docgid.ru

Физические основы применения ультразвука в хирургии. Ультразвуковая хирургия. Аппарат для ультразвуковой терапии

Существуют два основных способа применения ультразвука в хирургии. В первом из них используется способность сильно фокусированного пучка ультразвука вызывать локальные разрушения в тканях – это ультразвуковой скальпель. Операции проводились на мозге, печени, почках, глазе.

Во втором случае механические колебания ультразвуковой частоты накладываются на хирургические инструменты типа лезвий, пил, механических наконечников. Такие инструменты называются ультразвуковая пила, ультразвуковая бормашина.

  1. Ультразвук в физиотерапии.

Одно из наиболее распространенных применений ультразвука в физиотерапии – это ускорение регенерации тканей и заживления ран. Рубцовая ткань, сформировавшаяся при воздействии ультразвука, прочнее и эластичнее по сравнению с "нормальной" рубцовой тканью.

Лечение трофических язв.

Ускорение рассасывания отеков.

Заживление переломов, ускорение выздоровления.

4.2. Светолечение.

Светолечение - это метод физиотерапии, заключающийся в дозированном воздействии на организм больного инфракрасного, видимого или ультрафиолетового излучения.

4.3. Аэроионотерапия отрицательными зарядами электричества.

Исследования показали, что наиболее благотворно влияют на здоровье легкие отрицательные ионы кислорода воздуха. Аэроионы влияют на работу нервной системы, кровяное давление, тканевое дыхание, обмен веществ, температуру тела, кроветворение, при их воздействии изменяются физико-химические свойства крови, содержание сахара в крови, электрокинетический потенциал эритроцитов.

Положительные аэроионы действуют в противоположном направлении.

Давно замечено, что в душных непроветриваемых помещениях человек испытывает различного рода дискомфортные состояния: вялость, усталость, потерю аппетита, головную боль, бессонницу, слабость, головокружение, ослабление памяти и др. Это приводит к недомоганию, способствует падению защитных сил организма и предрасполагает к его преждевременному изнашиванию и старению. Было обнаружено, что в подобных помещениях имеет место избыток положительных и недостаток отрицательных аэроионов. На состоянии организма сказывается также погода: в дождливую туманную погоду, особенно осенью, когда число отрицательных аэроионов в воздухе понижается до минимального предела, чаще возникают инфекционные заболевания, обостряются хронические недуги, ухудшается состояние духа человека; настроение становится меланхоличным. Было установлено, что именно аэроионы положительной полярности оказывают крайне неблагоприятное действие на лиц слабого телосложения, стариков, ревматиков, неврастеников, вызывая у них ощущения боли, слабости, озноба.

Именно большой концентрацией легких отрицательных ионов кислорода обязаны своими лечебными свойствами курорты высокогорья, морского побережья и хвойных лесов. Применение аэроионотерапии в медицинской практике в России применяется с 1959 года. На протяжении ряда лет промышленностью выпускались бытовые аэроионизаторы.

4.4. Электролечение.

Для иллюстрации рассмотрим следующие виды электролечения:

1. Гальванизация.

Гальванизация - применение с лечебной целью непрерывного постоянного

электрического тока малой силы (до 50 мА) и низкого напряжения (30 - 80 В).

2. Ионогальванизация (электрофорез).

Ионогальванизация - метод сочетанного одновременного воздействия на

больного постоянного тока и определенного лекарственного вещества, вводимого в ткани при помощи тока.

3. Фарадизация.

Фарадизация - применение с лечебной целью переменного тока низкой частоты.

4. Дарсонвализация.

Дарсонвализация - применение с лечебной целью переменного тока высокой частоты, высокой интенсивности и небольшой силы.

5. Диатермия.

Диатермия - применение с лечебной целью переменного тока высокой частоты (500000 - 2000000 периодов), небольшого напряжения (сотни вольт) и

большой силы (до нескольких ампер).

6. Франклинизация.

Франклинизация - применение для лечебных целей статического электричества.

7. УВЧ – терапия.

УВЧ - терапия - метод лечения, при котором на определенный участок тела больного воздействуют непрерывным или импульсным электрическим полем ультравысокой частоты.

8. Электропунктура.

Электропунктура - метод воздействия на биологически активные точки

организма определенными видами токов низкой частоты.

9. Магнитотерапия

Магнитотерапия - использование переменного низкочастотного, пульсирующего и постоянного магнитного поля с лечебной целью.

Список используемой литературы

1.Иванов В.А.”Лазер”

2.Кондарев С.В. ”Лечение УВЧ”

3.Самойлов Д.М. “Магнитотерапия”

4.Заявлова С.А. “Светолечение”

В хирургии всегда существовал ряд вопросов и задач, которые нужно было решить. Это снижение травматичности операций, уменьшение кровопотерь, ускорение заживление, разработка новых, более прогрессивных методов и др. Во многом решить эти задачи помог ультразвуковой метод.

Существует две основные области использования ультразвука в хирургии:

  • Инструментальная хирургия. Наложение ультразвука на операционные инструменты (пилы, лезвия и др.)
  • Локальные разрушения. Фокусированный ультразвук способен проникать глубоко в ткани, уничтожая различные образования.

Инструментальная хирургия

На рабочую поверхность инструмента (например, скальпель), которая соединена с преобразователем волноводом, накладывается ультразвук . Амплитуда колебаний волн на режущей части инструмента может составлять от 1 до 365 мкм (в зависимости от конкретного назначения инструмента и потребностей операции), частота - от 20 до 100 кГц. Ультразвуковые колебания уменьшают трение между тканями и лезвием, благодаря чему специалист-хирург затрачивает меньше усилий, а операция проходит более быстро и гладко.

Как правило, при рассечении мягких тканей с ними взаимодействует только кромка режущей части - происходит, так называемое, микрорезание. Также от кромки выделяется тепло, создающее гемостатический эффект. Это все способно во многом облегчить процесс оперирования, что и обуславливает распространение ультразвуковых инструментов в хирургии.

Ультразвуковые инструменты отличаются по своему назначению, амплитуде колебаний волн и другим характеристикам. Основными считаются:

  1. Скальпель (хирургический нож) . Он помогает расслаивать мягкие ткани, отделяя патологические образования и структуры от нормальных. Как правило, это инструмент применяется при:
    • Пластических операциях
    • Удалении различных опухолей
    • Иссечении рубцов
    • Вскрытии очагов воспаления

      Это очень эффективный инструмент, позволяющий осуществлять вышеперечисленные действия с минимальным стрессом для пациента и с применение минимальных усилий со стороны врача.

  2. Пила . Этот инструмент имеет режущую кромку, на которой располагаются зубья (шаг - 1 мм). Пила используется для:
    • Рассечения костей, особенно расположенных в труднодоступных для хирурга местах, рядом с кровеносными сосудами и нервами
    • Трепанации черепа
    • Ламинэктомии
    • Рассечения костей ребер, грудины, ключиц, стоп кистей, лицевого отдела черепа

      Ультразвуковая пила не повреждает оставшиеся части тканей, не нагревает, не прижигает и не разминает их. После использования этого инструмента перестройка костных трансплантатов и образование костной мозоли осуществляются в разы быстрее, чем после использования обычных приборов. Использование ультразвуковых пил обеспечивает очень высокую точность моделирования трансплантатов.

  3. Ультразвуковой аппарат для "сварки" костей . Этот аппарат позволяет:
    • Очень быстро и точно соединять стромы фрагментов
    • Осуществлять процессы "сваривания" коллагеновых волокон различных фрагментов
    • В очень короткие сроки полимеризировать мономеры
    • Осуществлять практически мгновенную диффузию мономеров

      Аппарат, с наложенным на него ультразвуком, позволяет хирургам осуществлять все вышеперечисленные процессы во много раз быстрее, что сокращает расходы на операции, минимизирует труд медиков, уменьшает сроки выздоровления пациентов.

Помимо этих трех инструментов существуют целые хирургические комплексы. Они позволяют воздействовать только на твердые ткани, оставляя мягкие нетронутыми и, соответственно, не нанося им никаких повреждений.

Также с помощью аппаратов, с наложенным на них ультразвуком, можно "склеивать" сосуды, удалять тромбы, удалять катаракту глаза и производить другие оперативные действия.

Вызов локальных разрушений

Открытие этого способа применения ультразвука в хирургии позволило проводить некоторые операции без единого нарушения целостности живых тканей. Волны фокусируются в одном месте (например, на опухоли), постепенно уничтожая патологическое образование. Процесс удаления выводится на изображение томографа, что позволяет врачу полностью следить за операцией.

Такие операции полностью исключают повреждение живых тканей, образование костных сколов/обломков, уничтожение кровеносных сосудов и повреждение нервов. Ультразвук позволяет в разы снижать травматичность хирургических процедур. При этом время, затраченное на операцию и восстановление, сокращается.

Сегодня ультразвук применяется не только в диагностике. Открытие возможности применение этого явления в других областях медицины позволило существенно продвинуть вперед хирургию и решить многие ее вопросы.

Основная идея применения ультразвука в хирургии заключается в сообщении хирургическим инструментам ультразвуковых колебаний, что существенно увеличивает их эффективность, облегчает проведение операций и уменьшает травматические повреждения окружающих тканей. При этом выделяется несколько направлений: ультразвуковое резание мягких ткачей; ультразвуковая резка, сверление, трепанация, сварка и наплавка костной ткани: ультразвуковая эндартерэктомия (проведение восстановительных операций на пораженных атеросклерозом крупных сосудах).

Можно выделить две основные области использования ультразвука в оперативной хирургии. Это инструментальная ультразвуковая хирургия и локальные разрушения в глубине тканей с помощью фокусированного ультразвука.

За последние годы в практику стали широко внедряться физические методы хирургического воздействия с применением электрокоагуляционной, лазерной, криогенной и ультразвуковой техники.

Рабочая часть ультразвукового хирургического ножа имеет традиционную форму лезвия скальпеля, соединенного волноводом с магнитострикционным или пьезокерамическим преобразователем. Рабочая часть может иметь и другую форму в соответствии с требованиями выполняемой операции. Амплитуда колебаний режущей кромки в зависимости от поставленной задачи может быть изменена от 1 до 350 мкм, а частота выбирается в диапазоне от 20 до 100 кГц. Как известно, трение покоя больше, чем трение скольжения, поэтому трение между двумя поверхностями уменьшается, если одна из них совершает колебательные движения. Именно поэтому работа с ультразвуковыми инструментами требует от хирурга меньших усилий.

Характер разрушения тканей под действием ультразвукового хирургического инструмента зависит от строения его рабочей части, амплитуды и направления колебании. Зависит он и от вязкоупругих свойств и однородности ткани. ультразвук хирургия диагностика техника

При рассечении мягких тканей ультразвуковым ножом, лезвие которого совершает продольные ультразвуковые колебания, взаимодействует с тканью лишь кромка лезвия, обеспечивая процесс микрорезания, существенно усиливающего режущие свойства инструмента. Кроме того, у кромки лезвия колеблющегося инструмента выделяется теплота, локально повышающая температуру ткани и обусловливающая гемостатический эффект в результате термокоагуляции крови.

Так, применение ультразвукового скальпеля, амплитуда колебаний кромки которого лежит в интервале 15...20 мкм при частоте 44 кГц, в 6-8 раз уменьшает кровотечение из мелких и средних сосудов, в 4-6 раз снижает усилие резания, а также существенно облегчает строго послойное разделение кожи, подкожной жировой клетчатки и рубцовоизмененного хряща. Очевидно, что если на инструмент наложены лишь продольные колебания, то его воздействие на стенки раневого канала минимально.

Для разрушения некоторых патологических образований используют специальные волноводы -- дезинтеграторы, рабочий конец которых, помимо продольных, совершает и поперечные колебания. Такие инструменты оказывают существенное влияние па окружающие ткани и по мере введения инструмента разрушают их.

Ультразвуковые инструменты обладают явными преимуществами перед электро- или криохирургическими, так как не прилипают к ткани и поверхности раневого канала и не вызывают дополнительных травм. Ультразвуковой скальпель не уступает в ряде случаев и лазерному хирургическому инструменту, так как, ощущая сопротивление ткани при операции, хирург лучше контролирует процесс ее рассечения.

Основная идея применения ультразвука в хирургии заключается в сообщении хирургическим инструментам ультразвуковых колебаний, что существенно увеличивает их эффективность, облегчает проведение операций и уменьшает травматические повреждения окружающих тканей. При этом выделяется несколько направлений: ультразвуковое резание мягких ткачей; ультразвуковая резка, сверление, трепанация, сварка и наплавка костной ткани: ультразвуковая эндартерэктомия (проведение восстановительных операций на пораженных атеросклерозом крупных сосудах).

Метод ультразвуковой резки мягких тканей основан на том, что на лезвие режущего инструмента, которому хирургом сообщается поступательное движение, накладываются продольные ультразвуковые колебания с частотой, лежащей в пределах 22 - 44кГц. с амплитудой не более 45мкм. Под действием УЗ-колебаннй. налагаемых на инструмент, скорость относительных продольных перемещении увеличивается, относительно поступательного перемещения лезвия, в несколько раз. При этом, за счет разрушении под воздействием кавитации клеточной структуры прилегающих к лезвия слоев ткани, сухое трение переходит в полусухое или даже жидкостное. Это приводит к существенному уменьшению как нормального, так и тангенциального усилия резания. Ультразвуковые колебания возбуждаются магнитострикторрм и с помощью концентратора передаются к режущему инструменту. Магнитостриктор изготовляют либо из ферритового броневого цилиндрического магнптопровода, в полость которого закладывается обмотка, либо набирается из Ш - образных пластин из никелевого сплава, на центральный стержень которых наматывается обмотка. При перемагннчивании материала возникает явление магнитострикции, вследствие которого продольные размеры стержней колеблются с частотой перемагничивающего тока. Чтобы избежать удвоения частоты механических колебаний сердечник магнитостриктора подмагничивается постоянным током практически до насыщения.

К магнитостриктору приклеивается конически-цилиндрический концентратор. Длина концентратора выбирается равной половине длины волны ультразвука на рабочей частоте. К концентратору, с помощью резьбы, присоединяют сменный инструмент, также имеющий форму полуволнового концентратора, у которого сечение сужается к инструменту по экспоненте. Благодаря уменьшению сечения конической части концентратора и инструмента, и работе их в резонансном режиме происходит усиление амплитуды УЗ-колебаний в несколько раз, при их прохождении от магнитостриктора до режущей части инструмента.

Конструкция акустического узла приведена на рисунке 5. Магнитостриктор 1 с приклеенным к нему концентратором 2 образует акустическую головку, которая с помощью демпфирующих резиновых колец 6 закрепляется в цилиндрическом кожухе 4.

Рисунок 5 - Конструкция акустического узла для резки мягких тканей.

Наличие сменных инструментов - насадок 4 различной конфигурации приводит к тому, что их резонансные частоты отличаются друг от друга. Чтобы обеспечить резонансные эффекты используют генератор с подстройкой частоты в диапазоне +-2% от номинальной.

Ручная подстройка осуществляется при смене насадок, для чего с ответствующие приборы снабжаются индикаторами резонанса, которые фиксируют максимум тока нагрузки выходного каскада усилителя мощности генератора. При работе с инструментом, при изменении нагрузки, резонансная частота поддерживается автоматически, схемой автоматической подстройки частоты. На рисунке 6 приведена структурная схема хирургического УЗ-аппарата.

Рисунок 6 - Схема УЗ-аппарата с автоматической подстройкой частоты

При операциях ил внутренних органа для удлинения инструмента используют составные многозвеньевые концентраторы, свинчивающиеся между собой.

УЗ-аппараты со структурой рисунка 6 могут использоваться не только для резки мягких тканей, но и для их сварки, а также для резки сварки и наплавки костных тканей.

В качестве примера универсальных хирургических УЗ-аппаратов можно назвать аппараты УСКР-7Н УРСК-2Н. УРСК-18.

На основе использования универсальных аппаратов для ультразвуковой хирургии разработаны методики ультразвуковом обработки поверхности ран, включающих раны послеоперационные, обеспечивающие очистку поверхности ран от некротической и поврежденной ткани, быструю диффузию дезинфинирующих и лекарственных веществ, растворяемых в жидкостях и активизацию защитных регенерационных возможностей организма.

В таблице 2 приведены основные технические характеристики ряда отечественных ультразвуковых хирургических аппаратов.

Таблица 2 Характеристика отечественных УЗ хирургических аппаратов

Назначение

аппарата

Раб. частота

Макс, мощность

акуст, головки.

Кол-во смен. Инстру-ментов

Универсальный

Ондатерэктомия

Универсальный

Универсальный

12 ручн.,А ПИ

Сверление и фрезерование костн. ткани

Трепанация

Давно известно, что ультразвук, действуя на ткани, вызывает в них биологические изменения . Интерес к изучению этой проблемы обусловлен, с одной стороны, естественным опасением, связанным с возможным риском применения ультразвуковых диагностических систем для визуализации, а с другой - возможностью вызвать изменения в тканях для достижения терапевтического эффекта.

По ультразвуковой терапии существует обширная литература, хотя, к сожалению, большинство работ не отличается высоким качеством и содержит мало строгой научной информации. В этой главе обсуждение ограничено работами, имеющими прочную научную основу.

Терапевтический ультразвук может быть условно разделен на ультразвук низких и высоких интенсивностей. Основная задача применения ультразвука низких интенсивностей неповреждающий нагрев или какие-либо нетепловые эффекты, а также стимуляция и ускорение нормальных физиологических реакций при лечении повреждений. При более высоких интенсивностях основная цель - вызвать управляемое избирательное разрушение в тканях.

Первое направление включает в себя большинство применений ультразвука в физиотерапии и некоторые виды терапии рака, второе - ультразвуковую хирургию.

Загрузка...