docgid.ru

Учение Н. Е. Введенского о парабиозе. Законы раздражения Нервно-мышечный синапс. Парабиоз, его фазы Для парадоксальной фазы парабиоза характерно

Парабиоз Введенского

Понятие о парабиозе (para - около, bios

Парабиоз - это обратимое изменение, переходящее при углублении и усилении действия вызвавшего его агента в необратимое нарушение жизнедеятельности — смерть

Первая стадия парабиоза - провизорная

Вторая стадия парабиоза - парадоксальная .

Третья стадия парабиоза - тормозная .

Вывод :

Парабиоз

Просмотр содержимого документа
«Парабиоз Введенского»

Парабиоз Введенского

Н. Е. Введенский обнаружил, что возбудимые ткани на самые разнообразные (эфир, кокаин, постоянный ток и т. д.) чрезвычайно сильные воздействия отвечают своеобразной фазной реакцией, одинаковой во всех случаях, которую он назвал парабиозом.

Н. Е. Введенский изучал явление парабиоза на нервах, мышцах, железах, спинном мозге и пришел к выводу о том, что парабиоз - это общая, универсальная реакция возбудимых тканей на сильное или длительное воздействие.

Понятие о парабиозе (para - около, bios - жизнь) в физиологию нервной системы введено Н. Е. Введенским. В 1901 г. вышла в свет монография Н. Е. Введенского "Возбуждение, торможение и наркоз", в которой он на основании своих исследований высказал предположение о единстве процессов возбуждения и торможения.

Парабиоз - это обратимое изменение, переходящее при углублении и усилении действия вызвавшего его агента в необратимое нарушение жизнедеятельности - смерть

Сущность парабиоза состоит в том, что под влиянием раздражителя в возбудимых тканях изменяются их физиологические свойства, в первую очередь резко снижается лабильность.

Классические опыты Н. Е. Введенского по изучению парабиоза были выполнены на нервно-мышечном препарате лягушки. Нерв на небольшом участке подвергали повреждению (альтерация) химическими веществами (кокаин, хлороформ, фенол, хлорид калия), сильным фарадическим током, механическим фактором. Затем наносили раздражение электрическим током на альтерированный участок нерва или же выше его.

Таким образом, импульсы должны были или возникать в альтерированном отрезке нерва, или проходить через него на своем пути к мышце. Сокращение мышцы свидетельствовало о проведении возбуждения по нерву.

Первая стадия парабиоза - провизорная , уравнительная, или стадия трансформации. Эта стадия парабиоза предшествует остальным, отсюда ее название - провизорная. Уравнительной ее называют потому, что в этот период развития парабиотического состояния мышца отвечает одинаковыми по амплитуде сокращениями на сильные и слабые раздражения, наносимые на участок нерва, расположенный выше альтерированного. В первую же стадию парабиоза наблюдается трансформация (переделка, перевод) частых ритмов возбуждения в более редкие. Все описанные изменения ответной реакции мышцы и характера возникновения волн возбуждения в нерве под влиянием раздражения являются результатом ослабления функциональных свойств, особенно лабильности, в альтерированном участке нерва.

Вторая стадия парабиоза - парадоксальная . Эта стадия возникает в результате продолжающихся и углубляющихся изменений функциональных свойств парабиотического отрезка нерва. Особенностью этой стадии является парадоксальное отношение альтерированного участка нерва к слабым (редким) или сильным (частым) волнам возбуждения, приходящим сюда с нормальных участков нерва. Редкие волны возбуждения проходят через парабиотический отрезок нерва и обусловливают сокращение мышцы. Частые же волны возбуждения либо совсем не проводятся, как бы затухают здесь, что наблюдается при полном развитии этой стадии, либо вызывают такой же сократительный эффект мышцы, как и редкие волны возбуждения, или менее выраженный.

Третья стадия парабиоза - тормозная . Характерной особенностью этой стадии является то, что в парабиотическом участке нерва не только резко снижены возбудимость и лабильность, но он также теряет способность проводить к мышце и слабые (редкие) волны возбуждения.

Вывод :

Парабиоз - явление обратимое. При устранении причины, вызвавшей парабиоз, физиологические свойства нервного волокна восстанавливаются. При этом наблюдается обратное развитие фаз парабиоза - тормозная, парадоксальная, уравнительная.

Наличие электроотрицательности в альтерированном участке нерва позволило Н. Е. Введенскому рассматривать парабиоз как особый вид возбуждения, локализованный в месте его возникновения и не способный распространяться.

На изолированном обескровленном нервно-мышечном препарате лягушки Н. Е. Введенский сочетал непрерывное и прерывистое раздражения нерва. Было установлено, что при действии на участок нерва наркотиков или , при его нагревании или охлаждении, при сдавливании, действии сильного и т. п. этого участка понижается. При прохождении через этот участок волн возбуждения, вызванного прерывистым ритмическим раздражением нерва, выше этого участка, т. е. дальше от мышцы, наблюдаются три основных функциональных состояния этого участка, или стадии. Первая стадия предварительная (провизорная), или уравнительная. В этой стадии слабые и сильные волны возбуждения, поступающие из нормального участка нерва, проходя через измененный участок, дают приблизительно одинаковую высоту тетануса. Эти волны возбуждения снижают лабильность и приводят к возникновению второй стадии - парадоксальной. В этой стадии сильное раздражение нормального участка нерва или не вызывает тетанус или вызывает низкий тетанус. Наконец, наступает последняя стадия - тормозная, когда и слабые и очень сильные раздражения нормального участка нерва не вызывают тетанус. В этой стадии наблюдается полная рефрактерность, когда измененный нерв временно потерял способность функционировать, но он еще жив, так как при прекращении действия раздражителя его физиологические свойства восстанавливаются. Это явление Н. Е. Введенский назвал парабиозом.

В участке парабиоза происходит альтерация - изменение , денатурация и изменение структуры нервных волокон. Изменение физиологических свойств альтерированного участка может привести к его отмиранию. Н. Е. Введенский (1901) дал следующую схему последовательных состояний альтерированного участка: покой - возбуждение - торможение - смерть. Следовательно, парабиоз - это состояние, пограничное между жизнью и смертью.

Парабиоз протекает в две фазы: 1) повышения возбудимости и увеличения максимального и оптимального ритма возбуждения (фаза электроположительное очага парабиоза, гиперполяризации) и 2) снижения возбудимости, понижения оптимального и особенно максимального ритма возбуждения (фаза электроотрицательности очага парабиоза, деполяризации). Следовательно, в первой фазе парабиоза наступают явления, характерные для последующего действия анода постоянного тока (анэлектротона), а во второй фазе парабиоза наступают явления, типичные для последующего действия катода постоянного тока (катэлектротона). В зависимости от характера раздражителей более выражена либо первая, либо вторая фазы парабиоза. Некоторые авторы признают парабиотическое дальнедействие - неволновое (безымпульсное) распространение изменений возбудимости (повышения и понижения возбудимости), обусловленное возникновением парабиотического очага. Это тоническая нервная сигнализация, связанная с существованием периэлектротона. При усилении раздражения одиночного нервного волокна токи действия учащаются. Усиление раздражения до некоторого критического предела повышает тетанус.

Возбудимых тканей профессор Н. Е. Введенский , изучая работы нервно-мышечного препарата при воздействии на него различных раздражителей.

Энциклопедичный YouTube

    1 / 3

    ✪ ПАРАБИОЗ: красота, здоровье, работоспособность (Познавательное ТВ, Олег Мульцин)

    ✪ Почему менеджмент не подходит для русских? (Познавательное ТВ, Андрей Иванов)

    ✪ Система создания будущего: Производство идиотов (Познавательное ТВ, Михаил Величко)

    Субтитры

Причины парабиоза

Это самые разные повреждающие воздействия на возбудимую ткань или клетку, не приводящие к грубым структурным изменениям, но в той или иной мере нарушающее её функциональное состояние. Такими причинами могут быть механические, термические, химические и другие раздражители.

Сущность явления парабиоза

Как считал сам Введенский, в основе парабиоза лежит снижение возбудимости и проводимости , связанное с натриевой инактивацией. Советский цитофизиолог Н.А. Петрошин полагал, что в основе парабиоза лежат обратимые изменения белков протоплазмы. Под действием повреждающего агента клетка (ткань), не теряя структурной целостности, полностью прекращает функционировать. Это состояние развивается фазно, по мере действия повреждающего фактора (то есть зависит от продолжительности и силы действующего раздражителя). Если повреждающий агент вовремя не убрать, то наступает биологическая смерть клетки (ткани). Если же этот агент убрать вовремя, то ткань так же фазно возвращается в нормальное состояние.

Эксперименты Н.Е. Введенского

Введенский проводил опыты на нервно-мышечном препарате лягушки. На седалищный нерв нервно-мышечного препарата последовательно наносились тестирующие раздражители разной силы. Один раздражитель был слабый (пороговой силы), то есть вызывал минимальное по величине сокращение икроножной мышцы. Другой раздражитель был сильный (максимальный), то есть наименьший из тех, которые вызывают максимальное сокращение икроножной мышцы. Затем в какой-либо точке на нерв наносился повреждающий агент и каждые несколько минут нервно-мышечного препарат подвергался тестированию: поочередно слабыми и сильными раздражителями. При этом последовательно развивались следующие стадии:

  1. Уравнительная , когда в ответ на слабый раздражитель величина сокращения мышцы не изменялась, а в ответ на сильный амплитуда сокращения мышцы резко уменьшалась и становилась такой же, как при ответе на слабый раздражитель;
  2. Парадоксальная , когда в ответ на слабый раздражитель величина сокращения мышцы оставалась прежней, а в ответ на сильный раздражитель величина амплитуды сокращения становилась меньше, чем в ответ на слабый раздражитель, или мышца вообще не сокращалась;
  3. Тормозная , когда и на сильный и на слабый раздражители мышца не отвечала сокращением. Именно это состояние ткани и обозначается как парабиоз.

Биологические значение парабиоза

. Впервые подобный эффект был замечен у кокаина , однако вследствие токсичности и способности вызывать привыкание на данный момент применяют более безопасные аналоги – лидокаин и тетракаин . Один из последователей Введенского, Н.П. Резвяков предложил рассматривать патологический процесс как стадию парабиоза, поэтому для его лечения необходимо применять антипарабиотические средства.

4. Лабильность - функциональная подвижность, скорость протекания элементарных циклов возбуждения в нервной и мышечной тканях. Понятие "Л." введено русским физиологом Н. Е. Введенским (1886), который считал мерой Л. наибольшую частоту раздражения ткани, воспроизводимую ею без преобразования ритма. Л. отражает время, в течение которого ткань восстанавливает работоспособность после очередного цикла возбуждения. Наибольшей Л. отличаются отростки нервных клеток - аксоны, способные воспроизводить до 500-1000 импульсов в 1 сек; менее лабильны центральные и периферические места контакта - синапсы (например, двигательное нервное окончание может передать на скелетную мышцу не более 100-150 возбуждений в 1 сек). Угнетение жизнедеятельности тканей и клеток (например, холодом, наркотиками) уменьшает Л., т. к. при этом замедляются процессы восстановления и удлиняется рефрактерный период.

Парабиоз - состояние, пограничное между жизнью и смертью клетки.

Причины парабиоза – самые разные повреждающие воздействия на возбудимую ткань или клетку, не приводящие к грубым структурным изменениям, но в той или иной мере нарушающее ее функциональное состояние. Такими причинами могут быть механические, термические, химические и другие раздражители.

Сущность парабиоза . Как считал сам Введенский, в основе парабиоза лежит снижение возбудимости и проводимости, связанное с натриевой инактивацией. Советский цитофизиолог Н.А. Петрошин полагал, что в основе парабиоза лежат обратимые изменения белков протоплазмы. Под действием повреждающего агента клетка (ткань), не теряя структурной целостности, полностью прекращает функционировать. Это состояние развивается фазно, по мере действия повреждающего фактора (то есть зависит от продолжительности и силы действующего раздражителя). Если повреждающий агент вовремя не убрать, то наступает биологическая смерть клетки (ткани). Если же этот агент убрать вовремя, то ткань так же фазно возвращается в нормальное состояние.

Эксперименты Н.Е. Введенского .

Введенский проводил опыты на нервно-мышечном препарате лягушки. На седалищный нерв нервно-мышечного препарата последовательно наносились тестирующие раздражители разной силы. Один раздражитель был слабый (пороговой силы), то есть вызывал минимальное по величине сокращение икроножной мышцы. Другой раздражитель был сильный (максимальный), то есть наименьший из тех, которые вызывают максимальное сокращение икроножной мышцы. Затем в какой-либо точке на нерв наносился повреждающий агент и каждые несколько минут нервно-мышечного препарат подвергался тестированию: поочередно слабыми и сильными раздражителями. При этом последовательно развивались следующие стадии:



1. Уравнительная , когда в ответ на слабый раздражитель величина сокращения мышцы не изменялась, а в ответ на сильный амплитуда сокращения мышцы резко уменьшалась и становилась такой же, как при ответе на слабый раздражитель;

2. Парадоксальная , когда в ответ на слабый раздражитель величина сокращения мышцы оставалась прежней, а в ответ на сильный раздражитель величина амплитуды сокращения становилась меньше, чем в ответ на слабый раздражитель, или мышца вообще не сокращалась;

3. Тормозная , когда и на сильный и на слабый раздражители мышца не отвечала сокращением. Именно это состояние ткани и обозначается как парабиоз .

ФИЗИОЛОГИЯ ЦЕНТРАЛЬНОЙ НЕРВНОЙ СИСТЕМЫ

1. Нейрон как структурная и функциональная единица ЦНС. Его физиологические свойства. Строение и классификация нейронов .

Нейроны – это основная структурно-функциональная единица нервной системы, обладающая специфическими проявлениями возбудимости. Нейрон способен принимать сигналы, перерабатывать их в нервные импульсы и проводить к нервным окончаниям, контактирующим с другим нейроном или рефлекторными органами (мышца или железа).

Виды нейронов:

1. Униполярные (имеют один отросток – аксон; характерны для ганглиев беспозвоночных);

2. Псевдоуниполярные (один отросток, делящийся на две ветви; характерно для ганглиев высших позвоночных).

3. Биполярные (есть аксон и дендрит, характерно для периферических и чувствительных нервов);

4. Мультиполярные (аксон и несколько дендритов – характерно для мозга позвоночных);

5. Изополярные (трудно дифференцировать отростки би- и мультиполярных нейронов);

6. Гетерополярные (легко дифференцировать отростки би- и мультиполярных нейронов)



Функциональная классификация:

1.Афферентные (чувствительные, сенсорные – воспринимают сигналы из внешней или внутренней среды);

2.Вставочные связывающие нейроны друг с другом (обеспечивают передачу информации внутри ЦНС: с афферентных нейронов на эфферентные).

3. Эфферентные (двигательные, мотонейроны – передают первые импульсы от нейрона к исполнительным органам).

Главная структурная особенность нейрона – наличие отростков (дендритов и аксонов).

1 – дендриты;

2 – тело клетки;

3 – аксонный холмик;

4 – аксон;

5 –Швановская клетка;

6 – перехват Ранвье;

7 – эфферентные нервные окончания.

Последовательное синоптическое объединение всех 3х нейронов образует рефлекторную дугу .

Возбуждение , возникшее в виде нервного импульса на каком-либо участке мембраны нейрона, пробегает по всей его мембране и по всем его отросткам: как по аксону, так и по дендритам.Передаётся возбуждение от одной нервной клетки к другойтолько в одном направлении - с аксонапередающего нейрона навоспринимающий нейрон черезсинапсы , находящиеся на его дендритах, теле или аксоне.

Одностороннюю передачу возбуждения обеспечивают синапсы . Нервное волокно (отросток нейрона) может передавать нервные импульсыв обоих направлениях , а односторонняя передача возбуждения появляется тольков нервных цепях , состоящих из нескольких нейронов, соединённых синапсами.Именно синапсы обеспечивают одностороннюю передачу возбуждения.

Нервные клетки воспринимают и перерабатывают поступающую к ним информацию. Эта информация приходит к ним в виде управляющих химических веществ:нейротрансмиттеров . Она может быть в видевозбуждающих илитормозных химических сигналов, а также в видемодулирующих сигналов, т.е. таких, которые изменяют состояние или работу нейрона, но не передают на него возбуждение.

Нервная система играет исключительную интегрирующую роль в жизнедеятельности организма, так как объединяет (интегрирует) его в единое целое и интегрирует его в окружающую среду. Она обеспечивает согласованную работу отдельных частей организма (координацию ), поддержание равновесного состояния в организме (гомеостаз ) и приспособление организма к изменениям внешней или внутренней среды (адаптивное состояние и/илиадаптивное поведение ).

Нейрон - это нервная клетка с отростками, являющаяся основной структурной и функциональной единицей нервной системы. Она имеет строение, сходное с другими клетками: оболочка, протоплазма, ядро, митохондрии, рибосомы и другие органоиды.

В нейроне различают три части: тело клетки - сома, длинный отросток - аксон и множество коротких разветвленных отростков - дендритов. Сома выполняет обменные функции, дендриты специализируются на приеме сигналов из внешней среды или от других нервных клеток, аксон на проведении и передаче возбуждения в область, удаленную от зоны дендритов. Аксон оканчивается группой концевых разветвлений для передачи сигналов другим нейронам или органам-исполнителям. Наряду с общим сходством в строении нейронов наблюдается большое разнообразие, обусловленное их функциональными различиями (рис. 1).

Методы исследования желез внутренней секреции

Для изучения эндокринной функции органов, в том числе и желез внутренней секреции, применяются следующие методы:

    Экстирпации желёз внутренней секреции (эндокринных).

    Избирательное разрушение или подавление инкреторных клеток в организме.

    Трансплантация эндокринных желез.

    Введение экстрактов эндокринной железы интактным животным или после удаления соответствующей железы.

    Введение химически чистых гормонов интактным животным или после удаления соответствующей железы (заместительная «терапия»).

    Химический анализ экстрактов и синтез гормональных препаратов.

    Методы гистологического и гистохимического исследования эндокринных тканей

    Метод парабиоза или создания общего кровообращения.

    Метод введения в организм «меченых соединений» (например, радиоактивными нуклидами, флюоресцентов).

    Сравнение физиологической активности крови, притекающей к органу и оттекающей от него. Позволяет выявить секрецию в кровь биологически активных метаболитов и гормонов.

    Исследование содержания гормонов в крови и моче.

    Исследование содержания предшественников синтеза и метаболитов гормонов в крови и моче.

    Исследование больных с недостаточной или избыточной функцией железы.

    Методы генной инженерии.

Метод экстирпации

Экстирпация - хирургическое вмешательство, заключающееся в удалении структурного образования, например, железы.

Экстирпация (extirpatio) от латинского extirpo, extirpare - искоренять.

Различают частичную и полную экстирпацию.

После экстирпации изучают различными методами сохранившиеся функции организма.

С помощью этого метода были открыты инкреторная функция поджелудочной железы и её роль в развитии сахарного диабета, роль гипофиза в регуляции роста тела, значимость коры надпочечников и др.

Предположение о наличии эндокринных функций у поджелудочной железы нашло подтверждение в опытах И.Меринга и О.Минковского (1889 г.), показавших, что её удаление у собак приводит к выраженной гипергликемии и глюкозурии. Животные погибали в течение 2 – 3 недель после операции на фоне явлений тяжелого сахарного диабета. В последующем было установлено, что эти изменения возникают из за недостатка инсулина - гормона, образующегося в островковом аппарате поджелудочной железы.

С экстирпацией эндокринных желёз у человека приходится сталкиваться в клинике. Экстирпация железы может быть преднамеренная (например, при раке щитовидной железы орган удаляется полностью) или случайная (например, при удалении щитовидной железы удаляются паращитовидные железы).

Метод избирательного разрушения или подавления инкреторных клеток в организме

Если удаляется орган, который содержит клетки (ткани), выполняющие разные функции, дифференцировать физиологические процессы, выполняемые этими структурами трудно, а иногда вообще не возможно.

Например, при удалении поджелудочной железы, организм лишается не только клеток, вырабатывающих инсулин ( клетки), но и клеток, вырабатывающих глюкагон ( клетки), соматостатин ( клетки), гастрин (G клетки), панкреатический полипептид (ПП клетки). Кроме того, организм лишается важного экзокринного органа, обеспечивающего процессы пищеварения.

Как понять какие клетки ответственны за ту или иную функцию? В этом случае можно попытаться избирательно (селективно) повредить какие либо клетки и определить недостающую функцию.

Так при введении аллоксана (уреида мезоксалевой кислоты), происходит избирательный некроз клеток островков Лангерганса, что позволяет изучать последствия нарушения продукции инсулина без изменения других функций поджелудочной железы. Производное оксихинолина - дитизон вмешивается в метаболизм клеток, образует комплекс с цинком, что также нарушает их инкреторную функцию.

Второй пример - избирательное повреждение фолликулярных клеток щитовидной железы ионизирующим излучением радиоактивного йода (131I, 132I). При использовании этого принципа в лечебных целях говорят о селективной струмэктомии, в то время как хирургическую экстирпацию с теми же целями называют тотальной, субтотальной.

К этому же типу методов можно отнести и наблюдение за больными с повреждением клеток в результате иммунной агрессии или аутоагрессии, применение химических (лекарственых) средств, угнетающих синтез гормонов. Например: антитиреоидных средств - мерказолила, попилтиоурацила.

Метод трансплантации эндокринных желез

Пересадка железы может производиться тому же животному после ее предварительного удаления (аутотрансплантация) или интактным животным. В последнем случае применяется гомо- и гетеротрансплантация .

В 1849 году немецкий физиолог Адольф Бертольд установил, что пересадка кастрированному петуху в брюшную полость семенников другого петуха приводит к восстановлению исходных свойств у кастрата. Эту дату считают датой рождения эндокринологии.

В конце XIX века Штейнах показал, что пересадка половых желез морским свинкам и крысам меняет их поведение и продолжительность жизни.

В 20-х годах нашего столетия пересадка половых желез с целью «омоложения» применил Броун-Секар и широко использовал русский ученый С.Воронцов в Париже. Эти опыты трансплантации дали богатый фактический материал о биологических эффектах гормонов половых желез.

У животного с удаленной эндокринной железой можно ее имплантировать заново в хорошо васкуляризированную область тела, например под капсулу почки или в переднюю камеру глаза. Такая операция называется реимплантацией.

Метод введения гормонов

Может вводиться экстракт эндокринной железы или химически чистые гормоны. Гормоны вводят интактным животным или после удаления соответствующей железы (заместительная «терапия»).

В 1889 г. 72 летний Броун Секар сообщил об опытах, проведенных на самом себе. Вытяжки из семенников животных оказали на организм учёного омолаживающее действие.

Благодаря применению метода введения экстрактов эндокринной железы было установлено наличие инсулина и соматотропина, тиреоидных гормонов и паратгормона, кортикостероидов и др.

Разновидностью метода является кормление животных сухой железой или препаратами, приготовленными из тканей.

Использование чистых гормональных препаратов позволило установить их биологические эффекты. Нарушения, возникшие после хирургического удаления эндокринной железы, могут быть откорректированы посредством введения в организм достаточного количества экстракта данной железы или индивидуального гормона.

Применение этих методов у интактных животных привело к проявлению обратной связи в регуляции эндокринных органов, т.к. создаваемый искусственный избыток гормона вызывал подавление секреции эндокринного органа и даже атрофию железы.

Химический анализ экстрактов и синтез гормональных препаратов

Производя химический структурный анализ экстрактов из эндокринной ткани, удалось установить химическую природу и идентифицировать гормоны эндокринных органов, что в последующем привело к получению искусственным путем эффективных гормональных препаратов для исследовательских и лечебных целей.

Метод парабиоза

Не путайте с парабиозом Н.Е.Введенского. В этом случае речь идёт о явлении. Мы будем говорить о методе при котором используется перекрёстное кровообращение у двух организмов. Парабионты - организмы (два или более) имеющие связь между собой через кровеносную и лимфатическую систему. Такая связь может иметь место в природе, например у сросшихся близнецов, или создаётся искусственно (в эксперименте).

Метод позволяет оценить роль гуморальных факторов в изменении функций интактного организма одной особи при вмешательстве в эндокринную систему другой особи.

Особенно важными являются исследования сросшихся близнецов, имеющих общее кровообращение, но раздельные нервные системы. У одной из двух сросшихся сестер описан случай беременности и родов, после чего лактация наступила у обеих сестер, и кормление было возможно из четырех молочных желез.

Радионуклидные методы

(метод меченых веществ и соединений)

Заметьте не радиоактивных изотопов, а веществ или соединений, меченных радионуклидами. Строго говоря вводятся радиофармпрепараты (РФП) = носитель+ метка (радионуклид).

Этот метод позволяет изучать процессы синтеза гормонов в эндокринной ткани, депонирование и распределение гормонов в организме, пути их выведения.

Радионуклидные методы принято делить на in vivo и in vitro исследования. При in vivo исследованиях различают in vivo и in vitro измерения.

Прежде всего все методы можно разделить на in vitro - и in vivo -исследования (методы, диагностику)

In vitro-исследования

Не следует путать in vitro - и in vivo -исследования (методы) с понятием in vitro - и in vivo -измерения .

    При in vivo – измерениях всегда будет in vivo исследования. Т.е. нельзя измерить в организме, то, чего не было (вещество, параметр) или не ввели в качестве тестирующего агента при исследовании.

    Если ввели в организм тестирующее вещество, затем взяли биопробу и провели in vitro – измерения, исследование всё равно следует обозначить как in vivo – исследование.

    Если тестирующее вещество в организм не вводили, а взяли биопробу и провели in vitro – измерения, с введением или без введения тестирующего вещества (реактива например) исследование следует обозначить как in vitro – исследование.

В радионуклидной in vivo диагностике чаще используется захват РФП из крови инкреторными клетками и включается в образующиеся гормоны пропорционально интенсивности их синтеза.

Примером использования этого метода является изучение щитовидной железы с помощью радиоактивного йода (131I) или пертехнетата натрия (Na99mTcO4), коры надпочечников с помощью меченного предшественника стероидных гормонов, чаще всего холестерина (131I холестерола).

При радионуклидных in vivo исследованиях проводят радиометрию или гамма топографию (сцинтиграфию). Радионуклидное сканирование как метод устарело.

Раздельная оценка неорганической и органической фаз внутритиреодного этапа йодного обмена.

При изучении контуров самоуправления гормональной регуляции при in vivo исследованиях применяют тесты стимуляции и подавления.

Решим две задачи.

Для определения характера пальпируемого образования в правой доле щитовидной железы (рис.1) провели сцинтиграфию по 131I (рис.2).

Рис.1

Рис.2

Рис.3

Через некоторое время после введения гормона сцинтиграфию повторили (рис.3). Накопление 131I в правой доле не изменилось, в левой – появилось. Какое исследование проведено пациенту, с каким гормоном? Сделайте вывод по результатам исследования.

Вторая задача.

Рис.1

Рис.2

Рис.3

Для определения характера пальпируемого образования в правой доле щитовидной железы (рис.1) провели сцинтиграфию по 131I (рис.2). Через некоторое время после введения гормона сцинтиграфию повторили (рис.3). Накопление 131I в правой доле не изменилось, в левой – исчезло. Какое исследование проведено пациенту, с каким гормоном? Сделайте вывод по результатам исследования.

Для изучения мест связывания, накопления и метаболизма гормонов, их метят с помощью радиоактивных атомов, вводят в организм и применяют ауторадиографию. Срезы изучаемых тканей помещают на радиочувствительный фотоматериал, типа рентгеновской пленки, проявляют и места затемнения сравнивают с фотографиями гистологических срезов.

Исследование содержания гормонов в биопробах

Чаще в качестве биопроб используется кровь (плазма, сыворотка) и моча.

Этот метод является одним из наиболее точных для оценки секреторной деятельности эндокринных органов и тканей, но он не дает характеристики биологической активности и степени гормональных эффектов в тканях.

Используются различные методики исследования в зависимости от химической природы гормонов, в том числе биохимические, хроматографические и биологические методики тестирования, и опять же радионуклидные методики.

Среди радионуклидных медодов различают

    радиоиммунный (РИА)

    иммунорадиометрический (ИРМА)

    радиорецепторный (РРА)

В 1977 г. Розалин Ялоу получила Нобелевскую премию за усовершенствование методов радиоиммунологического исследования (RIA) пептидных гормонов.

Радиоиммунный анализ, получивший сегодня наибольшее распространение ввиду высокой чувствительности, точности и простоты, основан на применении меченных изотопами йода (125I) или тритием (3H) гормонов и связывающих их специфических антител.

Зачем он нужен?

Много сахара крови У большинства больных сахарным диабетом инсулиновая активность крови снижена редко, чаще она нормальная или даже повышена

Второй пример гипокальциемия. Часто паратирин повышен.

Радионуклидные методы позволяют определять фракции (свободные, связанные с белками) гормонов.

При радиорецепторном анализе, чувствительность которого ниже, а информативность выше, чем радиоиммунного, оценивается связывание гормона не с антителами к нему, а со специфическими гормональными рецепторами клеточных мембран или цитозоля.

При изучении контуров самоуправления гормональной регуляции при in vitro исследованиях применяют определение полного «набора» гармонов различных уровней регуляции, связанных с исследуемым процессом (либеринов и статинов, тропинов, эффекторных гормонов). Например, для щитовидной железы тиролиберина, тиротропина, трийодтирозина, тироксина.

Гипотиреоз первичный:

Т3, Т4, ТТГ, ТЛ

Гипотиреоз вторичный:

Т3, Т4, ТТГ, ТЛ

Гипотиреоз третичный:

Т3, Т4, ТТГ, ТЛ

Относительная специфичность регуляции: введение йода и диойдтирозина угнетает продукцию тиротропина.

Сравнение физиологической активности крови, притекающей к органу и оттекающей от него, позволяет выявить секрецию в кровь биологически активных метаболитов и гормонов.

Исследование содержания предшественников синтеза и метаболитов гормонов в крови и моче

Нередко гормональный эффект в значительной степени определяется активными метаболитами гормона. В других случаях предшественники синтеза и метаболиты, концентрация которых пропорциональна уровням гормона, более доступны для исследования. Метод позволяет не только оценить гормонопродуцирующую активность эндокринной ткани, но и выявить особенности метаболизма гормонов.

Наблюдение за больными с нарушенной функцией инкреторных органов

Это может дать ценную информацию о физиологических эффектах и роли гормонов эндокринной железы.

Аддисон Т. (Addison Tomas), английский врач (1793-1860). Его называют отцом эндокринологии. Почему? В 1855 г. он опубликовал монографию, содержащую в частности, классическое описание хронической надпочечниковой недостаточности. Вскоре её предложили называть аддисоновой болезнью. Причиной аддисоновой болезни чаще всего является первичное поражение коры надпочечников аутоиммунным процессом (идиопатическая аддисонова болезнь) и туберкулёзом.

Методы гистологического и гистохимического исследования эндокринных тканей

Эти методы позволяет оценить не только структурные, но и функциональные характеристики клеток, в частности, интенсивность образования, накопления и выведения гормонов. Например, явления нейросекреции гипоталамических нейронов, эндокринная функция кардиомиоцитов предсердий были обнаружены с помощью гистохимических методов.

Методы генной инженерии

Эти методы реконструкции генетического аппарата клетки позволяют не только исследовать механизмы синтеза гормонов, но и активно вмешаться в них. Механизмы особенно перспективны для практического применения в случаях стойкого нарушения синтеза гормонов, как это случается при сахарном диабете.

Примером экспериментального использования метода может служить исследование французских ученых, которые в 1983 году осуществили пересадку в печень крысы гена, контролирующего синтез инсулина. Внедрение этого гена в ядра клеток печени крысы привело к тому, что в течение месяца клетки печени синтезировали инсулин.

Загрузка...