docgid.ru

Причины, общие механизмы и проявления повреждения клетки. Повреждения клеток Общие механизмы повреждения клеток

МОРФОЛОГИЯ ПОВРЕЖДЕНИЯ

Лекция 3

Повреждение органов начинается на молекулярном или кле­точном уровне, поэтому изучение патологии начинается с позна­ния причин и молекулярных механизмов структурных изменений, возникающих в клетках при их повреждении.

Структура нормальной клетки генетически направлена на осуществление определенного метаболизма, дифференцировку и специализацию. В ответ на воздействие различных факторов в клетках развивается процесс адаптации. В результате этого про­цесса клетки могут достигать нового устойчивого состояния, по­зволяющего им приспособиться к подобным воздействиям. Если лимиты адаптивного ответа клетки исчерпаны, а адаптация не­возможна, то возникает повреждение клетки, до определенного предела обратимое. Однако, если неблагоприятный фактор дей­ствует постоянно или его интенсивность очень велика, развивает­ся необратимое повреждение, или смерть, клетки.

Смерть клетки - конечный результат ее повреждения, глав­ное следствие ишемии, инфекции, интоксикации, иммунных ре­акций. Кроме того, это естественное событие в процессе нор­мального эмбриогенеза, развития лимфоидной ткани, инволюции органа под действием гормонов, а также желаемый результат ра­дио- и химиотерапии при раке.

Существует два типа клеточной смерти - некроз и апоптоз.

Некроз - наиболее распространенный тип смерти клетки. Он проявляется ее резким набуханием и разрывом клеточной мембраны, денатурацией и коагуляцией цитоплазматических белков, разрушением клеточных органелл. Апоптоз необходим для нормальной элиминации ненужных клеточных популяций в процессе эмбриогенеза и при различных физиологических про­цессах. Апоптоз встречается и при патологических процессах; в этом случае он сопровождается некрозом.

Различают следующие причины повреждения клеток.

1. Гипоксия. Она является исключительно важной и распро­страненной причиной повреждения и смерти клеток. Уменьше­ние кровотока (ишемия), возникающее при появлении препятст­вий в артериях, обычно при атеросклерозе или тромбозе, являет­ся основной причиной гипоксии. Другой причиной может быть неадекватная оксигенация крови при сердечно-сосудистой недос­таточности. Снижение способности крови к транспортировке ки­слорода, например при анемии и отравлении СО 2 - третья и наи­более редкая причина гипоксии. В зависимости от тяжести гипо­ксии клетки могут адаптироваться к ней, повреждаться или поги­бать.

2. Физические агенты. К ним относят механическую травму, чрезмерное снижение или повышение температуры окружаю­щей среды, внезапные колебания атмосферного давления, радиа­цию и электрический шок.

3. Химические агенты и лекарства. Даже простые химические соединения, такие как глюкоза и поваренная соль, в повышенных концентрациях могут вызвать повреждение клеток непосредст­венно или путем нарушения их электролитного гомеостаза. Кис­лород в высоких концентрациях очень токсичен.


Следовые количества веществ, известных как яды (мышьяк, цианиды, соли ртути), могут разрушить достаточно большое ко­личество клеток в течение минут и часов.

Разрушительным действием обладают также многие факто­ры окружающей среды: пыль, инсектициды и гербициды; про­мышленные и природные факторы, например уголь и асбест; со­циальные факторы: алкоголь, курение и наркотики; высокие до­зы лекарств.

5. Иммунные реакции. Могут защищать организм, но могут вызвать и его смерть. Хотя иммунная система защищает орга­низм от воздействия биологических агентов, тем не менее иммун­ные реакции могут привести к повреждению клеток. Развитие некоторых иммунных реакций лежит в основе аутоиммунных бо­лезней.

6. Генетические нарушения. Многие врожденные нарушения метаболизма связаны с энзимопатиями, чаще отсутствием фер­мента.

7. Дисбаланс питания. Нередко является основной причиной повреждения клеток. Дефицит белковой пищи и витаминов оста­ется распространенным явлением.

Повреждение клетки - типический патологический процесс, основу которого составляют нарушения внутриклеточного гомеостаза, приводящие к нарушению структурной целостности клетки и ее функциональных способностей после удаления повреждающего агента. Так, например, на первом этапе нарушение функционирования клетки, вызванное действием неблагоприятных факторов, например недостатком кислорода или действием токсических соединений, может и не привести к повреждению клетки: как только восстановятся нормальные окружающие условия, клетка вновь вернется в состояние, близкое к исходному. Например, если в каком-нибудь участке миокарда кровоснабжение прекращается на короткий промежуток времени (не более 10-15 мин), а затем восстанавливается, то кардиомиоциты сохраняют способность к регенерации и нормальному функционированию. Если кровоснабжение не восстанавливается, то повреждение миокарда становится необратимым и кардиомиоциты на этом участке погибают.

Различают непосредственное (первичное) и опосредованное (вторичное) повреждения. Последнее возникает как следствие первичных нарушений постоянства внутренней среды организма.

В зависимости от скорости развития и выраженности основных проявлений повреждение клетки может быть острым и хроническим.

Острое повреждение развивается быстро, как правило, в результате однократного, но интенсивного повреждающего воздействия, в то время как хроническое повреждение протекает медленно и является следствием многократных, но менее интенсивных патогенных влияний.

В зависимости от периода жизненного цикла, на который приходится действие повреждающего агента, повреждение клетки может быть митотическим и интерфазным.

В зависимости от степени нарушения внутриклеточного гомеостаза повреждение бывает обратимым и необратимым (см. выше).

Выделяют два патогенетических варианта повреждения клеток:

1. Насильственный. Развивается в случае действия на исходно здоровую клетку физических, химических и биологических факторов, интенсивность которых превышает обычные возмущающие воздействия, к которым клетка адаптирована. Наиболее чувствительны к данному варианту повреждения функционально малоактивные клетки, обладающие малой мощностью собственных гомеостатических механизмов.

2. Цитопатический. Возникает в результате первичного нарушения защитно-компенсаторных гомеостатических механизмов клетки. В этом случае фактором, запускающим патогенетические механизмы повреждения, являются естественные для данной клетки возмущающие стимулы, которые в этих условиях становятся повреждающими. К цитопатическому варианту относятся все виды повреждения клетки, возникающего вследствие отсутствия какихлибо необходимых ей компонентов (гипоксическое, нервнотрофическое, при голодании, гиповитаминозах, недостаточности антиоксидантной системы, генетических дефектах и др.). К цитопатическому повреждению наиболее чувствительны те клетки, реактивность, а следовательно, и функциональная активность которых в естественных условиях очень высоки (нейроны, кардиомиоциты).

Причинами повреждения клеток могут быть следующие факторы: гипоксия. Чрезвычайно важная и распространенная причина повреждения клеток. Уменьшение кровообращения (ишемия), возникающее при атеросклерозе, тромбозе, сдавлении артерий, является основной причиной гипоксии. Другой причиной может быть недостаточная оксигенация крови при сердечно-сосудистой или легочной патологии. Третьей причиной может являться нарушение транспорта кислорода, например при анемии, отравлении окисью углерода или действии метгемоглобинобразователей (нитраты и нитриты, хлорноватые и хлорноватистые соли, феррицианиды, лекарственные вещества - фенацетин, амидопирин, сульфаниламиды и др.) (подробнее см. раздел 16.2);

Физические агенты - механическая травма, температурные воздействия, колебания барометрического давления, ионизирующая и ультрафиолетовая радиация, электрический ток;

Химические агенты и лекарства. Повреждение клеток может быть вызвано как жизненно необходимыми химическими соединениями, такими, как, например, глюкоза или поваренная соль в гипертонических концентрациях, кислород в высоких концентрациях. Вещества, известные как яды (в частности, мышьяк, цианиды, соли ртути), могут вызывать гибель клеток в считанные минуты или часы. Гибель клеток может наступать при действии факторов внешней среды, «социальных» факторов - алкоголя, курения, наркотиков и др.;

Иммунологические реакции. Хотя иммунные реакции защищают организм от воздействия биологических агентов, в ряде случаев (аллергия, аутоиммунные реакции) они могут обусловливать повреждение клеток;

Генетические повреждения (например, наследственные мембранопатии, энзимопатии и др.);

Дисбаланс питания.

Первое событие, которое в конце концов приводит к повреждению клетки, - это взаимодействие повреждающего агента с мишенями-молекулами (табл. 3-1). Так, мишенями для ультрафиолетовых лучей могут быть ароматические группы белков, ферментов и рецепторов или нуклеотиды в молекулах ДНК и РНК. Мишенью для окиси углерода служат различные гемсодержащие ферменты. Мишенью при действии гипоксии оказываются митохондрии, которые перестают запасать энергию в форме АТФ, и т.д.

Таблица 3-1. Примеры повреждающих агентов, действующих на клетку

Окончание табл. 3-1

* Увеличение разницы потенциалов между наружной и внутренней поверхностью клеточной мембраны.

Взаимодействие повреждающего фактора c мишенью может приводить к повреждению самой мишени, что наблюдается, например, при действии ультрафиолетовых лучей на клетки. В других случаях мишень не повреждается действующим агентом, но временно перестает функционировать. Именно это приводит в конечном счете к повреждению клетки в целом. Например, при действии цианистого калия выключается функция цитохромоксидазы, которая в данном случае служит мишенью для яда. Но фермент не повреждается: если удалить цианид из окружающей среды, функция цитохромоксидазы восстановится. Причиной гибели клетки является последующее повреждение клеточных структур, вызванное длительным прекращением энергообеспечения.

Таким образом, между моментом взаимодействия повреждающего агента с мишенью и процессом повреждения определенных клеточных структур может произойти целая цепь последовательных событий.

Гибель клетки - это конечный результат ее повреждения. Существует два основных типа клеточной гибели - некроз и апоптоз. На сегодняшний день выделяют также третий тип смерти клеток - конечное дифференцирование, который, по мнению большинства современных ученых, является одной из форм апоптоза.

Некроз (от греч. nekros - мертвый) - это патологическая форма гибели клетки вследствие ее необратимого химического или физического повреждения (высокая и низкая температура, органические растворители, гипоксия, отравление, гипотонический шок, ионизирующее излучение и др.). Некроз представляет собой спектр морфологических изменений, являющихся результатом разрушающего действия ферментов на поврежденную клетку. Развивается два конкурирующих процесса: ферментативное переваривание клетки

(колликвационный, разжижающий некроз) и денатурация белков (коагуляционный некроз). Для проявления обоих этих процессов требуется несколько часов, поэтому в случае внезапной смерти, например, при инфаркте миокарда соответствующие морфологические изменения просто не успевают развиться. Этот вид гибели клеток генетически не контролируется.

Некрозу могут предшествовать периоды паранекроза и некробиоза.

Паранекроз - заметные, но обратимые изменения в клетке: помутнение цитоплазмы, вакуолизация, появление грубодисперсных осадков, увеличение проникновения в клетку различных красителей.

Некробиоз - состояние «между жизнью и смертью» (от necros - мертвый и bios - живой); изменения в клетке, предшествующие ее смерти. При некробиозе в отличие от некроза возможно возвращение клетки в исходное состояние после устранения причины, вызвавшей некробиоз.

Если некроз считается патологической формой клеточной гибели, возникающей в результате чрезмерного (резкого, сильного) повреждающего воздействия на клетку, то апоптоз противопоставляется ему как контролируемый процесс самоуничтожения клетки.

Апоптоз (от греч. аро - отделение и ptosis - падение) - это генетически контролируемая физиологическая форма гибели клетки. Биологическое значение апоптоза заключается в поддержании внутреннего гомеостаза организма на клеточном, тканевом и системном уровнях. Апоптоз ответствен за многочисленные физиологические и патологические процессы в организме:

1. Программированное разрушение клеток на стадии эмбриогенеза (автономный апоптоз). Различают три категории автономного апоптоза: морфогенетический, гистогенетический и филогенетический.

Морфогенетический апоптоз участвует в разрушении различных тканевых зачатков, что обеспечивается:

Гибелью клеток в межпальцевых промежутках;

Гибелью клеток «избыточного» эпителия при слиянии нёбных отростков, когда формируется твердое нёбо;

Гибелью клеток в дорсальной части нервной трубки во время смыкания, что необходимо для достижения единства эпителия двух сторон нервной трубки и связанной с ними мезодермы.

Нарушение морфогенетического апоптоза в этих трех локализациях приводит, соответственно, к развитию синдактилии, расщеплению твердого нёба и spina bifida.

Гистогенетический апоптоз имеет место при дифференцировке тканей и органов, например, при гормонально-зависимой дифференцировке половых органов из тканевых зачатков. Так, клетками Сертоли в яичках плода мужского пола синтезируется гормон, который вызывает путем апоптоза регрессию протоков Мюллера, из которых у женщин формируются маточные трубы, матка и верхняя часть влагалища.

Филогенетический апоптоз участвует в удалении рудиментарных структур у эмбриона, например пронефроса.

2. Гормонозависимая инволюция органов у взрослых, например отторжение клеток эндометрия во время менструального цикла, атрезия фолликулов в яичниках в менопаузе, регрессия молочной железы после прекращения лактации.

3. Стабилизация численности клеток и их популяций в активно пролиферирующих тканях, например клеток эпителия кишечника, крови и иммунной системы; удаление стареющих клеток, прошедших свой жизненный цикл.

4. Элиминация части опухолевых клеток во время спонтанной регрессии опухолей.

5. Гибель клеток иммунной системы (В- и Т-лимфоцитов) при гипосекреции цитокинов, аутореактивных Т-клеток в тимусе - при их клональной делеции.

6. Патологическая атрофия гормонозависимых органов, например атрофия предстательной железы после кастрации; истощение лимфоцитов в тимусе на фоне терапии глюкокортикоидами.

7. Патологическая атрофия паренхиматозных органов после обтурации выводящих протоков, например, в поджелудочной и слюнных железах, почках.

8. Гибель клеток, вызванная действием цитотоксических Т-лимфоцитов, в частности при отторжении трансплантата и болезни «трансплантат против хозяина».

9. Элиминация клеток, инфицированных вирусами (например, при вирусном гепатите фрагменты апоптотических клеток обнаруживаются в печени в виде телец Каунсильмана).

10. Элиминация поврежденных клеток при действии химических и физических факторов (высокая и низкая температура,

ионизирующее излучение, противоопухолевые препараты и др.) в дозе, недостаточной для развития некроза.

Апоптоз является активным процессом саморазрушения клетки, по морфологическим и другим признакам он существенно отличается от некроза (см. табл. 3-2). Наиболее характерные проявления апоптоза определяются тем, что первые события, связанные с его осуществлением, начинаются в ядре. К ним относятся конденсация хроматина с формированием скоплений (в виде ленты, комочков), прилежащих к ядерной мембране (маргинация хроматина), и появление вдавлений ядерной мембраны, приводящих к фрагментации ядра (кариорексису) и образованию апоптотических телец - внеклеточных фрагментов ядра, окруженных мембраной. В цитоплазме происходит конденсация и сморщивание гранул. Клеточная мембрана утрачивает ворсинчатость, образует пузыревидные вздутия, на ней экспрессируются различные молекулы, распознаваемые фагоцитами (фосфатидилсерин, тромбоспондин, десиалированные мембранные гликоконъюгаты). От поверхности апоптотической клетки отщепляются небольшие везикулы, наполненные содержимым цитоплазмы (митохондрии, рибосомы и др.) и окруженные мембранным липидным бислоем. Клетка постепенно уменьшается в объеме, округляется и теряет межклеточные контакты. Апоптотические клетки и их фрагменты (апоптотические тельца, везикулы) поглощаются макрофагами, нейтрофилами и другими соседними клетками, не являющимися «профессиональными» фагоцитами. В результате эндоцитоза содержимое апоптотических клеток не выделяется в межклеточное пространство, как это происходит при некрозе, при котором вокруг гибнущих клеток скапливаются их активные внутриклеточные компоненты, включая энзимы, закисляется среда, что способствует повреждению соседних клеток и развитию воспалительной реакции, т.е. апоптоз одиночной клетки не отражается на ее окружении.

Признаки Некроз Апоптоз
Пусковой фактор Разрушение мембраны под действием патологических стимулов Деградация ДНК под действием физиологических и патологических стимулов
Распространенность Группа клеток Одиночная клетка
Биохимические изменения в клетке Активация лизосомальных ферментов Активация эндонуклеаз, фрагментирующих ДНК
Энергозависимость Нет Есть
Целостность цитоплазматической и внутриклеточных мембран Нарушена Сохранена
Морфологические изменения клетки Увеличение размеров клетки, разрыхление мембраны, набухание (окноз) цитоплазмы, митохондрий, лизис ядра и гранул Уменьшение размеров клетки, уплотнение и вздутие мембраны, кариопикноз, кариорексис, маргинация хроматина, конденсация и уплотнение гранул
Воспалительный ответ Есть Нет
Элиминация гибнущей клетки Лизис клетки, фагоцитоз Фрагментация клетки, поглощение фрагментов клетки (мембранных везикул, апоптотических телец) соседними клетками и фагоцитами

Классическими индукторами экзогенного апоптоза являются стероидные гормоны (половые, тиреоидные, кальцитриол, минералокортикоиды, ретиноиды), антигены, антитела, митогены, цитокины (фактор некроза опухолей (TNF) α, интерлейкин (IL) 1, IL-10, интерферон (INF) γ, β-токоферол и др.). Их проапоптогенное действие осуществляется через ядерные рецепторы (например, GR - глюкокортикоидный рецептор), специализированные мембранные «рецепторы смерти» (Fas, TNF-RI, TNF-RII, DR-3, DR-5 и др.) и рецепторы, выполняющие иные функции, например функцию активации клетки (T-клеточный рецептор (TCR),

цитокиновые рецепторы), что сопровождается развитием активационного апоптоза.

Ситуация эндогенного запуска программы гибели клетки возможна при лишении ее ростовых факторов (IL-2, IL-3, IL-4, INF-α, колониестимулирующих факторов - гранулоцитарно-макрофагального (ГМ-КСФ), гранулоцитарного (Г-КСФ), эритропоэтина и др.), нарушении контактов с внеклеточным матриксом и другими клетками, накоплении нерепарируемых разрывов ДНК (например, при повреждении клетки вирусами, ионизирующей радиацией, ультрафиолетовым излучением, токсинами и др.). В последнем случае важная роль отводится ядерному белку р53 (см. ниже).

В результате запуска апоптогенным (экзогенным или эндогенным) сигналом программы активации генов-индукторов апоптоза (Р53, BAX, PIG, FAS/APO-1, IGF-BP3 и др.) и/или угнетения апоптозингибирующих генов (генов семейства BCL-2) в клетке изменяется набор внутриклеточных РНК и белков, синтезируются и активируются ферменты, способные разрушать клеточные белки (протеазы - каспазы, катепсины, кальпаины, гранзимы) и нуклеиновые кислоты (нуклеазы - Са 2+ /Мg 2+ -зависимая эндонуклеаза и др.). Основным проявлением деструктивных изменений клетки при апоптозе является деградация хроматина, основой которого служит расщепление ДНК.

В настоящее время выделены несколько основных механизмов реализации апоптоза:

1) Рецепторный. Осуществляется с помощью «рецепторов смерти» (см. выше) при активирующем взаимодействии с соответствующими лигандами, большинство из которых относится к суперсемейству фактора некроза опухолей. Взаимодействие рецептора с лигандом приводит к активации адапторных белков, ассоциированных с «доменами смерти» (FADD - Fas-associated death domain, TRADD - TNF-R-associated death domain), и прокаспазы 8, продукт которой - каспаза 8 (инициаторная) активирует каспазу 3 (эффекторную), что, в свою очередь, обусловливает активацию эндонуклеаз, фрагментирующих ДНК.

2) Митохондриальный. Участие митохондрий в апоптозе обеспечивается присутствием в их матриксе и межмембранном пространстве большого количества биологически активных веществ (цитохрома С (Cyt С); прокаспаз 2, 3, 9; апоптозиндуцирующего фактора (AIF), обладающих выраженным апоптогенным действием. Фактором активации апоптоза является выход данных веществ

в цитоплазму при снижении трансмембранного потенциала митохондрий вследствие открытия гигантских митохондриальных пор (выполняют роль Ca 2 +-, рН-, потенциал-, НАДФ2Н/НАДФ+- и редоксзависимых каналов) и повышения проницаемости митохондриальных мембран. К раскрытию пор приводят истощение в клетках восстановленного глутатиона, НАДФН, АТФ и АДФ, образование активных форм кислорода, разобщение окислительного фосфорилирования, увеличение содержания Ca 2 + в цитоплазме. Поступление межмембранных белков и активация апоптоза возможны также при разрыве наружной мембраны митохондрий вследствие гиперполяризации внутренней мембраны.

3) р53-опосредованный. p53 - многофункциональный белок, играющий важную роль в мониторинге сигналов о состоянии клетки, целостности ее генома, активности систем ДНК-репарации. Повреждение ДНК ведет к накоплению белка р53 в клетке. Это определяет остановку клеточного цикла в фазах G 1 и G 2 , предотвращает репликацию, активирует синтез и репарацию ДНК, а следовательно, создает условия для восстановления нативной структуры ДНК, препятствует появлению мутантных и анеуплоидных клеток в организме. В случае если имеется недостаточность систем ДНК-репарации и повреждения ДНК сохраняются, клетка подвергается апоптозу. В частности, белок р53 способен индуцировать транскрипцию таких апоптогенных факторов, как Bax, Fas- рецептор, DR-5 и др.

4) Перфорин-гранзимовый. Цитотоксические Т-лимфоциты (Т-киллеры) вызывают апоптоз клеток-мишеней (например, инфицированных клеток) с помощью белка перфорина. Полимеризуясь, перфорин образует в цитоплазматической мембране клеткимишени трансмембранные каналы, по которым внутрь клетки поступают секретируемые Т-киллером гранзимы (фрагментины) - смесь сериновых протеаз. Основным компонентом этой смеси является гранзим В - протеолитический фермент, активирующий каспазу 3.

Важную роль в процессе передачи апоптогенного сигнала и регуляции апоптоза играют следующие внутриклеточные факторы (мессенджеры):

Концентрация ионов Ca (Ca 2 + активирует сериновые и цистеиновые протеазы, Ca 2+ /Mg 2+ -зависимую эндонуклеазу);

Протеинкиназы А (медиатор апоптоза) и С (ингибитор апоптоза);

Церамид (стимулирует киназы, фосфатазы);

Активные формы кислорода (обусловливают снижение трансмембранного потенциала митохондрий, увеличение внутриклеточной концентрации Ca 2 +, образование цАМФ);

Монооксид азота (опосредует изменение экспрессии р53, открытие гигантских пор в митохондриях и снижение митохондриального потенциала).

При различных патологических процессах в организме (инфекция, воспаление, иммунодефициты, гипо- и апластическая анемии, опухоли и др.) могут наблюдаться как ускорение, так и замедление апоптоза.

Примеры некоторых заболеваний, в патогенез которых включается апоптоз, представлены в табл. 3-3.

Таблица 3-3. Примеры заболеваний, связанных с угнетением или усилением апоптоза

Универсальный ответ клетки на повреждение. Особенностью развития патологических изменений в клетках в ответ на самые различные неблагоприятные воздействия является сходство этих изменений, которое позволило Д.Н. Насонову и В.Я. Александрову выдвинуть в 1940 г. теорию о неспецифической реакции клеток на повреждение. Ее суть сводится к следующему - каким бы ни был повреждающий агент и на какие бы клетки он ни действовал, ответ клеток по ряду показателей является одинаковым. К числу таких показателей относятся:

1) уменьшение дисперсности коллоидов цитоплазмы и ядра;

2) увеличение вязкости цитоплазмы, которому иногда предшествует ее некоторое уменьшение;

3) увеличение сродства цитоплазмы и ядра к ряду красителей. Во многих случаях обнаруживаются также набухание клетки,

изменение ионной проницаемости плазматической и внутриклеточных мембран, выход метаболитов из клетки, изменение флуоресценции, повышение кислотности цитоплазмы и т.д. Существование такого стереотипа изменений физико-химических свойств клеток при их повреждении связано с тем, что молекулярноклеточные механизмы повреждения сходны, хотя причины, вызвавшие повреждение, могут быть самыми разными. Практически у всех клеток при действии повреждающих агентов наблюдается резкое увеличение проницаемости клеточных мембран для ионов кальция. Это сопровождается активацией различных внутриклеточных ферментов и процессов: протеинкиназ, фосфолипаз, фосфодиэстеразы циклических нуклеотидов, системы биосинтеза белков и т.д. Эти изменения могут быть обратимыми, но в конце концов при сильном и длительном воздействии повреждающего фактора происходит стойкое нарушение функций клеток, а следовательно, ткани и органа в целом.

Реферат на тему:

ПОВРЕЖДЕНИЕ КЛЕТКИ

ПОВРЕЖДЕНИЕ КЛЕТКИ

Причины повреждения клетки: экзо- и эндогенные; физические, биологические, химические.

Повреждение клетки это изменение функционирования клетки, которое сохраняется после удаления повреждающего агента.

Повреждение клетки может быть частичным или полным, обратимым или необратимым. Необратимое повреждение может привести к деструкции и гибели клетки.

Повреждение клетки может быть первичным и вторичным.

Первичное повреждение клетки - это результат непосредственного действия повреждающего фактора.

Различают первичные повреждения:

а) механические,

б) термические,

в) химические,

г) радиационные.

Вторичные повреждения клетки - это такие, когда результат первичного воздействия сам становится повреждающим фактором и вторично повреждает здоровые до этого момента структуры.

Первичные повреждающие клетку факторы вызывают специфические, присущие только им эффекты. Эти эффекты связаны с характером первичного повреждающего фактора:

а) механические - вызывают нарушение целостности структуры ткани, клеток, межклеточных и субклеточных структур.

Ь) термические - связаны с денатурацией белков. белково-липидных комплексов и изменением вторичной структуры нуклеиновых кислот

с) химические - угнетают активность ферментов, блокируют клеточные рецепторы, вызывают перестройку молекул за счет гидролиза, переаминирования и т.п.

с) радиационные - приводят к разрушению молекул с образованием свободных радикалов.

Независимо от природы первичного повреждающего фактора, ответная реакция поврежденной клетки стандартна и называется неспецифической реакцией клетки на повреждение.

Причина такого стандартного ответа заключается в том, что при любом повреждении обязательно:

1) нарушаются барьерные функции мембран клеточной и внутриклеточной;

2) выключаются ионные насосы.

Реакция клеток на повреждение проявляется в структурных и функциональных изменениях клетки.

Основные структурные изменения следующие:

а) повышение проницаемости мембраны пострадавшей клетки;

Ь) уменьшение дисперсности коллоидов цитоплазмы и ядра

с) увеличение вязкости цитоплазмы, которому иногда предшествует уменьшение вязкости

1) увеличение сродства цитоплазмы и ядра к ряду красителей.

Степень выраженности зависит от силы и продолжительности повреждающего агента.

По степени выраженности различают:

а) паранекроз - обратимые нарушения структуры и функции клетки

Ь) некробиоз - необратимые повреждения (гибель) части клеток в ткани.

с) некроз - массовая гибель клеток с активацией лизосомальных ферментов и разрушением других клеточных структур. Этот процесс называется аутолизом. Значение аутолиза - удаление мертвых клеток и замена их новыми клетками или элементами соединительной ткани.

ПРОЯВЛЕНИЯ ПОВРЕЖДЕНИЯ КЛЕТОК

1. Увеличение проницаемости цитоплазматической мембраны:

1) белкам и коллоидным краскам (макромолекулы);

2) к аминокислотам и глюкозе (вещества с низкой молекулярной массой);

3) к ионам.

2. Уменьшение электрического сопротивления ткани.

Электрическое сопротивление ткани называется импеданс . Он состоит из омической и емкостной составляющей. Емкостная составляющая обусловлена тем, что клеточные мембраны, по сути, представляют собой конденсаторы. Омическая составляющая зависит от омического сопротивления цитоплазмы и мембран.

3. Увеличение сродства к красителям цитоплазмы и ядра клетки.

Это явление связано с тем, на фоне повышенной проницаемости мембраны при окраске клетки красителя в нее поступает значительно больше.

4. Изменение мембранного потенциала.

Это явление чрезвычайно характерно для неспецифического ответа клетки на повреждение. Причины:

1) прямое повреждение мембраны;

2) нарушение работы мембранных ионных насосов за счет снижения содержания в клетке АТФ. Снижение мембранного потенциала наблюдается при холодовом, радиационном, аллергическом повреждениях клеток и их органелл.

5. Выход ионов К + из клеток.

В норме внутри клетки содержится больше ионов К + , чем вне ее. Такое соотношение обеспечивается:

1) работой Nа + -К + -АТФ-азы, которая постоянно накачивает К + внутрь клетки;

2) спонтанным выходом К + из клетки за счет диффузии в область с более низкой концентрацией. Причина потери ионов К + - нарушение работы Nа + -К + -АТФ-азы в результате угнетения окислительного фосфорилирования в митохондриях.

6. Накопление ионов Са 2+ в гиалоплазме. В норме поступающий в клетку Са 2+ аккумулируется в митохондриях, поэтому в гиалоплазме концентрация ионов Са 2+ примерно в 10 000 раз ниже, чем вне клетки. При повреждении накопление в митохондриях угнетается и содержание ионов Са 2+ в гиалоплазме нарастает. Причина: нарушение окислительного фосфорилирования в митохондриях и уменьшение мембранного потенциала митохондрий.

7. Набухание клеток.

Форма и объем клеток зависят от:

1) состояния цитоскелета клетки;

2) разницы между онкотическим и осмотическим давлением внутри и вне клетки (онкотическое п осмотическое давление определяется количеством белков и ионов в единице объема. Другое название этой величины «коллоидно-осмотическое давление».

Увеличение объема клеток происходит при

1) накоплении белков и ионов внутри клетки;

2) снижении их концентрации вне клетки. В результате коллоидно-осмотическое давление в клетке становится больше, чем вне ее и молекулы воды переходят в клетку с целью выравнивания концентраций.

Последствия: сдавление микрососудов и нарушение микроциркуляции.

8. Нарушение структуры и функции митохондрий.

Всего 4 нарушения:

1) снижение потребления кислорода - связано с уменьшением скорости переноса электронов по дыхательной цепи.

2) увеличение проницаемости внутренней митохондриальной мембраны может привести к разобщению окислительного фосфорилирования в митохондриях и изменению показателей работы митохондрий. Существует 2 (два) показателя работы митохондрий: коэффициент Р/О и коэффициент дыхательного контроля ДК. Коэффициент Р/О - это отношение количества синтезированной АТФ к количеству поглощенного кислорода. Коэффициент дыхательного контроля - это отношение скорости дыхания митохондрий в присутствии субстратов окисления, АДФ и ортофосфата к скорости дыхания митохондрий в отсутствии АДФ. Снижение ДК до единицы и Р/О до 0 говорит о разобщении окислительного фосфорилирования в митохондриях.;

3) снижение способности накапливать кальций - приводит к увеличению его концентрации в гиалоплазме. Развивается в результате снижения мембранного потенциала и разобщения окислительного фосфорилирования в митохондриях;

4) набухание митохондрий - связано с поступление воды внутрь митохондрий и приводит к их разрыву. Различают активное и пассивное набухание митохондрий. Пассивное набухание митохондрий - происходит за счет движения молекул воды в митохондрию при увеличении коллоидно осмотического давления внутри нее и не требует затрат энергии. Активное набухание митохондрий - это движение молекул воды в митохондрию исключительно вслед за фосфатом К + . Фосфат К + поступает в митохондрии при уменьшении мембранного потенциала ниже 170-180 мВ со знаком «минус».

9. Активация лизосомальных ферментов и ацидоз. Увеличение проницаемости клеточных и внутриклеточных мембран касается и мембран лизосом. Из них выбрасываются активные липазы, протеазы, нуклеазы и другие ферменты. Немедленно начинается распад белков, жиров, пуриновых и пиримидиновых оснований. Образуются кислоты: амино-, жирные и нуклеиновые. Они диссоциируют на водород и кислотный остаток и среда закисляется. РН падает до 6,0 и ниже.

10. Апоптоз - это запрограммированная гибель клетки, которая необходима для удаления старых клеток или замены одних клеток другими. Стадии апоптоза:

1) поступление сигнала на поверхность клетки. Сигнал - поступление или непоступление определенных веществ;

2) связывание сигнальной молекулы с рецептором на поверхности клетки;

3) запуск каскада реакций внутриклеточной сигнализации;

4) активация синтеза деструктивных ферментов, в частности эндонуклеаз;

5) аутолиз.

11. Повреждение генетического аппарата клетки - это разрушение нуклеиновых кислот ядра и рибосом.

12. Последовательность нарушений в клетке при гипоксии -

Общий вывод:

1) необратимые повреждения наступают только через 1-1,5 часа после прекращения поступления кислорода. В более ранние сроки возможно восстановление функций клетки;

2) при проведении лечебных мероприятий врач должен ориентироваться на указанные сроки.

13. Порочный круг клеточной патологии. Неспецифическая реакция клеток на повреждение - это типовой патологический процесс. Его основными звеньями являются:

1) повреждение клеточной и внутриклеточных мембран;

2) снижение уровня АТФ;

3) увеличение содержания Са 2+ в цитоплазме;

4) активация деструктивных ферментов - мембранных фосфолипаз, эндонуклеаз;

5) разрушение фосфолипидов мембраны и усугубление ее повреждения. На 4-м и 5-м этапах наблюдаем смену причинно-следственных отношений, когда следствие (активация деструктивных ферментов) становится источником новых повреждений мембраны.

МЕХАНИЗМЫ НАРУШЕНИЯ БАРЬЕРНОЙ ФУНКЦИИ БИОЛОГИЧЕСКИХ МЕМБРАН

Нарушение целостности липидного слоя приводит к нарушению барьерной функции мембран. В основе лежит явление электрического пробоя мембран .

К электрическому пробою мембран приводят всего 4 (четыре) основных механизма:

1) перекисное окисление липидов;

2) действие мембранных фосфолипаз;

  • Болен 5 мес. 2 года назад перенес травму с повреждением селезенки и левого легкого.
  • Боль – «неприятное сенсорное или эмоциональное ощущение, связанное с угрожающим или происшедшим повреждением тканей или описываемое в терминах такого повреждения».
  • Нарушения микроциркуляции.
    I.Внутрисосудистые
    1) увеличение скорости кровотока (например, при артериальной гипертонии);
    2)снижение скорости кровотока (при венозной гиперемии);
    3)стаз. При различных болезнях эритроциты образуют агрегаты и вызывают остановку кровотока;
    4)нарушение ламинарности (параллельности) при варикозе, тромбозе и т.д. ;
    5)нарушение реологических свойств в крови (текучести).
    Разжижение или сгущение.
    Сладж – агрегация эритроцитов в виде монетных столбиков. Эритроциты изменяются под действием алкоголя, при инфекциях.

    II.Сосудистые нарушения микроциркуляции
    - увеличение проницаемости капилляров;
    - разрывы стенок и кровоизлияния.

    III. Внесосудистые
    - при нарушении нервно-трофической регуляции, процесса выхода гистамина из тучных клеток (лаброцитов). Гистамин расширяет микрососуды, повышает адгезивные свойства эндотелия, расширяет межэндотелиальные щели.
    Гипоксия-определение типы (№8) и их характеристика патогенетического расстройства (№8)
    адаптивные реакции при гипоксии (№5)
    течение (острое, хроническое) и исходы – см. Пауков, стр.57

    Нарушение лимфообращения



    Лекция №3,4. Повреждение клетки.

    Повреждение начальное звено патогенеза. П.- анатомической целостности, структуры тканей, или органа влечёт за собой расстройство их функций. П могут действовать непосредственно или опосредованно через гуморальные, рефлекторные влияния. Степень повреждения зависит от силы, природы, длительности действия, от особенностей органа или ткани, от реактивности организма. П могут быть на тканевом, молекулярном, клеточном, органном, системном и организменном. На тканевом уровне П представлено дистрофией и некрозом. На молекулярном уровне –это разрушение молекул, до неорганических веществ- деструкция, и изменение структуры биомолекул. Т.О. П- всеоблемьющий термин.

    Клетка- элементарная, живая система Главная функция клетки обмен с окружающей средой веществом, энергией, и информацией. Органеллы клетки определяют жизнедеятельность клетки. : дыхание, энергетические запасы, (минотхондрии, синтез белка(рибосомы, гЭПС,) накопление и транспорт липидов и гликогена, детоксикационная функция, (гладкая ЭПС), внутриклеточное пищеварение и защитная функция (лизосома)П клетки встречается в 3хвариантах:

    1. морфологические, соответствующие функциональные,

    2. структурные изменения выражены больше чем функциональные,

    3. функциональные выражены больше чем структурные.

    П бывают обратимы и необратимые. , специфические и неспецифические, .

    Специфическое связано с действием этиологического фактора. (механическая травма, гемолиз эритроцитов, и.т.д.

    Неспецифическое повреждение клетки это П любым агентом вызвавшим нарушение неравновесного состояния клетки и среды. Например неспецифические проявления это нарушение деполяризации клеточной мембраны., нарушение обмена воды, электролитов.

    Смерть клетки характеризуется прекращением неравновесного состояния живой системы и переходом его в состояние полного равновесия. Повреждение клетки может быть острым и хроническим. Функциональное состояние острого повреждения делится на:

    1. преддеприсионную гиперактивность,

    2 парциальный некроз,

    3 тотальное повреждение

    Преддеприссионная гипереактивность возникает вследствие обратимого повреждения клетки умеренным действием патогенных факторов. В результате этого в мембране клетке происходит неспецифическое возбуждение аденилатциклазной системы и активация вторичных посредников мессенджиров и усиление деятельности органелл, в первую очередь митохондрий. Усиливается окисление субстратов и и синтез АТФ. Мобилизуются все реакции направленные на повышение резистентности клетки.

    В случае парциального некроза повреждённая часть клетки отделяется от функционирующей части демаркационной мембранной и уничтожается фагоцитами. Оставшаяся часть восстанавливается за счёт гиперплазии субклеточных единиц.

    Но может быть и тотальное повреждение при этом происходит депрессия функции митохондрий, снижению синтеза макроэргов, нарушению энергозависимого клеточного транспорта. Нарастает дисфункция клетки деструкция лизосом выход литических ферментов в цитоплазму и повреждение органелл и мембран. Это агония клетки Исчезновение МП, в результате выравнивания концентрации ионов натрия и калия по обе стороны мембраны характеризуют смерть клетки. Структурные изменения клетки приводит к нарушению её функции.

    Патология клетки:

    1. Патология специализированных ультраструктур клетки. При этом говорят о хромосомных болезнях, лизосомальных, пироксисомных, митохондриальных

    2.изменения её компонентов и структур общих закономерностей повреждения и её реакции на повреждение Например рецепция патогенной информации, нарушение проницаемости мембраны клетки и циркуляция внутриклеточной жидкости, патология ядра, нарушение метаболизма клетки. и.т.д.

    Патогенетические звенья повреждения.

    1 Нарушение энергетического обеспечения процессов протекающих в клетке.

    Снижение изменение ресинтеза, транспорта, и использования энергии АТФ.

    2. Повреждение мембранного аппарата и ферментных систем клетки.

    3. Дисбаланс ионов и жидкости в клетке.

    4.На рушение генетической программы или механизмов её реализации: изменение структур генов, дерепрессия патогенных генов,

    Репрессия жизненно важных генов.

    Внедрение в геном фрагмента чужеродной ДНК с патогенными свойствами.

    Нарушение реализации генетической программы: расстройство митоза и, нарушение мейоза.

    Расстройство внутриклеточных механизмов: нарушение рецепции, образования вторичных посредников и нарушение фофорилирования протеинкиназ.

    Патология клеточной мембраны может привести к нарушению мембранного транспорта, изменение проницаемости мембран, изменения подвижности мембран, и формы клетки, нарушение синтеза и обмена мембран.

    Нарушение мембранного транспорта: процесс заключается в переносе ионов против градиента концентрации Транспорт может быть активным когда требует АТФи подвижности транспортных белков мембраны. И пассивным путём диффузии.

    Энергитической основой его работы являются процессы фосфорилирования и дефосфорилирования аденозинфосфотаз за счёт энергии АТФ. Эти ферменты вмонтированы в белквую часть клеточных мембран Там же работают ионные каналы для транспорта воды, ионов и др. веществ. Различают Na-K ATФ азу, Ca Mg АТФазу Н-АТФ азу Повреждение калий-натриевого насоса вызывает освобождение калия из клетки и накопление в ней ионов натрия., например при гипоксии, аллергии, и.т.д. С транспортом калия натрия связан и транспорт Са. Повреждение мембран митохондрий основа клеточного повреждения. Большую роль при этом играют иона Са в цитоплазме. При повышении уровня ионизированногог кальция в митохондриях падет эффективность окслительного фосфорилирования., они набухают увеличивается проницаемость внутренней мембраны, наступает тотальное повреждение. Нарушение натрий калиевого обмена, ведёт к вытеснению Са+ из митохондрий. В цитоплазме повышается уровень ионизированного Са+ и увеличивается связывание его с кальмодулином при этом происходит расхождение клеточных стыков, поглащение кальция митохондриями, изменение трубочек, микрофиламентов, активация фосфолипаз. При этом ЭПС накапливает воду и ионы, развивается гидропическая дистрофия. Усиление гликолиза, сопровождается истощением гликогена, накоплением лактата и снижением клеточного рН. В клетках развивается ацидоз первичный- вследствие активации протеолиза, гликогенолиза, гликолиза. Вторичный в воспалённой ткани. Большую роль в повреждении клетки играют лизосомы.- орган внутриклеточного пищеварения, или убийца клеток. Активность лизосом зависит от стабилизации мембран лизосом, и активности их ферментов. Дестабилизацию их мембран могут вызвать токсины бактерий канцерогены, активаторы ПОЛ, шок, травма и.т.д. Эти факторы называются лабилизаторы мембран Антогонастами их являются стабилизаторы мембран противовоспалительные гормоны.. От действия стабилизаторов и лабилизаторов зависит проницаемость мембраны лизосом и выход гидролаз к клетку и её лизис.

    ПОВРЕЖДЕНИЕ КЛЕТКИ – нарушение ее жизнедеятельности в результате влияния патогенного агента. Главные причины клеточных повреждений: - гипоксия, - ацидоз, - активация АФК, - денатурация белка, - повышение проницаемости клеточных мембран, - дисбаланс ионов и воды.

    В основе повреждения лежит разрушение части структурных элементов клетки, вследствие чего клетка в целом хуже выполняет свои функции. Повреждение клетки может быть частичным либо полным, обратимым либо необратимым. Необратимое повреждение может привести к прогрессирующей деструкции клетки и ее гибели.

    Общие механизмы клеточной альтерации: - повреждение мембран с активацией свободнорадикальных процессов и активацией ферментов (гидролаз мембранных, лизосомальных, цитоплазматических), - нарушение ионных каналов и насосов ионного состава клеток и набухание клетки и митохондрий с нарушением синтеза АТФ, - нарушение мембранного потенциала клетки - все они ведут к нарушению всех специфичных функций клеток, - активации лизосомальных ферментов, ацидозу и лизису клеток.

    Любая живая клетка подвержена влиянию нервных, гормональных, метаболических, энергетических и других воздействий со стороны целого организма, нарушение ее функций связано в конечном счете с изменениями химического состава раствора в ее непосредственном окружении: концентрацией ионов, метаболитов и т. д. Все эти изменения могут рассматриваться как факторы, оказывающие воздействие на функционирование клетки. Эти факторы могут в принципе либо улучшать, либо ухудшать условия жизнедеятельности клетки; в последнем случае их называют неблагоприятными. Следует различать прямое действие неблагоприятного фактора на данную клетку и косвенное его влияние, опосредованное воздействием на другие клетки, органы, ткани и организм в целом.

    Прямое нарушение жизнедеятельности клетки и ее повреждение могут быть вызваны отсутствием кислорода, чрезмерно низким значением р. Н, низким осмотическим давлением в окружающей среде, недостатком ионов кальция, действием ультрафиолетовой или ионизирующей радиации и т. д. В условиях целостного организма первичное действие повреждающего фактора на клеткимишени (т. е. клетки, повреждаемые непосредственно) сопровождается изменениями и в других клетках. Эти изменения опосредованы нарушением функционирования клеток-мишеней и поэтому могут быть названы вторичными.

    Всякое повреждение клетки выражается в определенном нарушении ее структуры и функций. При этом различные повреждающие факторы вызывают неодинаковые специфические первичные нарушения в клеточных структурах.

    При механическом повреждении происходит нарушение целостности структуры ткани, клеток, межклеточных и субклеточных структур. Термическое повреждение связано с денатурацией белков и белково-липидных комплексов клетки, а также с изменением вторичной структуры нуклеиновых кислот. При действии ионизирующей и ультрафиолетовой радиации первичным является разрушение молекул, поглотивших энергию, с образованием свободных радикалов, что приводит к поражению многих внутриклеточных структур. При химическом (токсическом) повреждении первичным является торможение (ингибирование) отдельных клеточных ферментов или их комплексов, например подавление активности цитохромоксидазы цианидами, торможение сукцинатдегидрогеназы солями малоновой кислоты, угнетение холинэстеразы диизопропилфторфосфатом (нервный яд) или другими фосфорорганическими ингибиторами.

    Первичное, специфическое воздействие повреждающего фактора направлено на совершенно конкретные молекулярные структуры клетки. Нарушение этих структур вызывает целый каскад событий, заканчивающихся общим ответом клетки как целого. При этом можно различить несколько стадий ответа клеток на внешнее неблагоприятное воздействие.

    Специфические механизмы повреждения клеток (примеры): - изменение осмотического давления с гипергидратацией (осмотический гемолиз); - разобщители окисления и фосфорилирования – динитрофенол снижает синтез АТФ одновременно увеличивая дыхание клеток.

    Вначале, как правило, имеет место неспецифическая реакция, характерная для всякого раздражения. В случае электровозбудимых клеток - это генерация мембранного потенциала действия, свойственная нервным клеткам и волокнам, мышечным клеткам и даже фагоцитам. Практически у всех клеток при действии повреждающих агентов наблюдается резкое увеличение проницаемости клеточных мембран для ионов, в частности для ионов кальция, с последующей активацией различных внутриклеточных систем: протеинкиназ, фосфолипаз, систем биосинтеза белков, фосфодиэстеразы циклических нуклеотидов, аденилатциклазы, сократительного аппарата клетки и т. д. Эта первая, обратимая стадия в определенной степени направлена на компенсацию нарушений, вызываемых повреждающим агентом, будь то компенсация на уровне данной клетки или на уровне целого организма.

    При более сильном или более длительном воздействии повреждающего фактора имеет место также нарушение функций клеток, которое приводит к ухудшению функционирования ткани и органа в целом. Изменения, наблюдаемые при этом в клетке, напоминают изменения в погибших клетках, но они обратимы. Такое состояние клеток называется паранекрозом. Внешне паранекроз проявляется в помутнении цитоплазмы, вакуолизации, появлении грубодисперсных осадков, увеличении проникновения в клетку различных красителей.

    Если часть клеток в ткани погибла окончательно, а другие продолжают функционировать, то такое состояние "между жизнью и смертью" называют некробиозом. Наконец, гибель клеток, т. е. такое их повреждение, которое в условиях организма необратимо, называют некрозом. Некроз сопровождается активацией ряда лизосомальных ферментов (например, фосфолипаз и протеаз), разрушением других клеточных структур. Этот процесс называется аутолизом. Аутолиз необходим для удаления мертвых клеток и замены их новыми клетками или элементами соединительной ткани.

    Феноменологические (внешние) проявления повреждения клеток Неспецифическая реакция клеток на повреждение заключается в нарушении барьерной функции клеточной и внутриклеточных мембран, а также выключение ионных насосов. Это сопровождается нарушением распределения веществ (компартментализации) внутри клетки и между клеткой и окружающей средой, дезорганизацией внутриклеточного метаболизма и нарушением системы энергообеспечения.

    В неспецифической реакции клеток на повреждение значительную роль играет необратимая инактивация (денатурация) белков, связанная с нарушением структуры (конформации) белковой молекулы. Одним из первых результатов всякого повреждения клетки является увеличение проницаемости цитоплазматической мембраны и нарушение клеточной энергетики. Ионы кальция начинают просачиваться внутрь клетки, в результате чего происходит увеличение концентрации кальция от 10 -8 -10 -7 моль/л (в норме) до 10 -6 -10 -5 моль/л. Это приводит к нарушениям в цитоскелете, активации сократительных структур, образованию нерастворимых включений кальция в матриксе митохондрий, повреждению внутриклеточных мембран и общей дезорганизации метаболизма.

    В результате изменений ионного состава цитоплазмы, р. Н, концентрации субстратов, кофакторов и регуляторов нарушаются внутриклеточные барьеры, что ведет к изменению активности ферментов и к дальнейшему развитию нарушений, полной дезорганизации обмена веществ.

    Большую роль в развитии повреждения играет нарушение мембранных структур клетки, ответственных за неспецифическую (т. е. характерную для всех клеток) реакцию на повреждающее воздействие.

    Любое повреждение клетки сопровождается ацидозом ее цитоплазмы (р. Н падает до 6 и ниже). Первичный ацидоз повреждения клеток следует отличать от вторичного ацидоза в воспаленной ткани, который возникает значительно позднее (через несколько часов) после нанесения повреждения. Первичный ацидоз повреждения - следствие накопления недоокисленных продуктов метаболизма, в частности продуктов гликолиза в поврежденной клетке. Первичный ацидоз в поврежденной ткани возникает независимо от вида повреждающего агента - механического, химического (например, горчичное масло), бактериального (дизентерийная палочка, гемолитический стафилококк).

    Увеличение объема клеток - один из наиболее ранних признаков ее повреждения, который проявляется, например, при недостатке кислорода в ткани - тканевой гипоксии. Сохранение нормальной формы и объема клеток связано с состоянием цитоскелета и поддержанием определенного соотношения между осмотическим давлением белков и электролитов внутри и вне клетки. Форма клетки определяется цитоскелетом, тогда как объем клетки - поддержанием осмотического баланса.

    Набухание клеток - процесс, далеко не безразличный для функционирования клеток и ткани в целом. Первым результатом этого оказывается сдавливание кровеносных сосудов и затруднение кровообращения. Так, при ишемии происходит набухание клеток и последующее общее возобновление кровообращения не сразу и не всегда приводит к восстановлению жизнедеятельности, потому что кровь не проникает в мелкие кровеносные сосуды, сдавленные набухшими клетками.

    Одним из важных показателей повреждения клеток является нарушение строения и функций эндоплазматического ретикулума, митохондрий, лизосом, рибосом. Различные болезнетворные факторы (инфекции, интоксикации) вызывают повреждения эндоплазматического ретикулума. Они выражаются в набухании ретикулума, изменении формы его мембран.

    Набухание митохондрий наблюдается, например, в клетках миокарда при недостаточности сердца, а также при многих инфекционных, гипоксических, токсических и других патологических процессах. Различные повреждающие агенты, например, эндотоксины бактерий кишечно-тифозной группы, а также мелкие неорганические частицы (двуокись кремния, двуокись титана, алмазная пыль), попадая в лизосомы, разрушают их. Ферменты лизосом освобождаются в цитоплазму клетки и вызывают повреждение субклеточных структур и ферментов цитоплазмы. Повреждение лизосом может привести клетку к гибели.

    Общими для всех поврежденных клеток являются увеличение внутриклеточного содержания кальция и нарушение биоэнергетических функций митохондрий. Эти два события лежат в основе нарушения функций поврежденных клеток и могут рассматриваться как главные звенья в цепи событий, приводящих к развитию неспецифической реакции клеток на повреждение.

    Разобщение окислительного фосфорилирования и снижение кальцийаккумулирующей способности при повреждении митохондрий имеют самые драматические последствия для клетки. Снижение уровня АТФ в клетке в результате разобщения окисления и фосфорилирования приводит к выключению ионных насосов, входу в клетку Са 2+, Na+ и воды, выходу K+, нарушению всех биохимических процессов, требующих затраты энергии АТФ. Согласно современным представлениям, именно повреждение митохондрий является ключевым моментом, после которого изменения в клетке, вызванные повреждающим агентом, становятся необратимыми и клетка погибает.

    МОРФОЛОГИЯ ПОВРЕЖДЕНИЯ КЛЕТОК В классической морфологии нелетальное повреждение клеток называется дистрофией. В большинстве случаев дистрофия относится к обратимым повреждениям. Некроз, наряду с апоптозом, является одним из двух морфологических выражений смерти клетки. Апоптоз ответствен за многочисленные физиологические и патологические процессы, происходящие в организме.

    Апоптоз является разновидностью смерти клетки, для которой характерна конденсация и фрагментация ДНК. Апоптоз обеспечивает уничтожение клеток при нормальном развитии, тканевом росте, органогенезе и в органах иммунной системы.

    Главные механизмы апоптоза: активация эндонуклеаз ядра расщепляющих ДНК, снижение мембранного потенциала митохондрий, Все это ведет к энергетическому голоду клетки (один, оба механизма).

    ЗАБОЛЕВАНИЯ НАРУШЕНИЯ АПОПТОЗА: СНИЖЕНИЕ АПОПТОЗА: ведет к опухолям, аутоиммунным заболеваниям, частым вирусным инфекциям, нейропролиферативным заболеваниям. ПОВЫШЕНИЕ АПОПТОЗА: нейродегенеративных заболеваниях (болезнь Альцгеймера, миотрофии); болезни крови (апластическая анемия, миелодиспластический синдром); ишемия (инфаркт, инсульт, реперфузионные поражения); токсические повреждения печени и почек, СПИД.

    МЕХАНИЗМЫ АДАПТАЦИИ КЛЕТКИ К ПОВРЕЖДЕНИЮ - Компенсация энергетических повреждений: переход на гликолитический синтез АТФ, активация ферментов транспорта энергии в клетке, повышение к. п. д. АТФаз; - Снижение функциональной активности и пластических процессов клетки. - Защита мембран и ферментов: активация антиоксидантной системы, буферных систем (снижение внутриклеточного ацидоза в т. ч. транспорт Н+ в митохондрии, саркоплазматический ретикулум и из клетки); - Повышение активности ферментов микросом (окисление, восстановление, деметилирование и пр. патогенных агентов); активация репарации мембранных структур клеток (белковый синтез репарации). - Нормализация водно-ионного баланса клетки: активация ионных насосов (мембран клеток и саркоплазматического ретикулума, меньше митохондрий), активация буферный систем. - Репарация генетических дефектов - ферменты репарации ДНК. - Компенсация процессов регуляции клетки: - изменение числа рецепторов клеток, их чувствительности (аффинности), - внутриклеточных посредников (G-белки, ц. АМФ, кальмодулин, Са 2+). - Активация всех типов обратных связей ведет к аутоадаптации метаболизма.

    Стереотипные приспособления клетки: - гипертрофия, - гиперплазия, - дисплазия, - метаплазия (предрак), - белки теплового шока: при гипертермии, гипоксии, интоксикациях, вирусном повреждении и пр. – защита клетки от самых различных стрессов и патогенов. Межклеточная адаптация: нервные, эндокринные, цитокинные влияния, обмен метаболитами, ионами и пр. ; изменение периферического кровообращения и лимфотока.

    ТИПОВЫЕ ФОРМЫ КЛЕТОЧНОЙ ПАТОЛОГИИ: ДИСТРОФИИ (нарушения обмена) БОЛЕЗНИ НАКОПЛЕНИЯ: ферментопатии обычно аутосомно-рецессивного типа: липидозы, гликогенозы, муколипозы, мукополисахаридозы, а также лизосомные и пероксисомного болезни. ДИСПЛАЗИИ: нарушения дифференцировки клеток с изменением их структуры, метаболизма и функции, ведущие к нарушениям жизнедеятельности.

    Загрузка...