docgid.ru

Анализ мазок периферической крови. Мазок периферической крови: нормохромные эритроциты нормальных размеров, шистоцитов, дегмацитов (“надкусанных” клеток) или сфероцитов нет. Что означают результаты

Н. Пулетти

Изготовление мазков крови технически простое и быстрое. Для получения максимальной информации оценку клеток крови необходимо систематизировать.

Подготовка и окраска мазков крови

При заборе материала у идеально спокойного животного со средним диаметром уширения вены кровь должна быстро поступать в пробирку, содержащую антикоагулянт. Чаще всего используется ЭДТА (этилендиаминтетраацетат), потому что этот антикоагулянт позволяет лучше сохранить исследуемые форменные элементы крови. Однако для упреждения разного рода морфологической деградации клеток промежуток времени между взятием свежей и хорошо гомогенизированной крови и изготовлением препарата должен быть максимально коротким (J.W. Harvey, 2001; D. Walker, 2008).

Классическая окраска отличается от быстрой. В последние время такие методы быстрой окраски, как Diff-Quick ® , имеют преимущества, поскольку они устойчивы к вариациям рН растворов и образованию депо окрашивающего вещества. Тем не менее они менее эффективны для выявления полихроматофилов и плохо окрашивают гранулы базофилов и мастоцитов (J.W. Harvey, 2001; D. Walker, 2008). Чтобы получить специфическую визуальную картину ретикулоцитов, необходимо провести окраску с новым метиленовым синим (NBM). В пластиковой пробирке каплю крови перемешивают с двумя каплями NBM. Пробирку оставляют при комнатной температуре на 10 минут. Маленькую каплю после перемешивания помещают на предметное стекло и размазывают так же, как при выполнении мазка крови. Затем предметное стекло быстро высушивают на воздухе и исследуют под микроскопом с большим увеличением (×50–×100).

Систематическое исследование мазков крови

При оценке мазка крови очень важно руководствоваться единой схемой исследования.

Мазок крови, выполненный одним тонким (моноцеллюлярным) слоем с округлостью на конце, утолщается к основанию. Клетки крови оценивают на тонком слое, потому как толстый слой несёт в себе мало информации. При малом увеличении (×10 или ×20) краевую часть мазка, в основном его округлый конец, обычно обследуют на выявление агрегатов тромбоцитов или широких атипичных клеток (лифмобластов или дендритных клеток) (фото 4). Агрегаты тромбоцитов после их активации формируются in vitro. Этот феномен происходит иногда в результате трудного забора крови, что, например, наиболее часто отмечают у кошек (E. Duan Lassen, G. Weiser, 2006; S.L. Stockhman, M.A. Skkott, 2008; D. Walker, 2008).

Фото 4. Микроскопия мазка крови здоровой собаки (× 1000). Сгустки тромбоцитов

Исследование мазков крови - это довольно распространённый метод, позволяющий быстро диагностировать многие часто встречающиеся нарушения у собак и кошек. Основными условиями эффективного использования этого метода диагностики являются строгое соблюдение техники подготовки мазка и систематическое исследование с соблюдением алгоритма исследования.

Основные положения

После забора материала кровь следует быстро поместить в пробирку с антикоагулянтом для того, чтобы сохранить качество клеток.

Окраска новым голубым метиленовым позволяет идентифицировать ретикулоциты.

Оценку осуществляют на тонком слое мазка крови со считыванием под микроскопом на уровне его косичек.

Под систематическим исследованием мазка крови подразумевается алгоритм APEL.

СВМ № 5/2010

Микроскопия мазка крови – исследование под микроскопом препарата, приготовленного из капли крови.

Выполнение микроскопии мазка крови является опциональной частью общего анализа крови или лейкоцитарной формулы и отдельно не производится.

Синонимы русские

Микроскопическое исследование мазка крови, мазок крови, микроскопия крови, ручной подсчет лейкоцитарной формулы, мазок периферической крови.

Синонимы английские

Blood Smear, Peripheral smear, Manual differential, Red blood cell morphology, White Blood cell morphology, Peripheral blood smear, Blood Film Examination, Blood Film

Для чего используется этот анализ?

  • Чтобы определить нарушения формы и размера, а также изменения количества эритроцитов, лейкоцитов и тромбоцитов, различные типы лейкоцитов (включая незрелые формы) и их процентное соотношение.
  • Для диагонстики различных заболеваний, которые связаны с нарушениями образования, функции или с избыточным разрушением форменных элементов крови.
  • Чтобы отслеживать образование клеток крови и степень их зрелости при лейкозах, после химио- или лучевой терапии, а также при нарушениях образования гемоглобина.
  • Когда по результатам общего анализа крови и лейкоцитарной формулы, назначаемым по самому широкому кругу показаний, выявлено значительное увеличение количества лейкоцитов, атипичные или незрелые клетки.
  • При подозрении на заболевание, влияющее на клетки крови.
  • При приеме лекарств, которые могут влиять на производство клеток крови.

Какой биоматериал можно использовать для анализа?

Венозную или капиллярную кровь.

Общая информация об исследовании

Исследование позволяет морфологически оценить клетки (форменные элементы) крови (эритроциты, лейкоциты, тромбоциты), а также выполнить их подсчет. Клетки крови образуются и созревают в красном костном мозге и затем выбрасываются в общий кровоток. У каждой разновидности клеток свои функции: лейкоциты отвечают за борьбу с инфекционными агентами, эритроциты – обеспечивают доставку кислорода в ткани и удаление из них углекислого газа, тромбоциты являются важнейшим звеном системы гемостаза. В физиологических условиях количество и морфологические признаки клеток крови стабильны и не выходят за рамки референсных значений. При различных заболеваниях количество и свойства (форма, объем, цвет, наличие включений, их количество и пр.) закономерно изменяется. По этой причине оценка клеточных элементов в мазке крови является универсальным тестом при диагностике многих патологических состояний и широко применяется в практике врача практически любой специализации.

Мазок периферической крови – это «моментальный снимок» клеток крови в том виде, в каком они находятся в момент взятия образца. Для выполнения исследования венозную или капиллярную кровь помещают на предметное стекло, которое должно быть тщательно обезжирено. Затем другое стекло ставят на предметное стекло под углом 45" и проводят вдоль капли крови так, чтобы она растеклась тонким слоем по ширине шлифованного стекла. Затем мазок фиксируют, чтобы форменные элементы крови были более устойчивы. После этого мазок окрашивают специальным красителем, который делает клетки и их элементы более яркими, и высушивают. После чего врач в лаборатории изучает мазок под микроскопом.

Врач может определить различные типы лейкоцитов (эозинофилы, нейтрофилы, лимфоциты, базофилы, моноциты), их незрелые формы, а также процентное содержание каждого из типов этих клеток, посмотрев больше 100 клеток.

По цвету эритроцитов можно судить о содержании в нем гемоглобина.

Эритроциты

Нормальные зрелые эритроциты имеют одинаковый размер – около 7,5 мкм. Это безъядерные клетки в виде пончика (двояковогнутые диски). Такая форма увеличивает площадь поверхности газообмена, что способствуют выполняемой им функции – переносу кислорода от легких к тканям и двуокиси углерода (СО2) обратно в легкие путем связывания их с гемоглобином. Кроме того, эта форма позволяет эритроцитам деформироваться и проходить через узкие кровеносные сосуды – капилляры (диаметром до 2-3 мкм). Благодаря наличию гемоглобина при обычной окраске эритроциты имеют красный цвет, менее яркий в центре клетки.

Продолжительность жизни эритроцита в норме около 120 дней.

Не все эритроциты в кровяном русле имеют одинаковую форму и размер, однако значительное количество измененных клеток свидетельствует о какой-то патологии.

Нейтрофилы

При окраске по Романовскому нейтрофилы выглядят как светлые клетки, содержащие маленькие розово-фиолетовые гранулы. Поэтому их еще называют гранулоцитами. Эти гранулы содержат определенные ферменты и белки, способные нейтрализовывать и уничтожать микроорганизмы. Нормальные зрелые нейтрофилы имеют ядра с 4-5 долями или сегментами, поэтому называются сегментоядерными нейтрофилами.

Для чего используется исследование?

Пока не появились автоматические анализаторы, каждый раз, когда выполнялся общий анализ крови, проводилось микроскопическое исследование мазка крови, так как определить процентное соотношение различных форм лейкоцитов (лейкоцитарную формулу) по-другому было нельзя. В современных анализаторах подсчет лейкоцитарной формулы осуществляется автоматически. Однако при подозрении на наличие патологических форменных элементов крови микроскопия мазка крови опытным врачом по-прежнему является лучшим способом выявления и оценки атипичных и незрелых клеток.

Когда назначается исследование?

Существует достаточно широкий круг заболеваний и расстройств, при которых могут изменяться свойства клеток, циркулирующих в кровяном русле. В норме в кровь из костного мозга попадают только зрелые клетки, однако при ряде заболеваний, например при лейкозах, в кровь могут попадать незрелые клетки – бласты. При некоторых состояниях, например при массивной инфекции, в лейкоцитах могут появляться характерные примеси, сами клетки могут становиться атипичными, как при инфекционном мононуклеозе. При недостатке железа или витамина B12, при врожденных нарушениях синтеза гемоглобина могут изменяться свойства и внешний вид эритроцитов. Обнаружение в мазке таких патологических клеток в большом количестве позволяет заподозрить вызвавшее их заболевание и назначить дополнительное обследование.

Мазок крови может регулярно назначаться пациентам с онкологическими заболеваниями костного мозга, лимфоузлов для наблюдения за динамикой состояния и контроля за эффективностью лечения.

Что означают результаты?

Изменения в мазке крови не всегда позволяют поставить диагноз. Как правило, они указывает на наличие некоего заболевания, что предполагает дальнейшее обследование в целях постановки точного диагноза.

www.helix.ru

Микроскопия - это что такое?

Важность науки в жизни всего общества отрицать очень сложно. Учёные и их разработки дали обществу всё то, чем оно теперь пользуется с радостью и наслаждается. Разработки учёных в разных областях позволяют побеждать смертельные болезни, бороться с психическими расстройствами, создавать уникальную «умную» технику и даже роботов. Возможности науки поистине безграничны. Новые лица всегда приносят с собой новые идеи, которые становятся основой для будущих разработок. Однако множество разработок базируется на простых и проверенных методах.

Многие мудрецы прошлого говорили о том, что существует макро-, микромир. На том этапе развития люди не могли осознать всю глубину этих слов. Ведь макро- и микромир действительно существуют и очень тесно взаимодействуют. Крохотные изменения в структуре клетки могут быть вызваны глобальными изменениями в Солнечной системе. На сегодняшний день доказать или опровергнуть такую взаимосвязь очень сложно, но исследования мира бактерий и клеток говорят о том, что клетка – это маленькая Вселенная.

Микроскопия

Микроскопия – это научное исследование объектов при помощи микроскопа. В переводе с греческого это слово означает «маленький, небольшой». Микроскопия может подразделяться на несколько подвидов: оптическую, многофотонную, рентгеновскую, лазерную и электронную. Цель этого способа исследования заключается в увеличенном наблюдении за объектом и регистрацией замеченных изменений.

История микроскопа

В начале своего исторического развития микроскопы представляли собой оптические приборы, которые использовали лучи видимого света. Такие приборы были очень слабы для наблюдения и подходили только для простейших операций. Идея возникновения электронного микроскопа возникла в тот момент, когда учёные задумались о замене электромагнитного излучения на электронный пучок. Это событие стало опорной точкой для развития электронного микроскопа, который значительно расширил возможности наблюдения за объектом.

Методы микроскопии

Для того чтобы правильно и тщательно обследовать какой-либо объект, необходимо работать по определённому алгоритму. Подобные алгоритмы вырабатываются один раз и применяются годами. Для того чтобы изучать окружающий мир при помощи специальной техники, необходимо владеть особыми методами. Методы микроскопии – это совокупность различных алгоритмов, следуя которым, можно основательно и системно изучить конкретный объект микромира. Прохождение пучка света через микроскоп сопровождается некоторыми изменениями первоначальных характеристик, которые могут быть вызваны структурным строением предмета. Этот процесс может сопровождаться рядов оптических эффектов, таких как отражение, поглощение, преломление, дисперсия и т.д.

Методы световой микроскопии

Световая микроскопия – это система методов, которые используют различные оптические эффекты для достоверного отображения результатов. Видимые элементы и характер полученного изображения будут во многом зависеть от освещения. Всего насчитывается большое количество методов микроскопии: светлого поля, косого освещения, интерференционного контраста, тёмного поля, поляризационный метод, фазово-контрастная, ультрафиолетовая, люминесцентная, инфракрасная микроскопия, конфокальный микроскоп.

Все эти методы имеют определённые достоинства и недостатки. При работе с образцом выбирать тот или иной метод следует исходя из его адекватности в данной ситуации. Сильные и слабые стороны каждого метода не важны в целом, главное, чтобы метод был применим в заданных условиях.

Микроскопия и медицина

Применение микроскопии в медицине имеет огромный потенциал. На сегодняшний день благодаря микроскопам можно исследовать различные клетки организма человека для того, чтобы точно определять состояние здоровья. Клетки организма дают наиболее точный и достоверный результат, который до недавнего времени было невозможно получить, так как микроскопы не могли дать исчерпывающей информации.

Использование таких приборов очень перспективно, ведь методы лечения и диагностики могут разительно преобразиться и вовсе перейти на новый уровень. Исследование с помощью микроскопов известно и применяется длительное время, однако наука стоит на пороге того, чтобы лечить человека клетками. Это уникальная возможность, которая позволит отойти от привычных методов лечения и забыть о лекарствах. Клетка – самый мощный элемент организма. Говорить о том, какую пользу может принести пересадка больному человеку здоровых клеток, просто бессмысленно, ведь это очевидно.

Исследование мочи

Общий анализ мочи – это комплекс мероприятий, которые направлены на исследование свойств мочи и её физико-химического состава. Важными показателями при этом являются цвет, запах, реакция, прозрачность, плотность, а также содержание в моче различных веществ. Микроскопия осадка мочи позволяет определить наличие солей, клеточных элементов и цилиндров. Следует понимать, что моча - это конечный продукт деятельности почек, который может очень точно отображать состояние обменных процессов и крови в организме.

Анализ осадка мочи

Микроскопия мочи позволяет создать более полную картину при полном обследовании организма. Также мазок часто используют для обычной и дифференциальной диагностики болезней мочевыводящих путей и почек. Во время лечения микроскопию мочи могут назначать для того, чтобы получить оценку эффективности докторского вмешательства. Исследование мочи позволяет выявить конкретные или потенциальные проблемы в водно-электролитном балансе организма, также в процессе обмена веществ. Анализ мочи весьма эффективен при диагностике на болезни желудочно-кишечного тракта, а также при инфекционных и воспалительных процессах в организме. Иногда микроскопию мочи используются для того, чтобы следить за состоянием пациента в период терапевтического или хирургического лечения.

Исследование крови под микроскопом

Кровяные тельца формируются в красном костном мозге, а затем выбрасываются в кровоток. Каждая клетка крови выполняет свою определённую функцию. Лейкоциты нужны для борьбы с инфекционными клетками, эритроциты способствуют обогащению клеток кислородов и удалению из них углекислого газа, тромбоциты очень важны для гемостаза. В нормальных условиях тело человека вырабатывает нормативное значение всех клеток, которое не выходит за определённые рамки. При возникновении каких-либо осложнений или при болезни клетки крови могут менять свои размеры, форму, цвет и количество. Только благодаря точному микроскопическому исследованию можно определить состояние клеток и сделать соответствующие выводы.

Кровь – это живительная жидкость организма, которая обеспечивает обмен полезными веществами между всеми клетками. Микроскопия мазка крови – это исследование, которое производится под микроскопом. Исследуется препарат, приготовленный из одной капли крови. Эта процедура входит в общий анализ крови или лейкоцитарную формулу и отдельно не совершается.

Микроскопия мазка

Для чего нужен мазок крови? Микроскопия мазка крови даёт специалисту очень важные знания о состоянии здоровья человека. При помощи этого анализа можно определить количественное соотношение эритроцитов, тромбоцитов, лейкоцитов, а также их формы и размер. Кроме того, клинический анализ крови позволяет определять количественное выражение незрелых лейкоцитов, что является очень важным моментом в ряде заболеваний. Также мазок крови позволяет качественно диагностировать заболевания, которые могут быть связаны с нарушениями функций крови, её образования, свёртываемостью, а также разрушением форменных элементов крови. Очень важной задачей микроскопического мазка на кровь является регулярное отслеживание состояния клеток крови, их зрелость после лучевой и химиотерапии, при проблемах с гемоглобином, а также при лейкозах.

Назначается мазок на кровь в том случае, если общий анализ крови показал, что увеличено количественное выражение лейкоцитов, незрелых или атипичных клеток. Для мазка можно использовать биоматериал из крови или капилляров.

Биология и микроскопы

Биология значительно расширяет возможности использования микроскопов. Как уже говорилось раньше, цитология во многом опирается на современные и мощные микроскопы. Микроскопия в биологии открывает для учёных невиданные просторы для опытов и исследований. Современные разработки позволяют уже сейчас говорить о том, какое будущее нас ждёт.

Микроскопия в биологии имеет очень широкое применение. Приборы позволяют исследовать организмы, которые недоступны глазу человека, но очень важны для научных экспериментов. В биологии чаще всего используют метод электронной микроскопии, который даёт изображение за счёт направленного потока электронов. При этом даже световой микроскоп позволяет исследовать живые биологические объекты.

Метод микроскопии в биологии применяется очень активно, так как практически все разновидности применимы для биологических исследований. Интерференционная микроскопия позволяет исследовать прозрачные жидкости и объекты, а также давать их качественный анализ. Это возможно благодаря тому, что луч света, проходя через прибор, раздваивается: одна его часть проходит через объект, а другая - мимо. Таким образом, два луча интерферируют и соединяются, давая полноценное изображение.

Микроскопия в разных областях применения

Область применения микроскопии очень широка. Несмотря на то что изначально микроскопы были предназначены для исследований в области биологии, на сегодняшний день сфера их влияния значительно расширилась. Микроскопия – это комплекс методов, который нашёл своё применение при анализе твёрдых и кристаллических тел, структуре и строений поверхностей. Также микроскопы активно используются в медицине не только для диагностики, но и при выполнении микрохирургических операций. Более того, известно, что учёными был разработан подводный лазерный микроскоп, цель которого состоит в поиске внеземной жизни на Европе.

Также не следует забывать о бурном развитии нанотехнологий, которые немыслимы без микроскопов. Развитие этой отрасли приводит к тому, что разновидности микроприборов постоянно совершенствуются. Более того, появляются новые виды микроскопов, которые предназначены для исследования определённой среды.

Подводя некоторые итоги, следует сказать о том, что микроскопия – это перспективная область, которая с каждым годом развивается всё более активно. Интерес к стволовым клеткам человека, а также развитие нанотехнологий ведёт к тому, что микроскопы становятся неотъемлемой частью любой исследовательской работы.

fb.ru

Лейкоцитарная формула (микроскопия)

    При обнаружении клеток в результате указывается их количество на 100 просчитанных клеток (например, 1/100 или 5/100).

    Микроскопия окрашенного мазка крови является «золотым стандартом» диагностики.Имеет большое значение в диагностике гематологических, инфекционных, воспалительных заболеваний, а также в оценке тяжести состояния и эффективности проводимой терапии.

    1. Несоблюдение правил подготовки к исследованию - взятие крови не натощак, сразу же после проведения диагностических процедур (УЗИ, рентгенография и т.п.), после физиотерапевтических процедур.2. Повышенные физические нагрузки, эмоциональное напряжение, беременность.

    3. Приём некоторых лекарственных препаратов (сульфаниламидов, нестероидных противовоспалительных средств, левомицетина, тиреостатиков, цитостатиков, кортикостероидов, гепарина, леводопа, фенитоина, вальпроевой кислоты, наркотических анальгетиков).

    Единицы измерения

    Нейтрофилы: %Эозинофилы: %Базофилы: %Моноциты: %

    Лимфоциты: %

    Референсные значения

    Палочкоядерные нейтрофилы: 1 – 5%

    Сегментоядерные нейтрофилы:

    Эозинофилы: 0 – 6%Базофилы: 0 – 1,0%

    Моноциты:

    Лимфоциты:

    Повышение

    Прием препаратов (леводопа, фенитоин, вальпроевая кислота, наркотические анальгетики)

    Снижение

    Нейтрофилы: Бактериальные инфекции (брюшной тиф, паратифы, бруцеллез); вирусные инфекции (грипп, корь, ветряная оспа, вирусный гепатит, краснуха); затяжные инфекции у пожилых и ослабленных людей. Гипо- и апластические анемии Наследственные агранулоцитозы Анафилактический шок Тиреотоксикоз Прием цитостатиков Лекарственные нейтропенииЭозинофилы: Тяжелые гнойные инфекции Шок, стресс Отравление солями тяжелых металловМоноциты: Апластическая анемия Волосатоклеточный лейкоз Пиогенные инфекции Роды Оперативные вмешательства Шоковые состояния Приём глюкокортикоидовЛимфоциты: Острые инфекции Милиарный туберкулёз Лимфогранулематоз Системная красная волчанка Апластическая анемия Почечная недостаточность Терминальная стадия онкологических заболеваний Иммунодефициты Рентгенотерапия

    Приём цитостатиков

    Интерпретация результатов исследований

    1. Результаты исследования должны оцениваться в комплексно, т.е. учитывать не только процентное отношение различных популяций лейкоцитов, но и их морфологические изменения, и морфологические изменения эритроцитов.2. Наиболее часто выявляемые изменения морфологии эритроцитов: Изменения размеров (микроцитоз, макроцитоз, мегалоцитоз, анизоцитоз) Изменения формы (пойкилоцитоз, микросфероцитоз, серповидные клетки, мишеневидные клетки, акантоциты, стоматоциты, эллиптоиды, дакриоциты и др.) Изменения окраски (гипохромия, гиперхромия) Включения в эритроцитах (кольца Кебота, тельца Жолли, базофильная зернистость, тельца Гейнца-Эрлиха3. Наиболее часто выявляемые изменения морфологии лейкоцитов: Токсигенная зернистость нейтрофилов Вакуолизация цитоплазмы Тельца Князькова-Деле Гиперсегментация ядер нейтрофилов Пельгеровская аномалия Псевдопельгеровская аномалия Клетки лейколиза4. Некоторые варианты изменения лейкоцитарной формулы:а). Сдвиг влево: большое количество палочкоядерных нейтрофилов, возможно появление метамиелоцитов и миелоцитов. Данные изменения возможны при: Острых инфекционных заболеваниях, сепсисе Ацидозе и коматозных состояниях Физическом перенапряженииб). Сдвиг вправо: в крови появляются гиперсегментированные нейтрофилы, возможно наличие токсигенной зернистости в их цитоплазме. Данные изменения возможны при: Мегалобластной анемии Болезни почек и печени Состояния после переливания крови.

    5. Данное исследование обычно назначается вместе с исследованиями 10.001 Общий анализ крови CBC без лейкоцитарной формулы, 10.050 Общий анализ крови CBC/Diff с лейкоцитарной формулой (5 фракций лейкоцитов), 10.200 Скорость оседания эритроцитов (СОЭ).

www.likar.info

Общий анализ крови с "ручной" микроскопией мазка крови

Общий анализ крови – набор тестов, направленных на определение количества различных клеток крови, их параметров (размера, объема) и показателей, отражающих их соотношение и функционирование. Анализ используется для диагностики и контроля лечения многих заболеваний.

Общий анализ кровивключает в себя определение концентрации гемоглобина, количества эритроцитов, их специфических показателей (MCV, MCH, MCHC, RDW), лейкоцитов, тромбоцитов, величины гематокрита, лейкоцитарной формулы, также определяется скорость оседания эритроцитов (СОЭ). Лейкоцитарная формула - процентное соотношение различных видов лейкоцитов (нейтрофилы, лимфоциты, эозинофилы, моноциты, базофилы). Подсчет лейкоформулы проводится на автоматическом гематологическом анализаторе методом многоуглового разделения рассеянного поляризованного света, в сочетании с лазерной проточной цитометрией. Анализатор выдаёт результаты в виде абсолютного (количество клеток в 1 л) и относительного количества (проценты). Параллельно выполняется просмотр мазка крови под микроскопом врачом клинической лабораторной диагностики с дополнительным уточнением лейкоцитарной формулы и описанием морфологии клеток. В этом случае оценивается содержание палочкоядерных нейтрофилов, и других типов клеток в процентном содержании (сегментоядерные нейтрофилы, моноциты, лимфоциты, эозинофилы, базофилы). Исследование лейкоцитарной формулы имеет большое значение в диагностике гематологических, инфекционных, воспалительных заболеваний, а также оценке тяжести состояния и эффективности проводимой терапии. В то же время, изменения лейкоцитарной формулы не являются специфичными - они могут иметь сходный характер при разных заболеваниях или, напротив, могут встречаться непохожие изменения при одной и той же патологии у разных больных. Лейкоцитарная формула имеет возрастные особенности, поэтому её сдвиги должны оцениваться с позиции возрастной нормы (это особенно важно при обследовании детей).

Скорость оседания эритроцитов (СОЭ)- неспецифический показатель воспаления. Определение СОЭ проводится на анализаторе TEСT 1. В основе метода лежит телеметрическое измерение способности эритроцитов к агрегации с помощью измерения оптической плотности. Оптическая плотность автоматически переводится в мм/ч. Измерение агрегации осуществляется в микрокапилляре анализатора, который моделирует кровеносный сосуд. Результаты измерений сопоставимы со значениями, полученными методом Вестергрена.

Общий анализ крови совместно с лейкоцитарной формулой широко используется как один из самых важных методов обследования при большинстве заболеваний. Изменения, происходящие в периферической крови, неспецифичны, но в то же время отражают изменения, происходящие в целом организме.

Не принимать пищу в течение 8 часов перед исследованием, можно пить чистую негазированную воду. Исключить физическое и эмоциональное перенапряжение и не курить в течение 30 минут до исследования.

Материал для исследования: цельная кровь с ЭДТА.

Общий анализ крови широко используется как один из самых важных методов обследования при большинстве заболеваний. Изменения, происходящие в периферической крови, неспецифичны, но в то же время отражают изменения, происходящие в целом организме.

  • Диагностика гематологических, инфекционных, воспалительных заболеваний, оценка тяжести состояния и эффективности проводимой терапии.
  • Плановые медицинские осмотры, подготовка к оперативному вмешательству, медкомиссия при устройстве на работу.
  • Наличие жалоб на утомляемость, слабость или признаки инфекционного заболевания, воспаления.

Интерпретация результатов содержит аналитическую информацию для лечащего врача. Лабораторные данные входят в комплекс всестороннего обследования пациента, проводимого врачом и не могут быть использованы для самодиагностики и самолечения.

Общий анализ крови самый распространенный лабораторный анализ, используемый для оценки общего состояния здоровья. Множество различных патологических состояний могут приводить к изменениям количества основных клеточных популяций в крови. Общий анализ крови назначается для контроля за эффективностью лечения анемии или инфекционного заболевания, а также для оценки негативного влияния на клетки крови некоторых лекарств.Значительное повышение количества лейкоцитов обычно подтверждает воспаление.

Снижение эритроцитов и гемоглобина свидельствует об анемии и требует дополнительных обследований для уточнения ее причины.С помощью показателя MCV(средний объем эритроцитов) можно провести первичную дифференциальную диагностику анемий:

Ø MCV менее 80 fl (микроцитарная анемия). Причины: железодефицитная анемия, талассемия, анемия хронического заболевания, сидеробластическая анемия.

Поскольку самой частой причиной микроцитарной анемии является дефицит железа, то при выявлении микроцитарной анемии рекомендуется определение концентрации ферритина, трансферрина, а также железа в сыворотке крови. Рекомендуется обратить внимание на показатель RDW(индекс анизоцитоза эритроцитов) (увеличен только при железодефицитной анемии) и количество тромбоцитов (часто увеличено при железодефицитной анемии).

Ø MCV 80-100 fl (нормоцитарная анемия). Причины: кровотечение, анемия при хронической почечной недостаточности, гемолиз.

Ø MCV более 100 fl (макроцитарная анемия). Причины: злоупотребление алкоголем,

лекарственные препараты (гидроксимочевина, зидовудин), дефицит витамина B12 и фолиевой кислоты.

Повышение уровня гемоглобина:

§ эритремия.

Повышение концентрации эритроцитов:

§ обезвоживание (при выраженной диарее, рвоте, повышенном потоотделении, диабете, ожоговой болезни, перитоните);

§ физиологические эритроцитозы (у жителей высокогорья, лётчиков, спортсменов);

§ симптоматические эритроцитозы (при недостаточности дыхательной и сердечно-сосудистой системы, поликистозе почек);

§ эритремия.

Повышение гематокрита:

§ обезвоживание (при выраженной диарее, рвоте, повышенном потоотделении, диабете, ожоговой болезни, перитоните);

§ физиологические эритроцитозы (у жителей высокогорья, лётчиков, спортсменов);

§ симптоматические эритроцитозы (при недостаточности дыхательной и сердечно-сосудистой системы, поликистозе почек);

§ эритремия.

Понижение гематокрита:

§ анемии различной этиологии;

§ гипергидратация.

Повышение значений МСН:

§ апластическая анемия;

§ заболевания печени;

§ гипотиреоз;

§ аутоиммунные анемии;

§ курение и употребление алкоголя.

Понижение MCH:

§ железодефицитная анемия;

Следует учитывать, что величина MCH не является специфическим, показатель следует использовать для диагностики анемий только в комплексе с другими показателями общего анализа крови и биохимического исследования крови.

Повышение значений MCHC (средняя концентрация гемоглобина в эритроцитах):

§ наследственная микросфероцитарная анемия.

Понижение значений МСНС:

§ железодефицитная анемия;

§ анемия хронических заболеваний;

§ некоторые виды гемоглобинопатий.

Следует учитывать, что величина MCHC не является специфическим, показатель следует использовать для диагностики анемий только в комплексе с другими показателями общего анализа крови и биохимического исследования крови.

Повышение концентрации тромбоцитов:

§ физическое перенапряжение;

§ воспалительные заболевания, острые и хронические;

§ гемолитические анемии;

§ анемии вследствие острой или хронической кровопотери;

§ состояния после перенесённых хирургических вмешательств;

§ состояние после спленэктомии;

§ онкологические заболевания, в том числе, и гемобластозы.

Понижение концентрации тромбоцитов:

§ беременность;

§ В12-дефицитная и фолиеводефицитная анемия;

§ апластическая анемия;

§ приём лекарственных препаратов, угнетающих продукцию тромбоцитов;

§ врождённые тромбоцитопении;

§ спленомегалия;

§ аутоиммунные заболевания;

§ состояния после перенесённых массивных гемотрансфузий.

Повышение концентрации лейкоцитов:

§ физиологический лейкоцитоз (эмоциональные и физические нагрузки, воздействие солнечного света, холода, приём пищи, беременность, менструация);

§ воспалительные процессы;

§ вирусные и бактериальные инфекции;

§ состояния после перенесённых операционных вмешательств;

§ интоксикации;

§ ожоги и травмы;

§ инфаркты внутренних органов;

§ злокачественные новообразования;

§ гемобластозы.

Понижение концентрации лейкоцитов:

§ вирусные и некоторые хронические инфекции;

§ приём лекарственных препаратов (антибиотики, цитостатики, нестероидные противовоспалительные средства, тиреостатики и др.);

§ аутоиммунные заболевания;

§ воздействие ионизирующего излучения;

§ истощение и кахексия;

§ анемии;

§ спленомегалия;

§ гемобластозы.

Скорость оседания эритроцитов (СОЭ): показатель СОЭ меняется в зависимости от множества физиологических и патологических факторов. Значения СОЭ у женщин несколько выше, чем у мужчин. Изменения белкового состава крови при беременности ведут к повышению СОЭ в этот период.

Изменение СОЭ может служить косвенным признаком текущего воспалительного или иных патологических процессов, таких как злокачественные опухоли и диффузные заболевания соединительной ткани.

Основным фактором, влияющим на образование, определяющим СОЭ, является белковый состав плазмы крови. Острофазовые белки (СРБ, альфа-1-антитрипсин, гаптоглобин) адсорбируясь на поверхности эритроцитов, снижают их заряд и отталкивание друг от друга, способствуют образованию «монетных столбиков» и ускоренному оседанию эритроцитов. При острых воспалительных и инфекционных процессах изменение СОЭ отмечается через 24 часа после повышения температуры и увеличения количества лейкоцитов. При хроническом воспалении повышение СОЭ обусловлено увеличением концентрации фибриногена и иммуноглобулинов. Определение СОЭ в динамике, в комплексе с другими тестами используют при контроле эффективности лечения воспалительных и инфекционных заболеваний.

Выраженное повышение СОЭ (60-80 мм/ч) характерно для парапротеинемических гемобластозов (миеломная болезнь, болезнь Вальдстрема).

Клинический анализ крови с лейкоцитарной формулой и СОЭ – это скрининговый метод, с помощью которого можно заподозрить или исключить многие заболевания. Этот анализ, однако, не всегда позволяет установить причину изменений, при выявлении которых, как правило, требуются дополнительные лабораторные, в том числе патоморфологические и гистохимические исследования. Наиболее точная информация может быть получена при динамическом наблюдении изменений показателей крови.

medlabexpress.perm.ru

Цель занятия. Научиться дифференцировать форменные элементы крови по окрашенным мазкам, выводить лейкограмму.

Объекты исследования и оборудование. Окрашенные мазки крови животных разных видов.

Микроскопы, препаратоводители, 11-клавишные счетчики, стеклянные палочки, иммерсионное масло, бензин, вата.

Исследование окрашенных мазков крови. Окрашенные мазки крови исследуют под микроскопом, используя при этом объектив X 90 и иммерсионное масло. Последнее после работы удаляют с мазка сухой ваткой, чтобы сохранить препарат.

В окрашенных мазках крови определяют размер, форму, характер окраски клеток и их структурных элементов - ядра, цитоплазмы и включений; соотношение между форменными элементами различных видов.

Эритроциты. При оценке эритроцитов обращают внимание на их размер, форму, окраску и клеточные включения. Эритроциты млекопитающих в мазках крови округлой формы (у верблюдов и лам овальной), у птиц и рыб - овальной формы и содержат ядро. Эритроциты окрашиваются кислыми красителями в розовый цвет (ацидофильны), причем центральная часть оказывается более бледной, так как центр эритроцита вогнут. Такое окрашивание - более интенсивное по периферии и бледное в центре - называют ортохромазией, а эритроциты - ортохромными клетками. Диаметр эритроцитов составляет (1 · 10" 3 мм): у крупного рогатого скота 4,4-7,7; овец 3-5,6; коз 2,1-4,9; лошадей 4,5-7,5; свиней 4-9; собак 4,2-10; кошек 5-6,2; кур 9,3 ? 5,6-12,2 х 7,2; рыб 9,8 ? 14-10,2 ? 16,8.

Тромбоциты. В мазках крови тромбоциты, или кровяные пластинки, овальной, округлой или угловатой формы. Периферическая, гомогенная их часть - гиаломер - окрашивается в голубой цвет, а центральная, состоящая из зернышек, - грануломер - в фиолетовый или в красно-фиолетовый. Чаще тромбоциты в мазках лежат группами, образуя конгломераты из пяти-шести пластинок и более, что указывает на их хорошую способность к агглютинации. Диаметр тромбоцитов 1-4 мкм.

Лейкоциты. В зависимости от свойств цитоплазмы и характера зернистости лейкоциты подразделяют на гранулоциты, или зернистые (базофилы, эозинофилы и нейтрофилы), и агранулоциты, или незернистые (лимфоциты и моноциты) (см. цв. вкл., рис. 9-15).

Базофилы (Б) - округлой или овальной формы клетки диаметром 11 - 17 10" 3 мм. У зрелых форм ядро полиморфное, плохо заметное, с неясными очертаниями, окрашено в фиолетовый цвет или слабо-фиолетовый с бордовым оттенком цвета. Цитоплазма бледно-розовая или бледно-фиолетовая, что обусловлено растворением гранул в процессе приготовления мазка. Крупные гранулы округлые или расплывчатые, окрашены в темно-фиолетовый, темносиний или черный цвет, нередко разрушены - на их месте образуются вакуоли.

Эозинофилы (Э) - крупные округлой формы клетки диаметром 9-22 10’ 3 мм. Ядро окрашено в фиолетовый цвет. Цитоплазма нежно-голубая с розово-красной или ярко-красной зернистостью (гранулы круглые или слегка овальные). Характер ядра зависит от степени зрелости клетки: у зрелых форм ядро сегментировано, у молодых округлое. У лошадей, крупного рогатого скота и свиней ядро чаще состоит из двух сегментов, а у овец, коз и собак - из трех. Наиболее крупные гранулы встречаются в цитоплазме эозинофилов у лошадей (до 3 10" 3 мм), собак и кроликов

(до 1,5 10мм); у кошек гранулы расположены очень густо, нередко они палочковидной формы и неодинаковых размеров. При растворении гранул на их месте образуются вакуоли, в раздавленных клетках гранулы лежат свободно, «рассыпавшись».

Нейтрофилы (Н) - клетки округлой формы, размером 9,5- 14,5 · 10" 3 мм. В зависимости от формы и степени окраски ядра различают миелоциты, юные (метамиелоциты), палочкоядерные и сегментоядерные нейтрофилы.

Миелоциты (М) - наиболее молодые клетки с неравномерно окрашенным в фиолетовый цвет массивным круглым или овальным ядром, расположенным чаще эксцентрично. Для ядерного хроматина характерно чередование темных и светлых участков. Цитоплазма клеток розового или светло-синего цвета, с мелкой нежной розовой зернистостью. В крови здоровых животных миелоциты не встречаются.

Юные (Ю) нейтрофилы содержат окрашенное в фиолетовый цвет ядро: широкое с центральным вдавлением (бобовидной формы) или немного вытянутое (подковообразное). Светлые участки хроматина сменяются более темными. Цитоплазма розового цвета, иногда плохо прокрашена, с мелкой, нежной розовой зернистостью. В периферической крови взрослых животных юные нейтрофилы не всегда удается обнаружить.

Палочкоядерные (Я) нейтрофилы характеризуются трансформацией ядра в колбасовидную или палочковидную форму. Ядро неравномерно окрашено в темно-фиолетовый цвет; приблизительно одного диаметра по всей длине, но может быть изогнуто в виде дужки, полумесяца, латинской буквы S, на концах булавовидно вздуто; в отдельных местах на ядре заметны небольшие перехваты-мостики шириной не менее */ 2 основной части ядра. Цитоплазма бледно-розового цвета, с азурофильной зернистостью, содержит множество мелких (часто плохо видимых), равномерно расположенных гранул.

Сегментоядерные (С) нейтрофилы отличаются от палочкоядерных лишь характером ядра, которое состоит из двух - пяти сегментов, соединенных тонкими, иногда едва заметными перемычками. Ядро окрашивается неравномерно в темно-фиолетовый цвет.

Лимфоциты (Л) по размеру подразделяют на малые (6-9 · 10’ 3 мм), средние (10-14 · 10" 3 мм) и большие (14 · 10~ 3 мм и более). Доминирующий компонент лимфоцита - ядро округлой или слегка овальной формы, интенсивно окрашенное в темно-синий цвет. Хроматин распределен таким образом, что более темные участки переходят без резкой границы в более светлые. Цитоплазма светло-синяя, обычно с перинуклеарной зоной (просветление вокруг ядра), иногда в ней выявляют азурофильную зернистость. Больше всего в периферической крови обнаруживают малые лимфоциты (до 95 %), у которых цитоплазма расположена в виде узкого ободка, или «серпа», вокруг темноокрашенного ядра.

Моноциты (М) - это крупные клетки диаметром 12-24· 10’ 3 мм, округлой или нередко неправильной формы. Ядро характеризуется разнообразием формы: может быть бобовидным, округлым, многолопастным, подковообразным; окрашивается неравномерно в слабофиолетовый цвет с темно-фиолетовыми пятнами, так как хроматин ядра рыхлый, распределен неравномерно, как бы образуя ячейки разных размеров и формы. Цитоплазма моноцитов серо-голубого, серо-синеватого цвета со светлым фиолетовым оттенком, вблизи от ядра содержит мелкую пылевидную зернистость.

Особенности клеток крови птиц. У всех птиц в отличие от млекопитающих эритроциты овальной (эллипсоидной) формы, по размеру больше лейкоцитов, содержат ядро. Тромбоциты веретенообразной формы и тоже содержат ядро. Среди лейкоцитов выделяют псевдоэо- зинофилы, которые соответствуют нейтрофилам млекопитающих. Цитоплазма псевдоэозинофилов содержит крупные красного цвета гранулы в виде зерен или палочек; ядро окрашено в сине-фиолетовый цвет. У истинных эозинофилов гранулы округлой формы и неодинаковые по размерам, розового цвета; ядро состоит из двух - пяти сегментов, окрашивается в темно-сине-фиолетовый цвет более интенсивно, чем у псевдоэозинофилов.

Выведение лейкограммы (лейкоцитарной формулы). Лейкограмма представляет собой процентное соотношение между отдельными видами лейкоцитов в крови.

Методы дифференциального подсчета лейкоцитов. Лейкограмму выводят по окрашенным мазкам в иммерсионной системе путем дифференциального подсчета 100 (лучше 200) лейкоцитов одним из приводимых далее методов (рис. 7.11).

Четырехпольный метод (по Шиллингу): с каждой стороны мазка в начале и в конце его (т.е. на четырех исследуемых участках) определяют по 25 лейкоцитов (или по 50, если считают 200 клеток). При этом от края мазка углубляются на три-четыре поля зрения, затем продвигаются на два-три поля вдоль мазка и возвращаются к его краю. Каждый найденный лейкоцит регистрируют на 11-клавишном счетчике.

Рис. 7.11.

1 - четырехпольный; 2 - трехпольный; 3 - однопольный; 4 - ступенчатый

Трехпольный метод (по Филиппченко): клетки подсчитывают на трех участках, расположенных поперек мазка (от одного края до другого). В начале мазка подсчитывают 35 (или 70) лейкоцитов, в середине 30 (или 60) и в конце мазка 35 (или 70) клеток.

Однопольный метод (по Мухину): подсчитывают 100 лейкоцитов в средней части мазка, проходя поперек его от одного края до другого и обратно.

Ступенчатый метод: подсчет клеток начинают от одного края и ведут по зигзагообразной линии к концу мазка. Выводить лей- кограмму этим способом рекомендуют у крупного рогатого скота при диагностике лейкозов.

При записи результатов отдельные виды лейкоцитов располагают в такой последовательности: базофилы (Б), эозинофилы (Э), нейтрофилы - миелоциты (М), юные (Ю), палочкоядерные (П), сегментоядерные (С), лимфоциты (Л), моноциты (М). Лейкограмма крови здоровых животных представлена в табл. 7.3.

Для дифференциального подсчета лейкоцитов можно использовать такие приборы, как «Техникой», Hemalog В (Н-В), «Культер» модель ВИГ-3.

Таблица 7.3

Лейкограмма крови здоровых животных, %

Нейтрофилы

животного

* Псевдоэозинофилы.

Определение абсолютного числа отдельных видов лейкоцитов в 1 10 3 мл крови. Сначала необходимо подсчитать лейкоциты и вывести лейкограмму. Затем число лейкоцитов умножают последовательно на процент клеток каждого вида лейкограммы и делят на 100, получая абсолютное количество отдельных форм лейкоцитов в 1 · КГ 3 мл крови.

Например, у коровы в 1 · 10 мл крови определено 8000 лейкоцитов, а в лейкограмме процентное содержание лейкоцитов составляет: Б - 1, Э - 5, П - 4, С - 28, Л - 55, М - 7. Чтобы вычислить содержание лейкоцитов каждого вида в 1 · 10" 3 мл крови, составляют соответствующие пропорции. Для базофилов пропорция будет иметь следующий вид: 100% лейкоцитов - 8000 лейкоцитов; 1% базофилов - X базофилов, откуда х = 1 · 8000: 100 = 80. Таким образом, в 1 · 10‘ 3 мл крови содержится 80 базофилов. Подобным образом определяют абсолютное количество лейкоцитов других видов и получают следующие значения: Б - 80, Э - 400, П - 320, С - 2240, Л - 4400, М - 560.

Изменения лейкограммы. При различных заболеваниях лейкограм- ма у животных может изменяться в трех направлениях: увеличиваться или уменьшаться содержание лейкоцитов отдельных видов (видовые лейкоцитозы и лейкопении - нейтрофилия и ней- тропения, лимфоцитоз и лимфоцитопения, эозинофилия и эозино- пения, моноцитоз и моноцитопения); появляться молодые незрелые формы (нейтрофилии со сдвигом ядра влево); возникать патологические изменения в ядре и цитоплазме лейкоцитов.

Каждый вид лейкоцитоза может быть абсолютным и относительным. Абсолютный видовой лейкоцитоз характеризуется увеличением абсолютного числа лейкоцитов данного вида при нормальном или повышенном общем числе лейкоцитов в крови. Относительный видовой лейкоцитоз сопровождается уменьшением общего числа лейкоцитов и преобладанием в крови лейкоцитов данного вида за счет уменьшения числа других форм клеток, при этом абсолютное число лейкоцитов преобладающего вида остается в пределах нормы.

Нейтрофилия (нейтрофилез, нейтрофильный лейкоцитоз) - увеличение числа нейтрофилов. В клинической практике встречается чаще всего. Одновременно с увеличением процента нейтрофилов в лейкограмме возрастает процент палочкоядерных форм и могут появиться юные нейтрофилы и миелоциты, т.е. происходит ядерный сдвиг «влево» (в лейкограмме эти разновидности нейтрофилов записывают левее сегментоядерных форм). Заметное возрастание процента только сегментоядерных нейтрофилов обозначают как ядерный сдвиг «вправо». Различают четыре разновидности нейтрофилии.

Нейтрофилия с простым регенеративным сдвигом характеризуется увеличением числа палочкоядерных нейтрофилов до 10-13%; процент сегментоядерных клеток при этом в норме или слегка уменьшен; общее число лейкоцитов увеличено незначительно. Наблюдают при хронических и скрытых инфекциях (сап, туберкулез легких), при легкопротекающих острых инфекциях, протозойных заболеваниях, эндокардите, гнойных осумкованных процессах с доброкачественным течением (нагноившиеся раны, местные гнойные очаги).

Нейтрофилия с резким регенеративным (гиперрегенеративным) сдвигом сопровождается появлением в периферической крови юных нейтрофилов и миелоцитов, процент палочкоядерных нейтрофилов также повышен; общее число клеток увеличено. Встречается при острых инфекциях (острый сап, контагиозная плевропневмония, мыт, перипневмония крупного рогатого скота и др.), сепсисе, перитоните, тяжелом фарингите и других септических процессах.

Нейтрофилия с дегенеративным (гипопластическим) сдвигом характеризуется увеличением числа палочкоядерных нейтрофилов, при этом процент сегментоядерных клеток уменьшен; в нейтрофилах наблюдают признаки дегенеративных изменений (бесструктурный характер ядра, наличие токсической зернистости и вакуолей в цитоплазме), появляются атипические клетки. Общее число лейкоцитов в норме или даже уменьшено. Это состояние развивается при длительном и сильном воздействии на кроветворные органы бактерийных токсинов, отравлениях химическими веществами, при тяжелых гельминтозах, гиповитаминозах, кахексии, раке.

Нейтрофилия со сдвигом ядра вправо характеризуется увеличением содержания старых, гиперсегментированных (более пяти сегментов) нейтрофилов при нормальном или незначительно сниженном проценте палочкоядерных форм. Она может быть трех вариантов:

  • незначительное повышение процента сегментоядерных нейтрофилов на фоне небольшого лейкоцитоза, наблюдаемое после кро- вопотерь, при легком течении инфекций, мышечном напряжении;
  • увеличение числа сегментоядерных нейтрофилов при нормальном или пониженном числе лейкоцитов, что встречается у старых и истощенных животных;
  • значительное возрастание числа сегментоядерных нейтрофилов с появлением в них признаков дегенерации при понижении или отсутствии в лейкограмме палочкоядерных форм и выраженной лейкопении, что отмечают при хронических септических процессах, раке, тяжелопротекающих инвазионных заболеваниях. Нейтропения - уменьшение процента нейтрофилов в лейкограмме. Наблюдают в период выздоровления при инфекционных, вирусных болезнях, протекающих с лимфоцитозом (чума свиней, инфекционная анемия). Резко выраженную нейтропению (агранулоцитоз) отмечают при апластических и гипопластических процессах, в результате применения некоторых лекарственных средств (ци- тостатические препараты, используемые при лечении рака, сульфаниламиды, антибиотики и др.), воздействия ионизирующего излучения.

Л имфоцитоз - увеличение (относительное и абсолютное) процента лимфоцитов в лейкограмме - встречается преимущественно при хронических вирусных и бактериальных инфекциях (бруцеллез, туберкулез), хрониосепсисе, интоксикациях, при истощении, анаплазмозе, бабезиозе (пироплазмозе), чуме свиней, стахиботриотокси- козе, хроническом катаре желудка, сильных ожогах кожи, при поражении желез внутренней секреции (сахарный диабет, тиреотоксикоз), в период выздоровления при острых инфекциях, а также при лимфолейкозе.

Лимфоцитопения (лимфопения) - понижение содержания лимфоцитов в крови. Чаще всего лимфопения сопровождает нейтро- филию, что наблюдают при сепсисе (тяжелопротекающие гнойные и септические заболевания), туберкулезе, ботулизме, кровопятнистой болезни, чуме свиней. Устойчивая лимфопения служит одним из важных признаков приобретенного иммунодефицита, для диагностики которого важно также знать общее число лимфоцитов и их субпопуляций - В- и Т-лимфоцитов.

Эозинопения (анэозинофилия) - понижение процента эозинофилов в лейкограмме. Наблюдают при сепсисе, вирусных заболеваниях, бабезиозе (пироплазмозе), интоксикациях, уремии, при апластических состояниях, в стрессовых ситуациях, при В ^-дефицитной анемии, в терминальную стадию лимфолейкоза, а также после применения стероидных гормонов.

Моноцитоз - увеличение процента моноцитов в лейкограмме. Наблюдают при затухании инфекционного процесса, что указывает на благоприятный исход болезни. Моноцитоз может встречаться при нейтрофилиях (сепсисе) и лимфоцитозах с нейтропенией (пиро- плазмидозы, нутталиоз, трипанозамоз) и др., а также при хронической инфекционной анемии, туберкулезе, листериозе, ботулизме, некоторых формах лейкоза, злокачественных новообразованиях, язвенном перикардите.

Моноцитопения - уменьшение процента моноцитов в лейкограмме. Встречается при сильно выраженных нейтрофилиях, вызванных септическими заболеваниями. Полное исчезновение моноцитов считают неблагоприятным прогностическим признаком.

Базофилия - увеличение процента базофилов в лейкограмме. Отмечают при хроническом миелолейкозе, гельминтозах, аллергических состояниях, голодании, чуме свиней, паралитической миоглобинурии.

More Than Meets the Eye.

John S. Nguyen, M.D., Spyridon S. Marinopoulos, M.D., Bimal H. Ashar, M.D., and John A. Flynn, M.D.

В этой статье представлена постадийно информация о реальном пациенте (жирный шрифт), эта информация обсуждается экспертом-клиницистом, который обращается напрямую к читателю (обычный шрифт). Далее следуют комментарии авторов.

Пациентка 61 года была госпитализирована с жалобами на ощущение сердцебиения и одышку на протяжении двух последних дней. У нее была обнаружена фибрилляция предсердий с быстрым желудочковым ответом, начато лечение внутривенным введением дилтиазема и гепарина. Состояние пациентки улучшилось, но на третий день после госпитализации она сообщила о возникновении легкой слабости и тошноты, а также изменение цвета мочи на темно-красный. Мочевой катетер у пациентки установлен не был, ощущения сердцебиения, одышки, болей в спине или животе, дизурии или головокружения не отмечала.

Темно-красный цвет мочи указывает, чаще всего, на макрогематурию или пигментурию (к которой относятся гемоглобинурия и миоглобинурия). Хотя обычно при пигментурии моча окрашена в цвет чая или колы, иногда она может быть темно-красного, коричнево-малинового и даже ярко-вишневого цвета. О гематурии будет свидетельствовать обнаружение большого количества эритроцитов при микроскопии мочи, тогда как их отсутствие в сочетании с обнаружением гемоглобина при анализе мочи (в оригинале – urinary dipstick testing; прим. перев .) будет свидетельствовать о пигментурии. (Чтобы различить эти состояния, можно также использовать центрифугирование мочи: появление красного осадка будет указывать на гематурию, а красного супернатанта – на пигментурию. В последнем случае, можно провести анализ супернатанта на гемоглобин). Если, при наличии красной окраски мочи, будут получены отрицательные результаты анализа мочи на гемоглобин и при микроскопии не будет обнаружено эритроцитов, то можно предположить более редкую причину изменения окраски, например вследствие употребления свеклы (в оригинале – beeturia; beet – свекла; прим. перев .) или порфирии. Если у этой пациентки окажется макрогематурия, я бы предположил возможное наличие инфекции мочевых путей, злокачественной опухоли или нефролитиаза. Если будет подтверждена макрогематурия и отсутствие инфекции мочевых путей, я бы посоветовал выполнить цистоскопию и компьютерную томографию (КТ) брюшной полости и малого таза.

В анамнезе у пациентки артериальная гипертензия, по поводу которой она получает гидрохлортиазид. В остальном она была здорова, других медикаментов или растительных препаратов не принимала. За последние несколько месяцев ее вес не изменялся. В последнее время за пределы страны не выезжала. Курение, прием алкоголя, прием наркотиков отрицает.


При физикальном обследовании: Температура тела в норме, ЧСС от 90 до 100 ударов в минуту, АД – 120/70 мм Hg, ЧДД – 16/мин, сатурация кислорода (SaO2) – 95% при дыхании атмосферным воздухом. При аускультации легкие чистые. При обследовании сердечно-сосудистой системы отмечался только нерегулярный ритм. При пальпации живота увеличения размеров органов, опухолевидных образований или болезненности в надлобковой области не выявлено. Реберно-позвоночные углы безболезненны. При ректальном обследовании опухолевидных образований не выявлено, гваяковый анализ стула на скрытую кровь отрицательный. Очаговых изменений на коже не обнаружено.

Причиной гематурии все еще может быть злокачественное новообразование мочеполовой системы. Отсутствие лихорадки, озноба и болезненности в реберно-позвоночных углах делает диагноз пиелонефрита маловероятным, хотя по-прежнему возможно наличие инфекции нижних отделов мочевых путей. Пигментурией может проявляться рабдомиолиз (в виде миоглобинурии). Однако при рабдомиолизе обычно возникает миалгия, и, кроме того, пациентка не принимает лекарственных препаратов, которые могут вызвать подобное осложнение. Другой причиной окрашивания мочи в темно-красный цвет является гемоглобинурия, вызванная быстрым внутрисосудистым гемолизом. У пациентки может быть дефицит глюкозо-6-фосфат дегидрогеназы (G6PD), однако в анамнезе нет данных об острой инфекции или приеме таких медикаментов, как сульфонамид или нитрофурантоин, которые могли бы усилить гемолиз при подобной патологии. Также следует обратить внимание на такие возможные причины, как маршевая гемоглобинурия, микроангиопатический гемолиз вследствие патологии клапанов и пароксизмальная ночная гемоглобинурия (PNH). Однако сердечных шумов не выявлено, и в анамнезе нет данных о недавних значительных физических нагрузках.

На третий день после госпитализации в анализе крови уровень лейкоцитов составлял 11,0×10 9 /л, по сравнению с 7,0×10 9 /л при поступлении; гематокрит – 30%, при поступлении – 35%; уровень тромбоцитов оставался в пределах нормы; уровень креатинина – 1,8 мг/дл (160 мкмоль/л), при поступлении – 0,9 мг/дл (80 мкмоль/л). Пока пациентка получала нефракционированный гепарин, показатель активированного частичного тромбопластинового времени составлял 2,7 от контрольного (имеется в виду соотношение АЧТВ/АЧТВдолж, где АЧТВдолж подсчитывается по определенным таблицам; при терапии нефракционированным гепарином это соотношение должно быть, по аналогии с МНО, повышено до 1,5-2,5; прим. перев. ). Уровень креатинфосфокиназы был в пределах нормы. При анализе мочи обнаружены высокие уровни гемоглобина и белка (3+). Результат анализа мочи на миоглобин отрицательный. Результаты микроскопического исследования мочи: эритроциты – 2-3 в поле зрения, лейкоциты – 0-1 в поле зрения, эпителий – 0-1 в поле зрения, бактерии в небольшом количестве, цилиндров и кристаллов не обнаружено.

Хотя у данной пациентки моча имеет темно-красную окраску и при анализе мочи выявлен гемоглобин, однако количество эритроцитов при микроскопии составляет только 2-3 в поле зрения, что указывает на остро развившуюся гемоглобинурию или миоглобинурию. Нормальный уровень креатинфосфокиназы и отрицательный результат анализа мочи на миоглобин означают, что единственной возможной причиной симптомов у пациентки остается гемоглобинурия. Вызывает тревогу возможность развития почечной недостаточности, так как гемоглобинурия может вызывать острый некроз канальцев вследствие формирования конгломератов гемоглобина. Протеинурия у пациентки может отражать наличие как транзиторного процесса, например инфекции или стресса, так и патологии клубочков или канальцев.

Было выполнено промывание мочевого пузыря, после этого выделяемая моча снова стала прозрачной и желтой. На четвертый день после госпитализации лабораторные исследования были выполнены повторно, уровень креатинина в сыворотке составил 3,1 мг/дл (270мкмоль/л), уровень мочевины – 29 мг/дл (10,4 ммоль/л), гематокрит – 23%, лейкоциты – 7,72×10 9 /л, тромбоциты – 203×10 9 /л. Микроскопия мазка периферической крови: лейкоциты не изменены, шистоцитов, дегмацитов (“надкусанных” эритроцитов), клеточных фрагментов и сфероцитов не обнаружено (Рисунок 1).


Рисунок 1.

Мазок периферической крови: нормохромные эритроциты нормальных размеров, шистоцитов, дегмацитов (“надкусанных” клеток) или сфероцитов нет.

У пациентки быстро прогрессирует анемия и почечная недостаточность. Учитывая отсутствие явного кровотечения или агрессивной инфузионной терапии, я предполагаю наличие массивного гемолиза; гемоглобинурия указывает на то, что гемолиз острый и внутрисосудистый. По имеющимся данным, пациентке не проводилось переливания крови, что могло бы вызвать острую гемолитическую трансфузионную реакцию. Повышение уровня креатинина у пациентки может быть следствием пигмент-индуцированного острого тубулярного некроза, сочетающегося со снижением экстрацеллюлярного объема и ишемией почек (в оригинале – The patient"s rising creatinine level may be due to pigment-induced acute tubular necrosis accompanied by extracellular volume depletion with renal ischemia; честно говоря, сам не понял, почему… прим. перев. ). В анамнезе нет упоминаний о воздействии нефротоксических агентов или внутривенном введении контрастных веществ, но я хотел бы проверить правдивость этой информации. Учитывая усиливающуюся почечную недостаточность и продолжающийся гемолиз, возможно развитие гиперкалиемии, поэтому следует постоянно мониторировать уровень калия.

Уровень калия составлял 4,7 ммоль/л, лактат-дегидрогеназы – 1610 Мед/л (норма 122-220 Мед/л). При дальнейшем обследовании выявлен высокий уровень гемосидерина в моче (4+), сывороточный уровень G6PD в пределах нормы, ретикулоциты – 4,3% (норма 0,5-1,8%), уровень гаптоглобина неопределяем, прямая и непрямая пробы Кумбса отрицательны. Уровень ферритина составил 30 мкг/л (норма 10-300 мкг/л), сывороточного железа – 38 мкг/л (7 мкмоль/л), при норме 50-70 мкг/л (9-30 мкмоль/л), трансферрина – 153 мг/дл (норма 200-400 мг/дл), сатурация железа – 20% (норма 20-55%).

Выраженное повышение уровня лактат-дегидрогеназы, неопределяемый уровень гаптоглобина и гемосидеринурия подтверждают диагноз гемолитической анемии вследствие внутрисосудистого гемолиза. Нормальный уровень G6PD и отсутствие воздействия медикаментов, обладающих оксидантным действием делают диагноз дефицита G6PD маловероятным, хотя иногда у пациентов с этой патологией в условиях острого гемолиза может быть нормальный уровень G6PD.

Уровень ферритина у пациентки находиться на нижней границе нормы, поэтому возможно развитие дефицита железа, что является одной из особенностей хронического внутрисосудистого гемолиза. Большинство гемолитических процессов протекают в основном экстраваскулярно, при этом уровень железа восстанавливается путем метаболизирования молекул гема ретикулоэндотелиальной системой. Напротив, при массивном интраваскулярном гемолизе (что бывает, например, при маршевой гемоглобинурии или PNH, а также, изредка, у пациентов с искусственными клапанами сердца) внутри сосудов могут высвобождаться очень большое количество гемоглобина, и тогда происходит его потеря через почечную экскрецию. Пациентка находится в стационаре, в анамнезе нет данных о недавних физических нагрузках, и у нее не установлены искусственные сердечные клапаны. Дополнительно расспросив пациентку, можно попытаться выявить предшествовавшие эпизоды гемоглобинурии, что свидетельствовало бы в пользу диагноза PNH.

На ультразвуковом исследовании почек признаков гидронефроза, нефролитиаза или объемных образований не обнаружено. Пациентке продолжали проводить инфузионную терапию, при этом сохранялся достаточный объем выделяемой мочи, однако уровень креатинина в сыворотке продолжал повышаться и достиг 3,5 мг/дл (310 мкмоль/л). Нестероидных противовоспалительных препаратов или внутривенных контрастных препаратов во время госпитализации и до нее пациентка не получала.

Отсутствие признаков гидронефроза при ультразвуковом исследовании позволяет исключить обструкцию мочевых путей как причину жалоб пациентки. С целью улучшения перфузии почек и поддержания диуреза, а также для предупреждения дальнейшего повреждения почек вследствие пигментурии, следует продолжать внутривенное введение солевых растворов. Существует предположение, что при лечении пациентов с нетравматическим рабдомиолизом или пигментурией ощелачивание мочи с помощью внутривенного введения натрия бикарбоната может иметь протективный эффект по отношению к почкам, так как ведет к увеличению растворимости миоглобина и гемоглобина. Однако ощелачивание несет потенциальный риск развития гипокальциемии, поэтому сомнительно, что этот метод имеет какие-либо преимущества по сравнению с инфузионной терапией одним физиологическим раствором.

При магнитно-резонансной ангиографии и венографии не было выявлено признаков стеноза почечных артерий или тромбоза почечных вен. Была выполнена биопсия почки, при исследовании образца обнаружено распространенное острое поражение канальцев с формированием гемоглобиновых цилиндров (Рисунок 2). Выявлены скопления железа в клетках канальцев. При последующем расспросе пациентки было выяснено, что за последние несколько лет у нее время от времени были похожие эпизоды потемнения мочи, по словам пациентки, они появлялись “на холоде или при простуде”.

Загрузка...