40° С. При наиболее благоприятных условиях летом на дневной половине планеты воздух прогревается до 20° С - вполне приемлемая температура для жителей Земли. Но зимней ночью мороз может достигать до -125° С. При зимней температуре даже углекислота замерзает, превращаясь в сухой лед. Такие резкие перепады температуры вызваны тем, что разреженная атмосфера Марса не способна долго удерживать тепло. Первые измерения температуры Марса с помощью термометра, помещённого в фокусе телескопа-рефлектора, проводились ещё в начале 20-х годов. Измерения В. Лампланда в 1922 г. дали среднюю температуру поверхности Марса -28°С, Э. Петтит и С. Никольсон получили в 1924 г. -13°С. Более низкое значение получили в 1960г. У. Синтон и Дж. Стронг: -43°С. Позднее, в 50-е и 60-е гг. были накоплены и обобщены многочисленные измерения температур в различных точках поверхности Марса, в разные сезоны и времена суток. Из этих измерений следовало, что днём на экваторе температура может доходить до +27°С, но уже к утру до -50°С.

На Марсе существуют и температурные оазисы, в районах "озера" Феникс (плато Солнца) и земли Ноя перепад температур составляет от -53° С до +22° С летом и от -103° С до -43° С зимой. Итак, Марс - весьма холодный мир, однако климат там ненамного суровее, чем в Антарктиде. Когда первые фотографии с поверхности Марса, сделанные “Викингом”, были переданы на Землю, ученые были очень сильно удивлены, увидев, что Марсианское небо не черное, как это предполагалось, а розовое. Оказалось что пыль, висящая в воздухе, поглощает 40% поступающего солнечного цвета, создавая цветной эффект.
Пылевые бури: Одним из проявлений перепада температур являются ветры. Над поверхностью планеты часто дуют сильные ветры, скорость которых доходит до 100 м/с. Малая сила тяжести позволяет даже разреженным потокам воздуха поднимать огромные облака пыли. Иногда довольно обширные области на Марсе бывают охвачены грандиозными пылевыми бурями. Чаще всего они возникают вблизи полярных шапок. Глобальная пылевая буря на Марсе помешала фотографированию поверхности с борта зонда "Маринер-9". Она бушевала с сентября 1971 по январь 1972 г., подняв в атмосферу на высоте более 10 км около миллиарда тонн пыли. Пылевые бури чаще всего бывают в периоды великих противостояний, когда лето в южном полушарии совпадает с прохождением Марса через перигелий. Продолжительность бурь может достигать 50-100 суток. (Раньше меняющийся цвет поверхности объяснялся ростом марсианских растений).
Пылевые дьяволы: Пылевые смерчи - еще один пример процессов на Марсе, связанных с температурой. Такие смерчи очень частые проявления на Марсе. Они поднимают в атмосферу пыль и возникают из-за разниц температур. Причина: днем поверхность Марса достаточно нагревается (иногда и до положительных температур), но на высоте до 2х метров от поверхности атмосфера остается такой же холодной. Такой перепад вызывает нестабильность, поднимая в воздух пыль - образуются пылевые дьяволы.
Водяной пар: Водяного пара в марсианской атмосфере совсем немного, но при низких давлении и температуре он находится в состоянии, близком к насыщению, и часто собирается в облака. Марсианские облака довольно невыразительны по сравнению с земными. В телескоп видны только самые большие из них, но наблюдения с космических кораблей показали, что на Марсе встречаются облака самых разнообразных форм и видов: перистые, волнистые, подветренные (вблизи крупных гор и под склонами больших кратеров, в местах, защищенных от ветра). Над низинами - каньонами, долинами - и на дне кратеров в холодное время суток часто стоят туманы. Зимой 1979 г. в районе посадки "Викинга-2" выпал тонкий слой снега, который пролежал несколько месяцев.
Времена года: На сегодняшний момент известно, что из всех планет Солнечной системы Марс наиболее подобен Земле. Он сформировался приблизительно 4,5 млрд. лет назад. Ось вращения Марса наклонена к его орбитальной плоскости приблизительно на 23,9°, что сравнимо с наклоном земной оси, составляющим 23,4°, а потому там, как и на Земле, происходит смена сезонов. Ярче всего сезонные изменения проявляются в полярных областях. В зимнее время полярные шапки занимают значительную площадь. Граница северной полярной шапки может удалиться от полюса на треть расстояния до экватора, а граница южной шапки преодолевает половину этого расстояния. Такая разница вызвана тем, что в северном полушарии зима наступает, когда Марс проходит через перигелий своей орбиты, а в южном - когда через афелий. Из-за этого зима в южном полушарии холоднее, чем в северном. И продолжительность каждого из четырех марсианских сезонов разнится в зависимости от его удаления от Солнца. А потому в марсианском северном полушарии зима коротка и относительно «умеренна», а лето длинное, но прохладное. В южном же наоборот - лето короткое и относительно теплое, а зима длинная и холодная.
С наступлением весны полярная шапка начинает "съеживаться", оставляя за собой постепенно исчезающие островки льда. В то же время от полюсов к экватору распространяется так называемая волна потемнения. Современные теории объясняют ее тем, что весенние ветры переносят вдоль меридианов большие массы грунта с различными отражательными свойствами.

По-видимому, ни одна из шапок не исчезает полностью. До начала исследований Марса при помощи межпланетных зондов предполагалось, что его полярные области покрыты застывшей водой. Более точные современные наземные и космические измерения обнаружили в составе марсианского льда также замерзший углекислый газ. Летом он испаряется и поступает в атмосферу. Ветры переносят его к противоположной полярной шапке, где он снова замерзает. Этим круговоротом углекислого газа и разными размерами полярных шапок объясняется непостоянство давления марсианской атмосферы.
Марсианский день, называемый сол, составляет 24,6 часа, а его год - 669 сол.
Влияние климата: Первые попытки разыскать в марсианской почве прямые свидетельства наличия основы для жизни - жидкой воды и таких элементов, как азот и сера, не принесли успеха. Экзобиологический эксперимент, проведенный на Марсе в 1976 году после посадки на его поверхность американской межпланетной станции «Викинг», несшей на своем борту автоматическую биологическую лабораторию (АБЛ), не принес доказательств существования жизни. Отсутствие органических молекул на изученной поверхности могло быть вызвано интенсивным ультрафиолетовым излучением Солнца, так как у Марса нет защитного озонового слоя, и окисляющим составом почвы. Поэтому верхний слой марсианской поверхности (толщиной около нескольких сантиметров) - бесплоден, хотя существует предположение, что в более глубоких, подповерхностных, слоях сохранились условия, которые были миллиарды лет назад. Определенным подтверждением этих предположений стали недавно обнаруженные на Земле на глубине 200 м микроорганизмы - метаногены, питающиеся водородом и дышащие углекислым газом. Специально же проведенный учеными эксперимент доказал, что подобные микроорганизмы могли бы выжить и в суровых марсианских условиях. Гипотеза о более теплом древнем Марсе с открытыми водоемами - реками, озерами, а может, и морями, а также с более плотной атмосферой - обсуждается уже более двух десятилетий, так как «обживать» столь негостеприимную планету, да еще при отсутствии воды, было бы очень сложно. Для того чтобы на Марсе могла существовать жидкая вода, его атмосфера должна была бы очень сильно отличаться от нынешней.


Переменчивый марсианский климат

Современный Марс - очень негостеприимный мир. Разреженная атмосфера, к тому же непригодная для дыхания, страшные пылевые бури, отсутствие воды и резкие перепады температуры в течение суток и года - всё это свидетельствует о том, что заселить Марс будет не так-то просто. Но ведь когда-то на нём текли реки. Значит ли это, что в прошлом на Марсе был другой климат?
Есть несколько фактов в поддержку этого утверждения. Вопервых, очень старые кратеры практически стёрты с лица Марса. Современная атмосфера не могла вызвать такого разрушения. Во-вторых, существуют многочисленные следы проточной воды, что также невозможно при нынешнем состоянии атмосферы. Изучение скорости образования и эрозии кратеров позволило установить, что сильнее всего ветер и вода разрушали их около 3,5 млрд пет назад. Приблизительно такой же возраст имеют и многие промоины.
К сожалению, сейчас не удаётся объяснить, что именно привело к таким серьёзным изменениям климата. Ведь для того чтобы на Марсе могла существовать жидкая вода, его атмосфера должна была очень сильно отличаться от нынешней. Возможно, причина этого кроется в обильном выделении летучих элементов из недр планеты в первый миллиард лет её жизни или в изменении характера движения Марса. Из-за большого эксцентриситета и близости к планетам - гигантам орбита Марса, а также наклон оси вращения планеты могут испытывать сильные колебания, как короткопериодические, так и достаточно длительные. Эти изменения вызывают уменьшение или увеличение количества солнечной энергии, поглощаемой поверхностью Марса. В прошлом климат мог испытать сильное потепление, вследствие которого плотность атмосферы повысилась за счёт испарения полярных шапок и таяния подземных льдов.
Предположения о переменчивости марсианского климата подтверждаются недавними наблюдениями на Хаббловском космическом телескопе. Он позволил производить с околоземной орбиты очень точные измерения характеристик атмосферы Марса и даже предсказывать марсианскую погоду. Результаты оказались довольно неожиданными. Климат планеты сильно изменился со времени посадок спускаемых аппаратов «Викинг» (1976 г.): он стал суше и холоднее. Возможно, это связано с сильными бурями, которые в начале 70-х гг. подняли в атмосферу огромное количество мельчайших пылинок. Эта пыль препятствовала остыванию Марса и испарению водяного пара в космическое пространство, но потом осела, и планета вернулась к своему обычному состоянию.

Загрузка...