docgid.ru

Какая должна быть вариабельность пульса. Влияние некоторых лекарственных препаратов различных фармакологических групп на вариабельность ритма сердца. Способы исследования ВСР

«Сердце работает как часы» - эту фразу часто применяют к людям, обладающим крепким, здоровым сердцем. Подразумевается, что у такого человека четкий и ровный ритм сердцебиения. На самом деле – суждение в корне неверно. Стивен Гейлс – английский ученый, производивший исследования в области химии и физиологии, в 1733 году сделал открытие, что ритм сердца изменчив.

Вариабельность сердечного ритма

Что такое вариабельность сердечного ритма?

Цикл сокращения сердечной мышцы изменчив. Даже у совершенно здоровых людей, находящихся в состоянии покоя, он разный. Например: если у человека пульс составляет 60 ударов в минуту, это не значит, что промежуток времени между ударами сердца составляет 1 секунду. Паузы могут быть меньше или дольше на доли секунд, а в сумме составить 60 ударов. Такое явление называют вариабельность сердечного ритма. В медицинских кругах – в виде аббревиатуры ВСР.

Так как от состояния организма зависит и разница интервалов между циклами сердечных сокращений, проводить анализ ВСР нужно в стационарном положении. Изменения частоты сердечных сокращений (ЧСС) происходят из-за различных функций организма, постоянно меняясь под новые уровни.

Результаты спектрального анализа ВСР указывают на физиологические процессы, происходящие в системах организма. Такой метод изучения вариабельности дает возможность произвести оценку функциональных особенностей организма, проверить работу сердца, выявить: насколько резко снижена ЧСС, нередко приводящая к внезапному летальному исходу.

Связь нервной вегетативной системы и работы сердца

Вегетативная нервная система (ВНС) отвечает за регулировку работы внутренних органов, включая сердце и кровеносные сосуды. Ее можно сравнить с автономным бортовым компьютером, который отслеживает активность и регулирует деятельность систем в организме. Человек не задумывается, как он дышит, или как внутри происходит пищеварительный процесс, сужаются и расширяются кровеносные сосуды. Вся эта деятельность протекает в автоматическом режиме.

ВНС делится на два вида:

  • парасимпатическая (ПСНС);
  • симпатическая (СНС).

Вегетативная нервная система и работа сердца

Каждая из систем влияет на функционирование организма, на работу сердечной мышцы.

Симпатическая – отвечает за обеспечение функциями, которые требуются для выживания организма в стрессовых ситуациях. Активирует силы, подает большой приток крови к мышечным тканям, заставляет учащенно биться сердце. При стрессовом состоянии вы снижаете вариабельность сердечного ритма: промежутки между ударами становятся меньше, а скорость пульса увеличивается.

Парасимпатическая – отвечает за отдых и аккумуляцию организма. Поэтому влияет на снижение ритма сердца и на вариабельность. При глубоких вдохах человек успокаивается, а организм начинает восстанавливать функции.

Именно благодаря способностям ВНС подстраиваться к внешним и внутренним изменениям, правильной балансировке в разных ситуациях обеспечивается выживание человека. Нарушения в работе нервной вегетативной системы нередко становятся причинами расстройств, развития заболеваний и даже смертельных исходов.

История появления метода

Использовать анализ вариабельности сердечного ритма стали не так давно. Метод оценивания ВСР привлек внимание ученых лишь в 50-60 годы XX века. В этот период зарубежные светила науки занимались разработкой анализа и его клинического применения. В Советском Союзе приняли рискованное решение использовать метод на практике.

При подготовке космонавта Гагарина Ю.А. к первому полету советские ученые столкнулись со сложной задачей. Требовалось изучить вопросы влияния космического полета на организм человека и снабдить космический объект минимальным количеством приборов и датчиков.


Анализ вариабельности сердечного ритма

Ученый совет принял решение использовать спектральный анализ ВСР для изучения состояния космонавта. Метод разработан доктором Баевским Р.М. и назван кардиоинтервалографией. В этот же период доктор приступил к созданию первого датчика, который использовали в качестве измерительного прибора для проверки ВСР. Он представлял переносную электровычислительную машину с аппаратом для снятия показаний сердечного ритма. Размеры датчика сравнительно небольшие, поэтому аппарат можно переносить и использовать для обследования в любых местах.

Баевский Р.М. открыл совершенно новый подход к проверке человеческого здоровья, который называется донозологическая диагностика. Метод позволяет оценить состояние человека и определить, что послужило развитию болезни и многое другое.

Ученые, проводившие исследования в конце 80-х годов, установили, что спектральный анализ ВСР дает точный прогноз по поводу летального исхода у лиц, которые перенесли инфаркт миокарда.

В 90-е годы кардиологи пришли к единым стандартам клинического использования и проведения спектрального анализа ВСР.

Где еще используют метод ВСР?

На сегодняшний день кардиоинтервалография применяется не только в области медицины. Одна из популярных сфер использования – спорт.

Ученые из Китая установили, что анализ ВСР позволяет оценить вариационный размах сердечного ритма и определить степень стрессового состояния организма при физических нагрузках. С помощью метода можно для каждого спортсмена разработать персональную программу тренировок.

Финские ученые при разработке системы Firstbeat взяли за основу анализ ВСР. Программу рекомендуется использовать спортсменам, чтобы измерить уровень стресса, проанализировать эффективность проводимых тренировок и оценить длительность восстановления организма после физических нагрузок.


Метод ВСР

Анализ ВСР

Вариабельность сердечного ритма изучают при помощи анализа. Этот метод основывается на определении последовательности R-R интервалов ЭКГ. Также существуют интервалы NN, но в этом случае учитывают лишь расстояния между нормальными сердечными сокращениями.

Полученные данные дают возможность определить физическое состояние пациента, проследить за динамикой и выявить отклонения в работе человеческого организма.

Изучив адаптационные резервы человека, можно предсказать возможные сбои в работе сердца и кровеносных сосудов. Если параметры снижены – это говорит о том, что взаимосвязь ВСН и сердечно-сосудистой системы нарушилась, что влечет за собой развитие патологий в работе сердечной мышцы.

Спортсмены и крепкие, здоровые парни имеют высокие данные ВСР, так как повышенный парасимпатический тонус – характерное для них состояние. Высокий симпатический тонус возникает из-за различного рода болезней сердца, что и приводит к пониженному показателю ВСР. А вот при остром, резком снижении вариабельности возникает серьезный риск смертельного исхода.

Спектральный анализ – особенности метода

При использовании спектрального анализа можно произвести оценку влияния систем регулирования организма на сердечные функции.

Медики выделили основные компоненты спектра, соответствующие ритмическим колебаниям сердечной мышцы и отличающиеся различной периодичностью:

  • HF – высокочастотный;
  • LF – низкочастотный;
  • VLF – очень низкочастотный.

Все эти компоненты применяют в процессе кратковременной записи электрокардиограммы. Для проведения длительной записи применяют ультранизкочастотный компонент ULF.

Каждый компонент имеет свои функции:

  • LF – определяет, как симпатическая и парасимпатическая нервная система влияет на ритм сердцебиения.
  • HF – имеет связь с движениями дыхательной системы и показывает, как блуждающий нерв оказывает влияние на работу сердечной мышцы.
  • ULF, VLF указывают на различные факторы: тонус сосудов, процессы терморегуляции и прочие.

Важным показателем является TP, который дает значение общей мощности спектра. Дает возможность суммировать активность воздействий ВНС на работу сердца.


Анализ ВСР

Не менее важными параметрами спектрального анализа являются индекс централизации, который вычисляют, используя формулу: (HF+LF)/VLF.

При проведении спектрального анализа берут во внимание индекс вагосимпатического взаимодействия компонентов LF и HF.

Соотношение LF/HF указывают на то, как симпатический и парасимпатический отдел ВНС влияет на сердечную деятельность.

Рассмотрим нормы некоторых показателей спектрального анализа ВСР:

  • LF. Определяет влияние адреналовой системы симпатического отдела ВНС на работу сердечной мышцы. Нормальные значения показателя в пределах 754-1586 мс 2 .
  • HF. Определяет активность парасимпатической нервной системы и ее влияние на деятельность сердечно-сосудистой системы. Норма показателя: 772-1178 мс 2 .
  • LF/HF. Указывает на баланс СНС и ПСНС и на рост напряжения. Нормой считается 1,5-2,0.
  • VLF. Определяет гормональную поддержку, терморегуляторные функции, тонус сосудов и многое другое. Норма составляет не больше 30%.

ВСР здорового человека

Показания спектрального анализа ВСР у каждого человека индивидуальны. При помощи вариабельности ритма сердца можно легко оценить, насколько высока физическая выносливость относительно возрастных показателей, пола и времени суток.

Например: у женского населения ЧСС более высокая. Наивысшие показатели ВСР наблюдаются у детей и подростков. LF и HF компоненты с возрастом становятся ниже.

Доказано, что масса тела человека влияет на показания ВСР. При низком весе мощность спектра увеличивается, а вот у лиц, страдающих ожирением, показатель снижен.

Занятия спортом и умеренные физические нагрузки благотворно влияют на вариабельность. При таких занятиях ЧСС уменьшается, а мощность спектра усиливается. Силовые нагрузки учащают сердцебиение и понижают вариабельность сердечного ритма. Нередки случаи, когда спортсмен внезапно умирал после интенсивной тренировки.

Что означает сниженный ВСР?

Если произошло резкое снижение вариабельности сердечного ритма, это может свидетельствовать о развитии серьезных заболеваний, среди которых чаще всего встречаются:

  • Гипертония.
  • Ишемическая болезнь сердца.
  • Синдром Паркинсона.
  • Сахарный диабет I и II типа.
  • Рассеянный склероз.

Нарушения ВСР нередко вызваны приемами некоторых препаратов. Сниженные вариации могут свидетельствовать о патологиях неврологического характера.

Анализ ВСР – несложный, доступный способ оценить регуляторные функции вегетативной системы при различных заболеваниях.

С помощью такого исследования можно.

КТГ – это особая диагностическая ветвь ультразвукового исследования (УЗИ), с помощью которой на поздних сроках беременности регистрируется частота сердечных сокращений ребенка, а также тонуса матки. Полученные данные синхронизируются и отражаются в виде простых графиков на ленте кардиотокограммы.

Иногда пациентки при получении непонятного для них результата процедуры, желают самостоятельно подвергнуть его расшифровке, но нередко сталкиваются с некоторыми трудностями. Для того чтобы разобраться с итогами КТГ, необходимо изучить каждый показатель по отдельности. В данной статье речь пойдет о таком важном параметре, как вариабельность, исследование которой внесет ясность в понимание рассматриваемого вопроса.

Что такое вариабельность?

Вариабельность – это амплитуда колебаний, представляющих собой какие-либо отклонения от основной линии базального показателя. Выражаясь простым языком, речь идет о разнице между максимальными (восходящими) и минимальными (нисходящими) зубцами.

Выделяется несколько основных типов показателя амплитуды (сальтаторная, слегка ундилирующая, монотонная и ундилирующая), каждый из которых требует небольшого пояснения.

Помимо рассматриваемого параметра на кардиотокограмме могут присутствовать дополнительные показатели: STV (или short-temp variation) и LTV (или long-term variation) – кратковременная и долговременная вариабельности. Они расшифровываются только с помощью особых автоматизированных систем.

Какова норма амплитуды?

Нормальным показателем вариабельности считается от 5 до 25 ударов в минуту. При этом их частота не должна достигать более 6 единиц. STV располагается в области 6–9 мс (миллисекунд). Более низкий показатель означает наличие так называемого метаболического ацидоза, характеризующегося дисбалансом кислотно-щелочного баланса (pH), при котором значительно повышается кислотность в организме. Хороший уровень LTV соответствует 30–50 миллисекундам.

При обнаружении серьезных патологических изменений плода в момент проведения КТГ следует незамедлительно обратиться к компетентным врачам за консультацией

Патологические показатели вариабельности

Значение вариабельности всегда рассматривается вкупе с остальными показателями кардиотокографии, поскольку лишь цельная картина, собранная из всех осколков мозаики, позволит составить более достоверную и объективную оценку состояния ребенка.

Так, параметр, располагающийся ниже 5 ударов в минуту, вместе с базальным ритмом в 100–110 или 160–170 единиц образует сомнительный результат ультразвукового исследования. В таком случае назначается дополнительная процедура КТГ, показания которой расставят все на свои места.

Также должен вызвать подозрение комплекс следующих показателей:

  • отсутствие акцелерации;
  • внезапные вспышки децелерации;
  • отклонение базальной частоты сердечных сокращений от нормы;
  • слишком высокая или низкая вариабельность.

При обнаружении подобных настораживающих признаков через несколько часов проводиться дополнительное обследование по иным методикам.

Полное отсутствие вариабельности может свидетельствовать о гипоксии плода (недостаточности кислорода), серьезном поражении центрально-нервной или сердечно-сосудистой системы. Более подробный анализ расшифровки КТГ содержится в этой статье .

Для того чтобы определить точный результат ультразвуковой процедуры, необходимо доверить расшифровку данных специалисту, который в силу необходимого медицинского опыта сделает верное заключение на основе полученных показателей.

Введение В данной статье мы расскажем, что такое вариабельность сердечного ритма, что на нее влияет, как ее измерить и что делать с полученными данными. Статья включает небольшую практическую часть по анализу данных, которая в большей степени направлена для спортсменов, тренирующих выносливость. В первой части будет немного физиологии, во второй вы узнаете как измерять вариабельность сердечного ритма и какие использовать параметры. В следующей мы расскажем о выборе программного обеспечения и как все это использовать в тренировочном процессе. Мы постарались максимально упростить некоторые моменты, сохранив при этом основную суть. Надеюсь нам это удалось.Физиология Наш организм это отлаженная и сложная система, которая способна адаптироваться к изменениям окружающей и внутренней среды. Одной из важнейших функций организма является поддержание в очень узких специфических диапазонах основных параметров: например температуру тела, pH крови и многое другое. Вся эта структура работает автономно, она не зависит от нашего мышления, в том числе и работа сердца. Все эти процессы регуляции называются гомеостаз и являются основой функционирования живого организма.

Рисунок 1. Сердце. **

Наше сердце - это не просто насос. Это очень сложный, центр обработки информации, который общается с головным мозгом с помощью нервной и гормональной системы, а также другими путям. В статьях доступно обширное описание и схемы взаимодействия сердца с головным мозгом.

И мы так же не управляем нашим сердцем, его автономность обусловлена работой синусового узла - который запускает сокращение сердечной мышцы. Он обладает автоматизмом, то есть самопроизвольно возбуждается и запускает распространение потенциала действия по миокарду, что вызывает сокращение сердца.

Сердце работает автономно благодаря синусовому узлу.

Рисунок 2. Автономная работа сердца

Синусовый узел тоже работает сам по себе, несмотря на то, что на нем сказывается работа всего организма - центральной нервной система, вегетативной (автономной) нервной система (ВНС), а также различных гуморальных и рефлекторных воздействий.

Синусовый узел отражает работу всех регуляторных систем организма.

Работу всех регуляторных систем нашего организма можно представить в виде двухконтурной модели, предложенной Баевским Р.М. . Он предложил разделить все регуляторные системы (контуры управления) организма на два типа: высший - центральный контур и низший - автономный контур регуляции (рис. 3).

*Рисунок 3. Двухконтурная модель регуляции сердечного ритма (по Баевскому Р.М., 1979 г.) CCC - сердечно-сосудистая система.

Автономный контур регуляции состоит из синусового узла, который непосредственно связан с сердечно-сосудистой системой (ССС) и через нее с системой дыхания (С.д.) и нервными центрами, обеспечивающими рефлекторную регуляцию дыхания и кровообращения. Непосредственное воздействие на клетки синусового узла оказывают блуждающие нервы (V).

Центральный контур регуляции воздействует на синусовый узел через симпатические нервы (S) и гуморальный канал регуляции (г.к.), либо изменяет центральный тонус ядер блуждающих нервов имеет более сложную структуру, он состоит из 3 уровней, в зависимости от выполняемых функций. Уровень В : центральный контур управления сердечным ритмом, обеспечивает “внутрисистемный” гомеостаз через симпатическую систему.

Уровень Б : обеспечивает межсистемный гомеостаз, между различными системами организма с помощью нервных клеток и гуморально (с помощью гормонов).

Уровень А : обеспечивает адаптацию с внешней средой с помощью центральной нервной системы.

Эффективная адаптация происходит с минимальным участием высших уровней управления, то есть за счет автономного контура. Чем больше вклад центральных контуров тем сложней и “дороже” организму адаптироваться.

На наше сердце основное влияние оказывает симпатическая и парасимпатическая системы (см. рисунок 4). Они являются антагонистами друг друга. Симпатическая возбуждает нас, готовит выполнять действия типа “бей-беги”: повышает частоту сердечных сокращений (ЧСС), увеличивает липолиз. Парасимпатическая же успокаивает, чсс уменьшается, усиливается моторика кишечника. На сердечную мышцу они действуют “синергично”: при увеличение активности парасимпатических волокон также наблюдается снижение активности симпатических волокон.

Рисунок 4. Блок-схема иннервации синусового узла сердца симпатической и парасимпатической системами.

Благодаря их воздействию сердечный ритм никогда не бывает постоянным. Эта изменчивость времени между каждым ударом и называется вариабельностью сердечного ритма . На записи ЭКГ это выглядит примерно так:

*Рисунок 5. Вариабельность сердечного ритма

  • Вариабельность сердечного ритма (ВСР) отражает работу всех регуляторных систем организма.

Начало Так как нам интересна работа всех регуляторных систем организма, а она отображается на работе синусового узла, крайне важно исключить из рассмотрения результаты действия других центров возбуждения, действие которых для наших целей будет являться помехой.

Поэтому крайне важно чтобы сокращение сердца запускал именно синусовый узел. На ЭКГ это будет проявляться в виде зубца P (отмечен красным цветом) (см. рисунок 6)

Рисунок 6. Сердечный цикл с синусовым ритмом.

Запись Для записи вариабельности сердечного ритма необходим пульсометр, который выдает данные о вариабельности сердечного ритма, например Polar H7. Этого вполне достаточно чтобы получить точные цифры и свежая статья где сравнивает запись с камеры телефона

Возможны различные дефекты записи из-за:

  • плохого контакта с датчиком (не забываем его смочить перед записью).
  • движения во время записи
  • различных мыслей

Выбираем любое программное обеспечение для записи и анализа вариабельности сердечного ритма, которое вам нравится. Об этом, позже, будет отдельная статья. Стараемся исключить все отвлекающие факторы, наша задача в идеале делать все замеры в одно и тоже время и в одном и том же комфортном для нас месте. Также рекомендую встать с кровати, сделать необходимые (утренние) процедуры и вернуться назад - это уменьшить шанс уснуть во время записи, что периодически случается. Полежать еще пару минут и включить запись. Чем продолжительней запись тем более она информативна. Для коротких записей обычно достаточно 5 минут. Есть еще варианты записи 256 RR интервалов . Хотя можно встретить и попытки оценить ваше состояние и по более коротким записям. Мы используем 10 минутную запись, хотя хотелось бы и побольше…Более длинная запись будет содержать больше информации о состоянии организма.

Анализ данных.

И так, мы получили массив RR интервалов, который выглядит примерно так: рисунок 7:

*Рисунок 7. 10 минутная утренняя запись вариабельности сердечного ритма.

Перед началом анализа нужно исключить из исходных данных артефакты и шумы (экстрасистолы, аритмии, дефекты записи и т.д.). Если это нельзя сделать, то такие данные не годятся, вероятней всего показатели будут либо завышены, либо занижены.

** Вариабельность сердечного ритма может быть оценена различными способами. Один из самых простых способов - это оценить статистическую изменчивость последовательности RR интервалов, для этого используют статистический метод. Это позволяет количественно оценить вариабельность в определенном промежутке времени.

SDNN - стандартное отклонение всех нормальных (синусовых, NN) интервалов от среднего значения. Отражает общую вариабельность всего спектра, коррелирует с общей мощностью (TP), в большей степени зависит от низкочастотной составляющей. Также любое ваше движение во времени записи обязательно отразится на этом показателе. Один из основных показателей, оценивающий механизмы регуляции.

В статье пытаются найти корреляцию этого показателя с VO2Max.

NN50 - количество пар последовательных интервалов, которые отличаются друг от друга более чем на 50 мс.

pNN50 - % NN50 интервалов от общего количества всех NN интервалов. Говорит о активности парасимпатической системы.

RMSSD - так же как и pNN50 свидетельствует в основном о активности парасимпатической системы . Измеряется как квадратный корень из средних квадратов разностей смежных NN интервалов.

А работе оценивают динамику подготовки триатлетов на основе RMSSD и ln RMSSD за 32 недели.

Также этот показатель коррелирует с состоянием иммунной системы .

CV (SDNN/R-Rср) - коэффициент вариации, позволяет оценивать влияния ЧСС на вариабельность.

Для наглядности прикрепил файл с динамикой некоторых показателей, указанных выше, в период до и после полумарафона который был 5.11.2017.

Спектральный анализ

Если внимательно посмотреть на запись вариабельности, то можно увидеть что она меняется волнообразно (см. Рис. 8)

*Рис. 8 . Волнообразная структура сердечного ритма собаки =) Исключительно для большей наглядности

  • Чтобы оценить эти волны надо преобразовать это все в другой вид с помощью преобразования Фурье (на рис. 9 продемонстрировано применение преобразования Фурье).

*Рисунок 9. Преобразование Фурье.

* Теперь мы можем, оценить мощность этих волн и сравнить их между собой см.

*Рисунок 10. Спектральный анализ ВСР

HF (High Frequency) - мощность высокочастотной области спектра, диапазон от 0.15 Гц до 0.4 Гц, что соответствует периоду между 2.5 сек и 7 сек. Этот показатель отражает работу парасимпатической системы. Основной медиатор - ацетилхолин, который достаточно быстро разрушается. HF отражает наше дыхание. Точнее дыхательную волну - во время вдоха интервал между сокращениями сердца уменьшается, а во время выдоха увеличивается .

С этим показателем все “хорошо”, есть много научных статей доказывающие его взаимосвязь с парасимпатической системой.

LF (Low Frequency) - мощность низкочастотной части спектра, медленные волны, диапазон от 0.04 Гц до 0.15 Гц, что соответствует периоду между 7 сек и 25 сек. Основной медиатор - норадреналин. LF отражает работу симпатической системы.

В отличие от HF тут все сложней, не совсем ясно, действительно ли он отражает симпатическую систему. Хотя в случаи 24 часового мониторинга это подтверждается следующим исследованием . Однако в большой статье говорится о сложности интерпретации и даже опровергается связь этого показателя с симпатической системой.

LF/HF - отражает баланс симпатического и парасимпатического отделов ВНС.

VLF (Very Low Frequency) - очень медленные волны, с частотой до 0.04 Гц. Период между 25 до 300 сек. До сих пор не ясно, что он отображает, особенно на 5 мин записях. Есть статьи, в которых видна корреляция с циркадными ритмами и температурой тела. У здоровых людей наблюдается увеличение мощности VLF, которое происходит ночью и пики перед пробуждением . Это увеличение автономной активности, по-видимому, коррелирует с пиком утреннего кортизола.

В статье пытаются найти корреляцию этого показателя с депрессивным состоянием. Кроме того, малая мощность в этой полосе была связана с сильным воспалением .

Анализировать VLF можно лишь при длительных записях.

TP (Total Power) - общая мощность всех волн с частотой в диапазоне от 0,0033 Гц до 0.40 Гц.

HFL - новый показатель, базирующийся на динамическом сравнении HF и LF составляющих вариабельности сердечного ритма. Показатель HLF позволяет характеризовать в динамике вегетативный баланс симпатической и парасимпатической систем. Увеличение этого показателя свидетельствовало о преобладании парасимпатической регуляции в механизмах адаптации, снижение показателя говорило о включение симпатической регуляции.

А вот так выглядит динамика, в период выступления на полумарафоне, показателей, обозначенных выше:

И собственно динамика всех показателей разом:

В следующей части статьи мы сделаем обзор различных приложений для оценки вариабельности сердечного ритма и потом перейдем непосредственно к практике.

**Используемая литература

** 1. Rollin McCraty, PhD; United States; Fred Shaffer, PhD, BCB, United States - Heart Rate Variability: New Perspectives on Physiological Mechanisms, Assessment of Self-regulatory Capacity, and Health Risk, 2015 . [NCBI ] 2. Armour, J.A. and J.L. Ardell, eds. Neurocardiology., Oxford University Press: New York. The little brain on the heart, 1994. [PDF ]

3. Баевский Прогнозирование состояний на грани нормы и патологии. “Медицина”, 1979. 4.Fred Shaffer, Rollin McCraty and Christopher L. Zerr. A healthy heart is not a metronome: an integrative review of the heart"s anatomy and heart rate variability, 2014. [NCBI ]

5. Vanderlei L C, Silva R A, Pastre C M, Azevedo F M, and Godoy M F, Comparison of the Polar S810i monitor and the ECG for the analysis of heart rate variability in the time and frequency domains, Braz. J. Med. Biol. Res., 2008.[Scielo ]

6. Nunan D, Jakovljevic G, Donovan G, Hodges L D, Sandercock G R, and Brodie D A, Levels of agreement for RR intervals and short-term heart rate variability obtained from the Polar S810 and an alternative system, Eur. J. Appl. Physiol, 2008, 103(5): 529–537.

7. Plews DJ, Scott B, Altini M, Wood M, Kilding AE, Laursen PB, Comparison of Heart-Rate-Variability Recording With Smartphone Photoplethysmography, Polar H7 Chest Strap, and Electrocardiography, 2017. [NCBI ]

8. Boulos M., Barron S., Nicolski E., Markiewicz W. Power spectral analysis of heart rate variability during upright tilt test: a comparison of patients with syncope and normal subjects. Cardiology, 1996; 87:1, 28.

9. Kouakam C., Lacroix D., Zghal N., Logier R., Klug D., Le Franc P., Jarwe M., Kacet S. Inadequate sympathovagal balance in response to orthostatism in patients with unexplained syncope and a positive head up tilt test. Heart 1999 Sep; 82(3):312-8

10. Arsalan Aslani, Amir Aslani,1 Jalal Kheirkhah,2 and Vahid Sobhani, Cardio-pulmonary fitness test by ultra-short heart rate variability , 2011. [PubMed ]

11. Berntson GG, Lozano DL, Chen YJ., Filter properties of root mean square successive difference (RMSSD) for heart rate, 2005. [PubMed ]

12. Buchheit M., Monitoring training status with HR measures: do all roads lead to Rome?, 2014. [PubMed ]

13. Laurent Schmitt, Jacques Regnard, and Grégoire P. Millet, Monitoring Fatigue Status with HRV Measures in Elite Athletes: An Avenue Beyond RMSSD?, 2015. [PubMed ]

14. Stanley J, D"Auria S, Buchheit M.Cardiac parasympathetic activity and race performance: an elite triathlete case study., 2015. [PubMed ]

15. Germán Hernández Cruz, José Naranjo Orellana, Adrián Rosas Taraco, and Blanca Rangel Colmenero, Leukocyte Populations are Associated with Heart Rate Variability After a Triathlon, 2016. [PubMed ]

16. Eckberg, D.L., Human sinus arrhythmia as an index of vagal outflow. Journal of Applied Physiology, 1983. 54: p. 961-966.

17. Axelrod, S., et al., Spectral analysis of fluctuations in heart rate: An objective evaluation. Nephron, 1987. 45: p. 202-206 . 18. George E. Billman, The LF/HF ratio does not accurately measure cardiac sympatho-vagal balance, 2013

19. Huikuri H.V., et al., Circadian rhythms of frequency domain measures of heart rate variability in healthy subjects and patients with coronary artery disease. Effects of arousal and upright posture, 1994

20. Julia D. Blood , Jia Wu, Tara M. Chaplin, Rebecca Hommer, Lauren Vazquez, Helena J.V. Rutherford, Linda C. Mayes, and Michael J. Crowleyb, The variable heart: High frequency and very low frequency correlates of depressive symptoms in children and adolescents, 2015. [PubMed ]

21. Lampert, R., Bremner JD, Su S, Miller A, Lee F, Cheema F, Goldberg J, Vaccarino V. Decreased heart rate variability is associated with higher levels of inflammation in middle-aged men., 2008. [PubMed ]

22. Carney RM, Freedland KE, Stein PK, Miller GE, Steinmeyer B, Rich MW, Duntley SP., Heart rate variability and markers of inflammation and coagulation in depressed patients with coronary heart disease, 2007. [

35920 0

Исследование вариабельности сердечного ритма (ВСР) было начато в 1965 г., когда исследователи Hon и Lee отметили, что состоянию дистресса плода предшествовала альтернация интервалов между сердечными сокращениями до того, как произошли какие-либо различимые изменения в сердечном ритме. Только 12 лет спустя Wolf и соавторы выявили взаимосвязь большего риска смерти у больных, перенесших ИМ со сниженной ВСР. Результаты Фремингемского исследования на протяжении 4-летнего наблюдения (736 лиц пожилого возраста) убедительно доказали, что ВСР содержит независимую и находящуюся за пределами традиционных факторов риска прогностическую информацию. В 1981 г. Akselrod с коллегами использовали спектральный анализ колебаний сердечного ритма для количественного определения показателей сердечнососудистой системы от систолы к систоле.

В 1996 г. рабочая группа экспертов Европейского общества кардиологов и Североамериканского общества кардиостимуляции и электрофизиологии разработала стандарты использования показателей ВСР в клинической практике и кардиологических исследованиях, в соответствии с которыми сейчас выполняется большинство исследований. Для определения ВСР рекомендуется использовать ряд методов, обеспечивающих наиболее полный анализ при минимальных затратах методов и времени. Кроме рекомендаций относительно выбора метода оценки ВСР, в документе приведены требования к процедуре измерения всех параметров, влияющих на определение ВСР.

Определение ВСР, основные области применения метода, показания к использованию

ВCР — это естественные изменения интервалов между сердечными сокращениями (длительности кардиоцик лов) нормального синусового ритма сердца. Их называют NN-интервалами (Norman to Norman). Последовательный ряд кардиоинтервалов не является набором случайных чисел, а имеет сложную структуру, что отражает регуляторное влияние на синусный узел сердца вегетативной нервной системы и различных гуморальных факторов. Поэтому анализ структуры ВСР дает важную информацию о состоянии вегетативной регуляции сердечно-сосудистой системы и организма в целом.

Сердечные центры продолговатого мозга и моста непосредственно управляют деятельностью сердца, оказывая хронотропный, инотропный и дромотропный эффекты. Передатчиками нервных влияний на сердце служат химические медиаторы: ацетилхолин в парасимпатической и норадреналин - в симпатической нервной системе.

1. Оценка функционального состояния организма и его изменений на основе определения параметров вегетативного баланса и нейрогуморальной регуляции.

2. Оценка выраженности адаптационного ответа организма при воздействии различных стрессов.

3. Оценка состояния отдельных звеньев вегетативной регуляции кровообращения.

4. Разработка прогностических заключений на основе оценки текущего функционального состояния организма, выраженности его адаптационных ответов и состояния отдельных звеньев регуляторного механизма.

Практическая реализация указанных направлений открывает широкое поле деятельности как для ученых, так и для практиков. Далее предлагается ориентировочный и весьма неполный перечень областей использования методов анализа ВСР и показаний к их применению, составленный на основе анализа современных отечественных и зарубежных публикаций.

Перечень областей использования методов анализа ВСР:

1. Оценка вегетативной регуляции ритма сердца у практически здоровых людей (исход ный уровень вегетативной регуляции, вегетативная реактивность, вегетативное обеспечение деятельности).

2. Оценка вегетативной регуляции ритма сердца у пациентов с различной патологией (изменение вегетативного баланса, степень преобладания одного из отделов вегетативной нервной системы). Получение дополнительной информации для диагностики некоторых форм заболеваний, например, автономной нейропатии при диабете.

3. Оценка функционального состояния регуляторных систем организма на основе интегрального подхода к системе кровообращения как к индикатору адаптационной деятельности всего организма.

4. Определение типа вегетативной регуляции (ваго-, нормо- или симпатикотония).

5. Прогноз риска внезапной смерти и фатальных аритмий при ИМ и ИБС у больных с желудочковыми нарушениями ритма, при ХСН, обусловленной АГ, кардиомиопатией.

6. Выделение групп риска по развитию угрожаю щей жизни повышенной стабильности сердечного ритма.

7. Использование в качестве контрольного метода при проведении различных функциональных проб.

8. Оценка эффективности лечебно-профилактических и оздоровительных мероприятий.

9. Оценка уровня стресса, степени напряжения регуляторных систем при экстремальных и суб экстремальных воздействиях на организм.

10. Использование в качестве метода оценки функциональных состояний при массовых профилактических обследованиях различных контингентов населения.

11. Прогнозирование функционального состояния (устойчивости организма) при проведении профотбора и определении профпригодности.

12. Выбор оптимальной медикаментозной терапии с учетом фона вегетативной регуляции сердца. Контроль эффективности проводимой терапии, коррекция дозы препарата.

13. Оценка и прогнозирование психических реакций по выраженности вегетативного фона.

14. Контроль функционального состояния в спорте.

15. Оценка вегетативной регуляции в процессе развития у детей и подростков. Применение в качестве контрольного метода в школьной медицине для социально-педагогических и медико-психологических исследований.

Представленный перечень не является исчерпывающим и может быть дополнен.

Причины ВСР

ВСР имеет внешнее и внутреннее происхождение. К внешним причинам относят изменение положения тела в пространстве, физическую нагрузку, психоэмоциональный стресс, температуру окружающей среды.

Денервированное сердце сокращается практически с постоянной частотой. Как отмечалось выше, лабильность ЧСС обусловлена вегетативным влиянием на синусный узел. Симпатические импульсы ускоряют ритм сердца, а парасимпатические замедляют. Основная цель регуляции ЧСС - стабилизация АД. Регулируется с помощью барорефлекторного механизма, являющегося самым быстрым механизмом регуляции АД с латентным периодом около 1-2 с. Кроме вегетативных воздействий на сердце, изменения ЧСС вызывают и гуморальные факторы. Колебанием концентрации в крови адреналина и других гуморальных агентов объясняют происхождение очень медленных волн сердечного ритма (<0,04 Гц).

Механизм изменений ЧСС при дыхании связан с функционированием барорефлекторной системы стабилизации АД. Экскурсии грудной клетки и диафрагмы при дыхании приводят к колебаниям давления в грудной полости, что является возбуждающим воздействием на систему стабилизации АД. Как известно, сердечный выброс уменьшается на вдохе и увеличивается на выдохе вследствие изменения притока крови к сердцу при изменении давления в грудной полости. Это вызывает колебания АД. Непосредственное влияние на частоту сердечного ритма оказывает изменение тонуса блуждающего нерва. На вдохе происходит снижение тонуса блуждающего нерва и кардиоинтервалы сокращаются. При этом чем сильнее вагусная депрессия синусного узла, тем значительнее колебания ЧСС при дыхании. Это подтверждается тем, что атропиновая блокада блуждающего нерва приводит к резкому снижению амплитуды дыхательных волн сердечного ритма.

Известно, что при увеличении объема крови и повышении давления в крупных венах происходит повышение ЧСС несмотря на сопутствующее повышение АД - так называемый рефлекс Бейнбриджа. Этот рефлекс преобладает над барорецепторным рефлексом при увеличении ОЦК и, наоборот, уменьшение объема крови приводит к уменьшению МОК и АД, при этом отмечают повышение ЧСС.

Особое влияние на ВСР оказывает легочная вентиляция: стимуляция хеморецепторов вызывает умеренную гипервентиляцию, со стороны сердца при этом выявляют брадикардию и, наоборот, при значительной гипервентиляции ЧСС обычно возрастает.

Методы исследования ВСР

Соответственно международным стандартам ВСР исследуют двумя методами:

1) регистрация R–R-интервалов в течение 5 мин;

2) регистрация R–R-интервалов в течение суток. Краткосрочную запись чаще используют для экспресс-оценки ВСР и проведения различных функциональных и медикаментозных проб. Для более точной оценки ВСР и исследования циркадных ритмов вегетативной регуляции используют метод суточной регистрации R–R-интервалов. Однако и при суточной регистрации расчет большинства показателей ВСР проводится по каждому последовательному 5-минутному периоду. Это связано с тем, что для спектрального анализа необходимо использовать только стационарные отрезки ЭКГ, а чем длительней запись, тем чаще встречаются нестационарные процессы.

Для оценки высокочастотного компонента (HF) ритма сердца необходима запись около 1 мин, тогда как для анализа низкочастотного компонента (LF) необходимо уже 2 мин записи. Для объективной оценки очень низкочастотного компонента ВСР (VLF) длительность записи должна быть не менее 5 мин. Поэтому для стандартизации исследований ВСР при коротких записях выбрана предпочтительная длительность записи 5 мин.

Требования к краткосрочной записи ЭКГ для анализа ВСР

К исследованию необходимо приступать не ранее чем через 1,5–2 ч после приема пищи. Исследования проводят в затемненной комнате, за 12 ч необходимо отменить прием лекарственных средств, употребление кофе, алкоголя, физические и психические нагрузки. Запись регистрируют в промежутке с 9:00 до 12:00 в комфортных условиях при температуре воздуха 20–22 °С. Перед началом исследования необходим период адаптации к окружающим условиям в течение 5–10 мин. Исследование у женщин следует проводить с учетом фаз менструального цикла. Необходимо устранить все раздражающие влияния: отключить телефон, прекратить разговоры с пациентом, исключить появление в кабинете других лиц, включая медработников. Стартовое исследование проводится в положении лежа на спине или сидя с опорой на спинку стула.

Протоколы коротких записей обычно включают пробы с модуляцией дыхания: задержка дыхания с определенной частотой и глубиной; соотношение продолжительности фаз вдоха и выдоха; активный и пассивный ортостатический тесты; ручная динамометрия; вегетативные пробы (Вальсальвы, с задержкой дыхания, массаж каротидного синуса, надавливание на глазные яблоки, холодовые пробы с охлаждением лица, кистей рук и стоп); фармакологические пробы; ментальные пробы (арифметические упражнения, музыка); различные комбинации протоколов.

При суточной регистрации ЭКГ значительное влияние на анализ ВСР оказывают циркадные колебания (день - ночь) ритма сердца. Кроме того, на ВСР при этом значительно влияют такие факторы, как физическая активность пациента, различные стрессовые влияния, прием пищи, сон. Поэтому при суточном мониторировании ЭКГ необходимо вести протокол действий больного и различных факторов, влияющих на ритм сердца. При патологии необходимо определять время воздействия и выраженность различных симптомов, особенно болевых ощущений.

Эктопические сокращения, эпизоды аритмии, шумовые помехи и другие артефакты значительно снижают возможности спектрального анализа для определения состояния вегетативной регуляции функции сердца. Перед расчетом показателей ВСР необходимо удалить с записи ЭКГ артефакты и экстрасистолы. Это возможно, когда их относительное количество невелико - не более 10% всех R–R-интервалов. Артефактами принято считать R–R-интервалы, длительность которых превышает среднее значение более чем на 2 стандартных отклонения.

Методы анализа и определяемые показатели

Характеристики ВСР могут быть определены с помощью множества различных способов, каждый из которых отражает одну из сторон исследуемого явления. Обычно выделяют такие группы методов:

1) временной области (статистические и геометрические);

2) частотной области;

3) автокорреляционный анализ;

4) нелинейные;

5) независимых компонентов;

6) математическое моделирование.

Методы временной области

Исследование ВСР методом временной области включает анализ следующих показателей: SDNN - стандартное отклонение N–N- интервалов;

SDANN - стандартное отклонение средних значений SDNN из 5 (10)-минутных сегментов для средней длительности, многочасовых или 24-часовых записей;

RMSSD - квадратный корень из суммы квадратов разности величин последовательных пар N–N-интервалов;

NN50 - количество пар последовательных N–N-интервалов за весь период записи, различающихся более чем на 50 мс;

PNN50 - доля NN50 общего количества последовательных пар N–N-интервалов, различающихся более чем на 50 мс, полученного за весь период записи.

Как указывалось выше, для количественной оценки ВСР за длительный период используют также геометрический метод. Все интервалы N–N за 24 ч представляют в виде гистограммы и затем по ней производят расчеты геометрических показателей.

Наиболее часто используют триангулярный индекс ВСР (HVR index) и показатель триангулярной интерполяции гистограммы N–N (TINN). Оба показателя малочувствительны к разного рода ошибкам, возникающим при подразделении комплексов QRS на нормальные и ненормальные. Тем самым снижаются требования к качеству записи ЭКГ и ее анализу. Характеристика временных показателей представлена в табл. 4.1.

Таблица 4.1

Методы частотной области

В спектре коротких записей (от 2 до 5 мин) принято выделять 5 главных спектральных компонентов:

TH - общая мощность спектра;

VLF - очень низкие частоты в диапазоне менее 0,04 Гц;

LF - низкие частоты в диапазоне 0,04–0,15 Гц;

HF - высокие частоты в диапазоне 0,15– 0,4 Гц;

LF/HF - соотношение LF к HF.

Характеристика и определение всех спектральных показателей представлены в табл. 4.2.

Таблица 4.3

В табл. 4.3 представлены соответствия между временными и спектральными показателями ВСР.

Автокорреляционный анализ

Вычисляется автокорреляционная функция ряда R–R-интервалов, представляющая собой график коэффициентов корреляции, получаемых при его последовательном смещении на один R–R-интервал по отношению к своему собственному ряду. После первого сдвига на одно значение коэффициент корреляции настолько меньше единицы, насколько более выражены высокочастотные волны. Если в выборке доминируют медленноволновые компоненты, то коэффициент корреляции после первого сдвига незначительно меньше единицы. Последующие сдвиги ведут к постепенному уменьшению корреляционных коэффициентов. Поскольку автокорреляционная функция и спектр процесса связаны парой преобразований Фурье, использование автокорреляционного или спектрального анализа - выбор исследователя (табл. 4.4).

Методы нелинейного анализа

Многообразные влияния на ВСР, включая механизмы высших вегетативных центров, обусловливают нелинейный характер изменений сердечного ритма, для описания которого требуется использование специальных методов. Однако применение нелинейного анализа в клинической практике ограничено в связи с рядом факторов:

1) сложность как с точки зрения структурного анализа, так и с точки зрения вычислительных алгоритмов;

2) невозможность применения коротких протоколов и необходимость использования только длинных записей для анализа;

Таблица 4.4

3) отсутствие накопленной физиологической базы интерпретации результатов нелинейного анализа.

Таблица 4.5

Метод анализа независимых компонентов

Поскольку определение частотных полос VLF, LF и HF при спектральном анализе ВСР достаточно условны, более правильным является разделение общей ВСР на независимые компоненты, обусловленные различными механизмами систем регуляции. Этот метод относится к нелинейным методам статистического анализа, не требует длительной записи ВСР.

Метод математического моделирования

Метод вплотную примыкает к методу анализа независимых компонентов по направленности на предварительную обработку исходного сигнала ВСР с последующим применением методов частотной области и нелинейного анализа. Метод основывается на физиологических описаниях функционирования автономной нервной системы.

Для интерпретации результатов анализа ВСР можно использовать данные о физиологических коррелятах показателей ВСР, представленные в табл. 4.6.

Таблица 4.6

ВСР у здоровых людей

ВСР у здоровых людей позволяет оценить их физиологические нормативы, определяющиеся половой принадлежностью, возрастом, положением тела в пространстве, температурой окружающей среды, психическим комфортом, временем суток, сезонностью и другими факторами.

Показатели ВСР отличаются высокой индивидуальностью, а о нарушении регуляции говорят, когда показатели выходят за пределы значений индивидуальной нормы. Половых различий у ВСР нет, хотя у женщин ЧСС выше.

С возрастом связано снижение общей мощности спектра ВСР за счет преобладающего снижения низко- (LF) и высокочастотного (HF) компонента. Поскольку снижение LF и HF происходит синхронно, то отношение LF/HF изменяется мало. Наиболее высокая мощность спектра в детском и юношеском возрасте. С возрастом реакция на модуляцию дыхания снижается, но его связывают с физиологической детренированностью (табл. 4.7).

Масса тела также влияет на ВСР: меньшая масса тела проявляется более высокой мощностью спектра ВСР и HF, а у тучных людей отмечают обратную зависимость. Суточные (циркадные) колебания ВСР проявляются большей мощностью спектра, VLF и LF в дневное время и меньшей ночью при одновременном росте HF. Этот показатель повышается до максимума в ранние утренние часы, тогда как VLF либо не изменяется, либо снижается.

Физические упражнения и спорт приводят к положительным изменениям ВСР: урежается ЧСС, мощность спектра ВСР возрастает за счет HF. Избыточные тренировки чреваты повышением ЧСС и снижением ВСР. Этим отчасти объясняется выявляемая чаще в профессиональном спорте и связанная с чрезмерными нагрузками внезапная смерть.

Частота, глубина и ритм дыхания оказывают существенное влияние на ВСР, с повышением частоты дыхания относительный вклад HF в ВСР уменьшается и отношение LF/HF увеличивается. Пробы Вальсальвы с глубоким дыханием повышают мощность спектра ВСР. Ритмичное дыхание повышает мощность спектра за счет HF.

Нормальные значения временных и спектральных показателей сердечного ритма в зависимости от возраста приведены в табл. 4.7.

Различия в значениях показателей ВСР отмечают также в периоды сна и бодрствования. В табл. 4.8 представлены показатели ВСР у здоровых людей в периоды сна и бодрствования.

Таблица 4.7

*Различия с соответствующим периодом суток группы 20–39 лет достоверны (p<0,05).


Таблица 4.8

*Различия по сравнению с периодом бодрствования достоверны (р<0,05).

Клиническая оценка показателей ВСР при различных патологических состояниях

Организованная и сбалансированная регуляция - залог качественного здоровья, повышает шансы больного на выздоровление или ремиссию. Реакция регуляторных систем на раздражители неспецифична, но высокочувствительна, и соответственно метод анализа ВСР неспецифичен, но высокочувствителен при самых разных физиологических и патологических состояниях. Однако не следует искать показатели и значения ВСР, присущие конкретным состояниям или нозологическим формам. Учитывая вышесказанное, нам представилось интересным рассмотреть некоторые особенности, выявляемые при анализе показателей ВСР при различных патологических состояниях.

Нестабильная стенокардия

У больных с нестабильной стенокардией выявляют значительное снижение показателей вариабельности сердечного ритма при суточном мониторировании ЭКГ (SDNN, SDANN, SDNNi, RMSSD, PNN50). Снижение показателей ВСР коррелирует со снижением сегмента ST на ЭКГ. Риск неблагоприятных событий (развитие ИМ, внезапной смерти) на протяжении месяца в 8 раз выше при значениях SDANN <70 мс.

ИМ

ИМ характеризуется значительным снижением показателей ВСР при суточном мониторировании ЭКГ по сравнению с ХСН. Снижение ВСР в острой фазе ИМ коррелирует с дисфункцией желудочков, пиковой концентрацией креатинфосфокиназы, выраженностью ОСН. Обоснование изменений, отмечаемых при этой патологии, исследователи видят в нарушении соотношения между симпатическим и парасимпатическим отделами нервной системы. В острый период выявляют повышение тонуса симпатической (LF) и снижение тонуса парасимпатической (HF) нервной системы. Симпатические влияния на миокард снижают порог фибрилляции, парасимпатические имеют защитный характер, повышая порог. Увеличение соотношения LF/HF определяют на протяжении 1 мес пос ле ИМ. Значительное снижение ВСР при ИМ является независимым и высокоинформативным предиктором желудочковой тахикардии, фибрилляции желудочков, внезапной смерти.

Спектральный анализ ВСР у пациентов, перенесших ИМ, выявляет снижение общей мощности спектра и его компонент. В исследовании Североамериканской группы по изучению ВСР наблюдали больных с ИМ. Было установлено, что низкие показатели ВСР при суточном мониторировании ЭКГ коррелируют с риском внезапной смерти более выражено, чем показатели ФВ, количество желудочковых экстрасистол и толерантность к физическим нагрузкам. Выделены значения мощности спектра в различных частотных диапазонах, связанных с неблагоприятным прогнозом заболевания: общая мощность спектра менее 2000 мс 2 , ULF <1600 мс 2 , VLF <180 мс 2 , LF <35 мс 2 , HF <20 мс 2 и отношение LF/HF <0,95. Низкая мощность в диапазоне VLF в большей степени, чем другие показатели, связана с возникновением внезапной аритмической смерти. Пограничными значениями выраженного снижения ВСР при оценке на протяжении 24 ч рекомендуется считать SDNN <50 мс и триангулярный индекс ВСР <15, а для умеренного снижения ВСР - SDNN <100 мс и триангулярный индекс ВСР <20.

В 1996 г. представлены результаты исследования GISSI-2, длившегося 1 тыс. дней (567 пациентов). К концу срока наблюдения умерли 52 человека, что составило 9,1%. Исследователями установлено, что при снижении PNN50 риск смерти возрастал в 3,5 раза, при уменьшении SDNN - в 3 раза, при повышении RMSSD повышается в 2,8 раза.

СН

У больных с СН выявляют значительное снижение ВСР, что обусловлено активацией симпатического отдела нервной системы и тахикардией. Изменение параметров временного анализа ВСР достоверно коррелирует с выраженностью заболевания, однако изменение параметров спектрального анализа не настолько однозначно. В исследовании зависимости между активностью парасимпатических влияний на сердце у больных с ХСН и функцией ЛЖ установлено, что степень снижения ВСР достоверно связана с ФВ. Таким образом снижение парасимпатической регуляции отражает тяжесть систолической дисфункции.

ГКМП

При ГКМП отмечают снижение общей ВСР и ее парасимпатического компонента. У больных с этой патологией ночью снижается значение LF и HF и отмечается высокий показатель LF/HF по сравнению со здоровыми. При этом наиболее выраженные значения компонента HF выявлены у больных с пароксизмами желудочковой тахикардии.

Диабетическая полинейропатия

Изменения ВСР являются ранним (субклиническим) признаком полинейропатии, что позволяет выявить это состояние еще до манифестации клинических признаков. При диабетической полинейропатии отмечают снижение мощности всех спектральных компонентов, отсутствие увеличения LF при ортостатической пробе, «нормальное» соотношение LF/HF, сдвиг влево центральной частоты компонента LF.

Нарушения ритма сердца

Отражая соотношение симпатической и парасимпатической регуляции, ВСР позволяет судить о риске возникновения опасных для жизни аритмий. Возникновению опасных для жизни желудочковых нарушений ритма, по данным J.O. Valkama, предшествует повышение общей мощности спектра прежде всего за счет его низкочастотного компонента.

В 1991 г. Farell с соавторами предоставил данные исследования ВСР у 416 пациентов с нарушениями ритма. Конечной точкой исследования было возникновение стойкой желудочковой тахикардии или фибрилляции желудочков. Установлено, что при сочетании SDNN <20 мс и желудочковой экстрасистолии более 10 в час чувствительность метода составляет 50%, а специфичность - 94%.

Антиаритмические препараты могут воздействовать на ВСР различными путями. В эксперименте показано, что гемодинамическим следствием желудочковых нарушений ритма является изменение желудочковой эфферентной активности. Следовательно, само по себе подавление аритмий может изменять показатели ВСР. В табл. 4.9 суммированы воздействия антиаритмических препаратов на ВСР.

Таблица 4.9

Заключение

Исследование ВСР является неинвазивным, чувствительным и специфичным методом диагностики дисфункции миокарда, способом оценки эффекта медикаментозной терапии. Анализ показателей ВСР позволяет выделить группу больных с высоким риском возникновения внезапной сердечной смерти, а также прогнозировать развитие заболевания.


О.С. Сычев, О.И. Жаринов "Вариабельность сердечного ритма: физиологические механизмы, методы исследования, клиническое и прогностическое значение"

Автономная нервная система (АНС) играет важную роль, не только что касается физиологии, но также что касается различных патологических процессов, таких как диабетическая нейропатия, инфаркт миокарда (ИМ) и застойная сердечная недостаточность (ЗСН). Дисбаланс в автономной системе, связанный с увеличением активности симпатического отдела и снижением вагусного тонуса, сильно влияет на патофизиологию аритмогенеза и наступление внезапной остановки сердца.

Среди имеющихся неинвазивных методов оценки состояния вегетативной регуляции был выделен простой, неинвазивный метод оценки симпатовагусного баланса на синусово - предсердном уровне, а именно анализ вариабельности сердечного ритма (ВСР). Этот метод был использован в различных клинических ситуациях, включая диабетическую нейропатию, инфаркт миокарда, внезапную смерть и застойную сердечную недостаточность.

Стандартными методами измерений, включёнными в анализ ВСР, являются измерения во временной области, геометрические методы измерений и измерения в частотном диапазоне (области). Использование долгосрочного или краткосрочного мониторинга зависит от типа исследования, которое надлежит провести.

Установленные клинические данные, основанные на многочисленных исследованиях, опубликованных за последнее десятилетие, указывают на то, что пониженная общая ВСР является сильным прогностическим фактором увеличения смертности от любых заболеваний сердца и/или аритмической смертности, особенно у пациентов, подверженных риску после инфаркта миокарда или с застойной сердечной недостаточностью.

В данной статье описывается механизм, параметры и использование ВСР в качестве маркера, отражающего действие симпатического и вагусного компонентов АНС на синусовый узел, а также в качестве клинического инструмента скрининга и выявления пациентов, особенно подверженных риску смерти от остановки сердца.

Проведённые за последние два десятилетия многочисленные исследования, как на животных, так и на людях, показали наличие значительной взаимосвязи между АНС и смертностью от сердечно -сосудистых заболеваний, особенно у пациентов с инфарктом миокарда и застойной сердечной недостаточностью. Расстройство АНС и её дисбаланс, заключающийся или в увеличении симпатической активности или в снижении вагусной активности, может привести к желудочковой тахиаритмии и внезапной остановке сердца, которая в настоящее время является одной из основных причин смертности от сердечно -сосудистых заболеваний. Здесь описываются различные методы, с помощью которых можно оценить состояние АНС, которые включают тесты на сердечно – сосудистые рефлексы, биохимические и сцинтиграфические тесты. Методы, дающие прямой доступ к рецепторам на клеточном уровне или к передаче нервных импульсов доступны не всегда. В последние годы неинвазивные методы, основывающиеся на электрокардиограмме (ЭКГ) были использованы в качестве маркеров модуляции деятельности сердца автономной нервной системой, они включают определение ВСР, барорефлекторной чувствительности (БРЧ), QT интервала и турбулентности сердечного ритма (ТСР) – нового метода, основывающегося на изменениях длительности цикла синусового ритма после единичного преждевременного сокращения желудочков. Среди данных методов был выделен простой, неинвазивный метод оценки симпатовагусного баланса на синусово - предсердном уровне, а именно анализ вариабельности сердечного ритма (ВСР).

Автономная нервная система и сердце

Хотя автоматизм присущ различным тканям сердца, обладающим пейсмекерными свойствами, электрическая и сократительная активность миокарда в большой степени модулируется АНС. Эта регуляция со стороны нервной системы осуществляется посредством взаимосвязи между симпатическим и вагусным влиянием. В большинстве физиологических состояний эфферентные симпатический и парасимпатический отделы выполняют противоположные функции: симпатическая система усиливает автоматизм, в то время как парасимпатическая система угнетает его. Влияние вагусного стимулирования на пейсмекерные клетки сердца вызывает гиперполяризацию и снижает уровень деполяризации, а симпатическое стимулирование вызывает хронотропные эффекты, путём увеличения уровня пейсмекерной деполяризации. Оба отдела АНС влияют на активность ионного канала, вовлечённого в регулирование деполяризации пейсмекерных клеток сердца.
Расстройства АНС проявлялись при различных условиях, таких как диабетическая нейропатия и коронарная болезнь сердца, особенно в случае с инфарктом миокарда. Нарушение контроля над сердечно – сосудистой системой со стороны автономной нервной системы, связанное с увеличением симпатического и снижением парасимпатического тонуса, играет важную роль в возникновении коронарной болезни сердца и генезисе опасных для жизни желудочковых аритмий. Возникновение ишемии и/или некроза миокарда может повлечь за собой механическую деформацию афферентных и эфферентных волокон АНС, обусловленную геометрическими изменениями в некротических и не сокращающихся сегментах сердца. В условиях ишемии и/или некроза миокарда недавно было обнаружено присутствие явления электрического ремоделирования, обусловленного локальным ростом нервных клеток и дегенерацией на уровне клетки миокарда. В целом, у пациентов с заболеванием коронарных артерий, перенёсших инфаркт миокарда, автономная функция сердца, находящаяся под влиянием возросшего симпатического и сниженного вагусного тонуса, создаёт предпосылки для возникновения комплексных опасных для жизни аритмий, так как они изменяют автоматизм сердца, проводимость и важные гемодинамические переменные.

Определение и механизмы вариабельности сердечного ритма

Вариабельность сердечного ритма является неинвазивным, электрокардиографическим маркером, отражающим действие симпатического и вагусного компонента АНС на синусовый узел сердца. Она показывает общее количество вариаций моментных значений интервалов HR и интервалов RR (интервалы между комплексами QRS нормальной синусовой деполяризации). Таким образом, ВСР анализирует исходную тоническую активность автономной системы. При нормальном сердце, функционирующем как единое целое с АНС, отмечаются непрерывные физиологические вариации синусовых циклов, что указывает на сбалансированное симпатовагусное состояние и нормальную ВСР. При повреждённом сердце, перенёсшем некроз миокарда, изменения в активности афферентных и эфферентных волокон АНС и в локальной невральной регуляции способствуют наступлению симпатовагусного дисбаланса, характеризующегося снижением ВСР.

Измерение вариабельности сердечного ритма

Анализ ВСР включает в себя ряд измерений вариаций последовательных интервалов RR синусового происхождения, которые дают представление о тонусе автономной системы. На ВСР могут влиять различные физиологические факторы, такие как пол, возраст, циркадный ритм, дыхание и положение тела. Измерения ВСР являются неинвазивными и обладающими высокой годностью к воспроизведению. В настоящее время большинство производителей оборудования мониторинга по Холтеру рекомендуют программы анализа ВСР, встроенные в приборные панели. Хотя компьютерный анализ записей магнитной ленты был усовершенствован, для того чтобы измерить большинство параметров ВСР требуется вмешательство человека, чтобы распознать ложные экстрасистолы, артефакты и искажения скорости движения магнитной ленты, которые могут исказить временные интервалы.

В 1996 году Рабочая группа Европейского Общества кардиологов (ESC) и Североамериканское общество кардиостимуляции и электрофизиологии (NASPE) определили и установили стандарты измерения, физиологической интерпретации и клинического использования ВСР. Измерения во временной области (диапазоне), геометрические методы измерений и измерения в частотной области в настоящее время включают в себя стандартные клинически используемые параметры.

Анализ во временной области

При помощи анализа во временной области измеряются изменения частоты сердечных сокращений на протяжении времени или на основе интервалов между смежными нормальными циклами сердечной деятельности. В непрерывной записи ЭКГ детектируется каждый QRS комплекс, а затем определяются нормальные интервалы RR (NN интервалы), обусловленные деполяризацией клеток синусового узла, или мгновенная частота сердечных сокращений. Рассчитываемые во временной области переменные могут быть простыми, такими как средний интервал RR, средняя частота сердечных сокращений, разница между самым длинным и самым коротким интервалом RR, или разница между частотой сердечных сокращений ночью и днём; а также более комплексными, основывающимися на статистических измерениях. Данные статистические показатели, измеряемые во временной области, делятся на две категории, а именно: полученные при непосредственном измерении интервалов между сердечными сокращениями или при измерении переменных, получаемых непосредственно из интервалов, или при измерении мгновенной частоты сердечных сокращений; а также показатели, получаемые от измерения разницы между смежными интервалами NN. В приведенной ниже таблице дан перечень наиболее часто используемых во временной области параметров. Параметрами первой категории являются SDNN, SDANN и SD, а параметры второй категории являются RMSSD и pNN50.

SDNN – это общий показатель ВСР, отражает все долговременные компоненты и циркадные ритмы, ответственные за вариабельность в течение периода записи. SDANN является показателем вариабельности в среднем за 5 минут. Таким образом, данный показатель предоставляет информацию долгосрочного характера. Это чувствительный показатель к компонентам низкой частоты, таким как физическая активность, изменения положения, циркадный ритм. Считается, что SD в основном отражает дневные/ночные изменения ВСР. RMSSD и pNN50 - наиболее часто используемые параметры, определяемые на основе различий между интервалами. Данные измерения относятся к изменениям ВСР в краткосрочном периоде и не зависят от дневных/ночных вариаций. Они отражают отклонения в тонусе автономной системы, которые преимущественно являются вагус- опосредованными. По сравнению с pNN50, RMSSD выглядит более стабильным и в клиническом использовании ему должно быть отдано предпочтение.

Геометрические методы

Геометрические методы основываются и состоят в преобразовании последовательностей NN интервалов. Имеются различные геометрические формы, используемые в оценке ВСР: гистограмма, триангулярный индекс ВСР и его модификация, треугольная интерполяция гистограммы NN интервалов, а также метод, основывающийся на пятнах Лоренца или Пуанкаре. При помощи гистограммы оценивается связь между общим количеством выявленных RR интервалов и варьированием RR интервалов. Для триангулярного индекса ВСР самый высокий пик гистограммы учитывается как точка треугольника, базовое основание которого соответствует количественному значению изменчивости RR интервалов, его высота соответствует наиболее часто наблюдаемой длительности RR интервалов, и его площадь соответствует общему количеству всех RR интервалов, задействованных в его построении. Триангулярный индекс ВСР даёт оценку общей ВСР.

Геометрические методы подвергаются меньшему влиянию со стороны качества записанных данных и могут считаться альтернативой статистическим параметрам, которые не так легко получаются. Однако время продолжительности записи должно быть как минимум 20 минут, то есть это означает, что кратковременные записи не могут оцениваться при помощи геометрических методов.

Из всего многообразия имеющихся методов оценки во временном диапазоне и геометрических методов Рабочая группа Европейского Общества кардиологов (ESC) и Североамериканское общество кардиостимуляции и электрофизиологии (NASPE) рекомендовали к использованию четыре метода измерений с целью оценки ВСР: SDNN, SDANN, RMSSD и триангулярный индекс ВСР.

Анализ в частотной области

Анализ в частотной области (спектральная плотность мощности) показывает периодические колебания сигналов частоты сердечных сокращений в разрезе различных частот и амплитуд; а также предоставляет информацию касательно относительной интенсивности колебаний (называемой изменчивостью или мощностью) синусового ритма сердца. Схематически, спектральный анализ можно сравнить с результатами, получаемыми, когда белый свет проходит сквозь призму, в результате чего появляются различные световые волны, различного цвета и длины. Спектральный анализ мощности может быть проведён двумя способами: 1) непараметрическим методом, посредством быстрого преобразования Фурье (FFT), который характеризуется наличием дискретных пиков для отдельных частотных компонентов, и 2) параметрическим методом, а именно оценкой авторегрессионной модели, приводящей к формированию непрерывного плавного спектра активности. В то время как FFT является простым и быстрым методом, параметрический метод является более сложным и предполагает необходимость проверки того, подходит ли выбранная модель для анализа.

При использовании FFT отдельные RR интервалы, сохранённые в компьютере, преобразовываются в полосы с различными спектральными частотами. Этот процесс схож со звучанием симфонического оркестра в разрезе нотных составляющих. Полученные результаты могут быть преобразованы в Герцы (Гц), путём деления на среднюю длину интервалов RR.

Спектр мощности представлен полосами с частотами от 0 до 0,5Гц, которые могут быть классифицированы по четырём диапазонам: ультранизкочастотный диапазон (ULF), диапазон очень низкой частоты (VLF), низкочастотный диапазон (LF) и высокочастотный диапазон (HF).

Переменная Ед. измерения Описание Диапазон частот
Общая мощность мс2 Изменчивость всех NN интервалов
УНЧ мс2 Ультранизкая частота
ОНЧ мс2 Очень низкая частота
НЧ мс2 Мощность в диапазоне низких частот 0,04–0,15 Гц
ВЧ мс2 Мощность в диапазоне высоких частот 0,15–0,4 Гц
НЧ/ВЧ отношение Отношение мощности в диапазоне низких частот к мощности в диапазоне высоких частот

Короткие (краткосрочные) записи в спектре (5 - 10 минут) характеризуются наличием ОНЧ, ВЧ и НЧ компонентов, в то время как длинные (долгосрочные) записи дополнительно к трём другим включают УНЧ компонент. В вышеуказанной таблице приведены наиболее часто используемые в частотной области параметры. Компоненты спектра анализируются по частоте (Герц) и амплитуде, которая оценивается площадью (или спектральной плотностью мощности) каждого компонента. Таким образом, для абсолютных значений, используются возведённые в квадрат единицы, выражаемые в мс в квадрате (мс2),. Могут использоваться натуральные логарифмы (ln) значений мощности, обусловленные ассиметрией распределения. Мощность в НЧ и ВЧ диапазоне может выражаться в абсолютных величинах (мс2) или в нормализованных единицах (не). Приведение НЧ и ВЧ к нормализованному значению осуществляется путём отнимания от общей мощности компонента ОНЧ. Приведение к нормализованному значению имеет склонность с одной стороны уменьшать шумовые помехи, обусловленные артефактами и, с другой стороны, минимизировать влияние изменений общей мощности на НЧ и ВЧ компоненты. Это удобно при оценке влияния от различных вмешательств на одном и том же объекте (постепенное изменение угла наклона) или при сравнении объектов с большими различиями в общей мощности. Перевод в нормализованные единицы осуществляется следующим образом:

НЧ или ВЧ нормализованные (не) = (НЧ или ВЧ (мс2))*100/ (общая мощность (мс2) – ОНЧ (мс2))

Общая мощность вариабельности RR интервалов – это общая изменчивость, соответствующая сумме по четырём диапазонам спектра, НЧ, ВЧ, УНЧ и ОНЧ. Компонент ВЧ главным образом определяется как маркер вагусной модуляции. Этот компонент опосредован дыханием и поэтому определяется частотой дыхания. НЧ компонент модулируется как симпатическим, так и парасимпатическим отделом нервной системы. В этом смысле его интерпретация более спорна. Некоторые учёные считают мощность в НЧ диапазоне, особенно выраженную в нормализованных единицах, средством измерения симпатических модуляций; другие же интерпретируют её как комбинацию симпатической и парасимпатической активности. Они достигают консенсуса в том, что она отражает смесь обоих входящих сигналов автономной системы. На практике, увеличение компонента НЧ (угол наклона, психический и/или физический стресс, симпатомиметические фармакологические средства) в основном считалось последствием активности симпатического отдела. И наоборот, бета - адренергическая блокада приводила к снижению мощности в НЧ диапазоне. Однако в некоторых условиях, связанных с перевозбуждением симпатического отдела, например, у пациентов с прогрессирующей застойной сердечной недостаточностью, было обнаружено, что НЧ компонент стремительно снижается, тем самым отражая снижение отклика синусового узла на нервные входные импульсы.

Отношение НЧ/ВЧ отражает общий симпатовагусный баланс и может использоваться как средство измерения данного баланса. В среднем у нормального взрослого в состоянии отдыха, это отношение в основном составляет между 1 и 2.

УНЧ и ОНЧ являются компонентами спектра с очень низкими колебаниями. УНЧ компонент может отражать циркадный и нейроэндокринный ритмы, а ОНЧ компонент – ритм в долгосрочном периоде. Было выявлено, что ОНЧ компонент является основным показателем физической активности, и предложено считать его маркером симпатической активности.

Корреляции между показателями во временной и частотной области и нормальными номинальными значениями

Установлены корреляции между параметрами временной и частотной области: pNN50 и RMSSD находятся в корреляции между собой и с мощностью в ВЧ диапазоне (r = 0,96), SDNN и SDANN показатели находятся в сильной корреляции с общей мощностью и компонентом УНЧ. Нормальные номинальные значения и значения у пациентов с инфарктом миокарда для стандартных измерений вариабельности сердечного ритма.

Предел применения стандартных измерений ВСР

Так как ВСР связана с изменениями интервалов RR, то её измерение ограничено пациентами с синусовым ритмом, а также теми, у кого имеется малое количество эктопических систол. В этом смысле примерно 20-30% пациентов в постинфарктном периоде, перенесших инфаркт миокарда, с высокой степенью риска, исключаются из какого-либо анализа ВСР по причине частой эктопии или наличия предсердных аритмий, особенно атриальной фибрилляции. Последнюю можно наблюдать у 15-30% пациентов с застойной сердечной недостаточностью, тем самым исключая их из анализа ВСР.

Нелинейные методы (фрактальный анализ) измерения ВСР

Нелинейные методы базируются на теории хаоса и фрактальной геометрии. Хаос определён как изучение многоаспектных, нелинейных и непериодических систем. Хаос описывает природные системы иначе, так как он может учитывать хаотичность и непериодичность природы. Возможно, теория хаоса сможет помочь лучше понять динамику частоты сердечных сокращений, принимая во внимание то, что здоровый сердечный ритм слегка нерегулярен и в некоторой степени хаотичен. В ближайшем будущем нелинейные фрактальные методы могут дать новые представления о динамике частоты сердечных сокращений в контексте физиологических изменений и в ситуациях, сопряжённых с высоким риском, особенно, что касается пациентов, перенесших инфаркт миокарда или в контексте внезапной смерти.

В недавно полученных сведениях высказывается мнение о возможности того, что фрактальный анализ в сравнении со стандартными измерениями ВСР более эффективно выявляет аномальный характер колебаний RR.

Загрузка...