docgid.ru

Что такое компьютерная томография? Компьютерная томография - принцип работы Виды компьютерных томографов

Компьютерная проективная томография является неинвазивным методом диагностики заболеваний (то есть получение изображений внутреннего строения организма без его повреждения). Принцип работы компьютерного томографа основан на разности коэффициента поглощения разными по плотности тканями организма. Изображение получают путем компьютерной обработки разности ослабления рентгеновского излучения. Поглощение рентгеновского излучения может меняться при разных заболеваниях.

Преимущество КТ перед рентгенодиагностикой

Данный метод позволяет увидеть мельчайшие структуры внутренних органов размером всего несколько миллиметров. В отличии от классического рентгеновского обследование, где имеем изображение всех внутренних органов, через которые проходило рентгеновские лучи, КТ дает набор срезов (проекций) пациента. Далее данные обрабатывает компьютер, формируя трехмерное изображение. На рентгеновских снимках все слои тканей накладываются один на другой и небольшие патологические образования могут быть невидны. КТ дает информацию о небольших новообразованиях, которые еще поддаются хирургическому лечению.

Специфика работы компьютерного резонансного томографа

Компьютерный томограф представляет собой кольцо, через которое проходит стол с пациентом. В кольце расположена рентгеновская трубка, производящая излучение и детекторы, воспринимающие его.
Рентгеновская трубка вращается вокруг пациента, что дает возможность получать отдельные изображения поперечных слоев тканей. Качественные изображения позволяют с большой точностью определить локализацию очага заболевания, взаимное положение органов, а так же их морфологические изменения.
Компьютерная томография используется для обследования скелета, органов грудной клетки, брюшной полости, для диагностики злокачественных опухолей и других заболеваний.

Виды томографов

  • Томограф 1-го поколения имеет одну рентгеновскую трубку, один детектор. Сканирование проводится в несколько этапов, с одним оборотом снимается один слой, каждый занимает около 4 минут.
  • Томограф 2-го поколения имеет веерный тип конструкции. Одна рентгеновская трубка, несколько детекторов. Время обследования - 20 сек.
  • Томограф 3-го поколения использует принцип спиральной компьютерной томографии. За один шаг стола рентгеновская трубка с расположенными напротив нее детекторами (количество которых больше, чем в предыдущем поколении) осуществляет один оборот. Время обследования около 3 сек.
  • Томограф 4-го поколения имеет множество датчиков, расположенных по всему кольцу, вращается только рентгеновская трубка. Преимущество томографа 4-го поколения перед томографом 3-го поколения только во времени обследования, которое составляет меньше секунды.

Последние последних методов компьютерной томографии сделали возможным проведение обследования сердца, бронхов, кишечника.

Как проходит КТ обследование?

Перед обследованием пациент должен снять из себя все металлические предметы (украшения, ключи, телефон), так как они могут искажать картину, кроме того, электроника может выйти из строя. Существует множество фирм, занимающиеся техническим обслуживанием КТ. Вот, например, сайт одной из них http://mrimrt.ru/ . Рекомендуется пару часов не есть перед обследованием.
Во время процедуры пациент ложится на стол томографа и лежит в расслабленном состоянии. КТ абсолютно безболезненна. Процедура сканирования длится меньше одной минуты. После обследования пациент получает рентгеновскую пленку с отобранными снимками, заключение врача рентгенолога, а также CD-диск с полным обследованием и программой для его чтения.

Плюсы КТ

Обследование занимает около минуты.
. Совершенно безболезненный метод.
. Можно использовать как метод первичной диагностики, и как уточняющий метод, после ультразвукового или рентгеновского обследования.
. Быстрое выявление повреждений дает возможность спасти человеку жизнь.
. Диагностика болезней на ранних стадиях.
. Не влияет на работу имплантированных медицинских устройств.
. Высокое разрешение и контрастность изображений.

Минусы КТ

Более высокая доза излучения, чем в рентгеновском обследовании.
. Если есть возможность беременности, нужно обязательно сообщить врачу.
. При введении некоторых контрастных веществ (например, йод), есть возможность возникновения аллергических реакций.

Противопоказания для компьютерной томографии

Большая масса тела
. Наличие гипса или металлического элемента.
. Беременность и кормление грудью.
. Дети (связано с лучевой нагрузкой).
. Почечная недостаточность.
. Диабет.
. Проблемы со щитовидной железой

КТ сосудов

Причина заболевания может крыться в нарушении работы сосудов. В таком случаи применяется метод ангиографии. В организм пациента вводится контрастное вещество и проводится компьютерная томография сосудов любой части тела

КТ головного мозга

Для того, чтобы сделать изображения мозга более четким, вводится контрастное вещество. Врач получает послойный снимок мозга и может диагностировать опухоли, кисты, заболевания сосудов, гематомы, отек, воспаления и другие заболевания.
Также проводится исследования брюшной полости (назначается при панкреатите, пиелонефрите, циррозе печени, болевых ощущения в брюшной полости),грудной клетки (пневмония, рак, туберкулез).
Томографы сегодня есть в большинстве современных больниц. Компьютерная томография незаменима для правильного планирования радиотерапии при опухолях, руководства малоинвазивными методами лечения, а так же для исследования состояния внутренних органов посте травмы или трансплантации.

Компьютерная томография - один из самых современных и информативных методов диагностики, получающий сейчас все более широкое распространение. Что же такое компьютерная томография?

Принципы компьютерной томографии

Принцип работы компьютерного томографа достаточно прост. Основывается он на использовании рентгеновских лучей (X-лучей). Проходя через тело человека, рентгеновские лучи поглощаются различными тканями в разной степени. Затем X-лучи попадают на специальную чувствительную матрицу, данные с которой считываются в компьютер. Ну а современные компьютеры позволяют обработать эту информацию как угодно: нарисовать четкую "картинку" исследуемого органа, построить различные таблицы и графики.

Казалось бы, отличие от обычной рентгенографии не такое уж большое - ведь и простой рентгеновский снимок можно обработать на компьютере. Но на самом деле это не так. На рентгеновском снимке мы видим лишь накладывающиеся друг на друга "тени" всех органов, через которые прошел рентгеновский луч. А компьютерный томограф позволяет получить четкое изображение определенного среза тела. Сделав же "фотографии" нескольких таких срезов с шагом, скажем, в 1 миллиметр, мы получим очень качественное объемное, трехмерное изображение, которое позволяет увидеть в подробностях топографию органов пациента, локализацию, протяженность и характер очагов заболеваний, их взаимосвязь с окружающими тканями. Кроме того, чувствительность компьютерных томографов на порядок выше, чем обычных рентгеновских аппаратов: на рентгеновском снимке можно достаточно четко различить ткани, отличающиеся по степени проглощения X-лучей на 10-20%, а у современных компьютерных томографов этот показатель составляет 1-2%.

Где применяется компьютерная томография

Компьютерная томография может применяться для диагностики очень широкого спектра заболеваний. Первой областью, где стали активно использоваться компьютерные томографы, стала неврология и нейрохирургия. Впервые врачи получили возможность заглянуть в головной мозг живого человека - ни УЗИ, ни обычная рентгенография такой возможности не дают.

Чуть позже компьютерные томографы стали использовать для диагностики заболеваний легких и органов брюшной полости. В настоящее время компьютерная томография широко применяется также для исследования мочеполовой сферы (почки, мочевой пузырь и мочеточники, яичники, простата), костей и суставов, позвоночного столба и спинного мозга.

Вредна ли компьютерная томография? Так как метод основан на использовании рентгеновских лучей, то понятно, что при исследовании пациент получает определенную дозу излучения. Но эта доза невелика, не больше, чем при рентгенографии небольших участков, например зубов или кисти.

А вот действительно серьезный недостаток метода компьютерной томографии - это его дороговизна. Стоимость компьютерных томографов такова, что до недавнего времени приобрести их не могли себе позволить даже многие областные клинические больницы. Сейчас ситуация несколько улучшилась, но говорить о доступности этого метода обследования для всех, кто в нем нуждается, еще очень и очень рано...

Читайте подробнее.

Компьютерная томография, сокращенно КТ - это способ получения послойных срезов тела человека или другого объека с помощью рентгеновских лучей. Этот метод для диагностических целей был предложен к использованию в 1972 году, его основателями принято считать Годфри Хаунсфилда и Алана Кормака, получившими за свои разработки Нобелевскую премию. В основе компьютерной томографии лежит измерение разницы ослабления рентгеновского излучения различными тканями, обработка полученных данных компьютером с помощью математических алгоритмов и формирование графического отображения (срезов) органов человека на экране с последующей их интерпретацией врачом-радиологом.

В момент своего появления компьютерная томография произвела революцию в медицинской диагностике, так как впервые появилась возможность рассмотреть послойное изображение тела человека без вмешательства скальпеля хирурга или эндоскопа. Сегодня метод КТ прочно занял свою нишу в диагностике самых разных болезней — прежде всего, онкологических заболеваний, болезней легких, костей, органов живота, внутреннего уха и т.д.

ПРИНЦИП РАБОТЫ КОМПЬЮТЕРНОГО ТОМОГРАФА

Данные, которые могут быть получены при компьютерной томографии, это:

  • характеристики излучения, полученные на выходе рентгеновской трубки
  • характеристики излучения, достигнувшего детектора
  • месторасположение трубки и детектора в каждый момент времени.

Все остальные данные получаются посредством обработки полученной информации. Большая часть сечений при компьютерной томографии имеет ориентацию перпендикулярно по отношению к продольной оси тела.

Для получения среза трубка оборачивается вокруг пациента на 360 градусов, толщина среза при этом задается заранее. В обычном КТ-сканере трубка вращается постоянно, излучение расходится веерообразно. Рентгеновская трубка и принимающее устройство (детектор) спарены, их вращение вокруг сканируемой зоны происходит синхронно: рентгеновское излучение испускается и улавливается детекторами, расположенными на противоположной стороне, практически одновременно. Веерообразное расхождение происходит под углом от 40 до 60 градусов, в зависимости от конкретного аппарата.

Принцип действия компьютерного томографа : вокруг тела пациента вращается рентгеновская трубка. Расположенные на противоположной стороне детекторы улавливают рентгеновское излучение.

Одно изображение формируется обычно при повороте трубки на 360 градусов: измеряются коэффициенты ослабления излучения во множестве точек (современные аппараты имеют возможность собирать информацию с 1400 точек и больше).

МУЛЬТИСПИРАЛЬНАЯ (МНОГОСРЕЗОВАЯ) КОМПЬЮТЕРНАЯ ТОМОГРАФИЯ — ЧТО ЭТО?

Наиболее современными являются томографы с множественными рядами детекторов: с трубкой спарен не один, а несколько рядов детекторов, что способствует укорочению времени исследования, повышает разрешающую способность, позволяет более четко визуализировать мелкие структуры (например, небольшие кровеносные сосуды). В зависимости от количества ряда детекторов компьютерные томографы бывают 16-, 32-, 64-, 128-срезовыми и т.д. Чем больше количество детекторов, тем быстрее можно получить качественные изображения органа.

ОТЛИЧИЕ СПИРАЛЬНОЙ И ОБЫЧНОЙ (ПОШАГОВОЙ) КТ

В чем отличие обычного компьютерного томографа от мультиспирального? При пошаговой (традиционной) томографии срезы получаются следующим образом: происходит один оборот (или несколько оборотов) трубки вокруг заданного участка тела, в результате чего формируется изображение одного среза определенной толщины; затем стол (и пациент) сдвигается в заданном направлении на определенное расстояние, величина которого выбирается заранее. Также выбирается величина, на которую срезы будут перекрывать друг друга — это необходимо, чтобы не упустить мелкие детали изображения. Исследование, таким образом, занимает несколько минут (в зависимости от размеров пациента), требует более точного расчета времени при введении контрастного средства.

В отличие от пошаговой томографии, при спиральной КТ получение данных происходит при продвижении пациента внутри аппарата постоянно, а трубка при этом совершает непрерывное движение по кругу. Скорость движения стола привязана ко времени, необходимому для одного оборота трубки, в результате чего получается массив данных, более пригодных для создания качественных реконструкций и коррекции неточностей изображений.

Устройство мультиспирального (многосрезового) компьютерного томографа: одновременно с движением пациента происходит вращение рентгеновской трубки, испускающей широкий пучок рентгеновских лучей. Траектория сканирования приобретает спиральную форму.

Спиральная компьютерная томография обладает следующими преимуществами перед пошаговой: возможность создания более качественных трехмерных и мультипланарных реконструкций; более высокая скорость проведения исследования; возможность выявления образований, размеры которых меньше толщины среза: если при пошаговой КТ, когда образование попадает между срезами, его не видно, то при спиральной визуализация возможна.

ВТОРОЕ МНЕНИЕ ПО КТ

Несмотря на высокую точность компьютерной томографии, иногда результаты диагностики могут быть неоднозначными или сомнительными. В таких случаях помогает пересмотр данных КТ опытным радиологом, который специализируется на определенном виде обследования. Такая высококвалифицированная и независимая расшифровка снимков КТ позволяет уточнить диагноз и предоставляет лечащему врачу точную информацию для выбора правильного лечения. Получить экспертную расшифровку результатов компьютерной томографии можно с помощью системы консультаций Национальной телерадиологической сети. Достаточно загрузить КТ-снимки с диска и получить точное заключение, составленное по наиболее современным стандартам.

Компьютерная томография

Компьютерный томограф

Компью́терная томогра́фия - метод неразрушающего послойного исследования внутренней структуры объекта, был предложен в 1972 году Годфри Хаунсфилдом и Алланом Кормаком , удостоенными за эту разработку Нобелевской премии . Метод основан на измерении и сложной компьютерной обработке разности ослабления рентгеновского излучения различными по плотности тканями.

Компьютерная томография (КТ) - в широком смысле, синоним термина томография (так как все современные томографические методы реализуются с помощью компьютерной техники); в узком смысле (в котором употребляется значительно чаще), синоним термина рентгеновская компьютерная томография , так как именно этот метод положил начало современной томографии.

Рентгеновская компьютерная томография - томографический метод исследования внутренних органов человека с использованием рентгеновского излучения.

Появление компьютерных томографов

Первые математические алгоритмы для КТ были разработаны в 1917 году австрийским математиком И. Радоном (см. преобразование Радона). Физической основой метода является экспоненциальный закон ослабления излучения , который справедлив для чисто поглощающих сред. В рентгеновском диапазоне излучения экспоненциальный закон выполняется с высокой степенью точности, поэтому разработанные математические алгоритмы были впервые применены именно для рентгеновской компьютерной томографии.

Предпосылки метода в истории медицины

Изображения, полученные методом рентгеновской компьютерной томографии, имеют свои аналоги в истории изучения анатомии . В частности, Николай Иванович Пирогов разработал новый метод изучения взаиморасположения органов оперирующими хирургами, получивший название топографической анатомии . Сутью метода было изучение замороженных трупов, послойно разрезанных в различных анатомических плоскостях («анатомическая томография»). Пироговым был издан атлас под названием «Топографическая анатомия, иллюстрированная разрезами, проведёнными через замороженное тело человека в трёх направлениях». Фактически, изображения в атласе предвосхищали появление подобных изображений, полученных лучевыми томографическими методами исследования. Разумеется, современные способы получения послойных изображений имеют несравнимые преимущества: нетравматичность, позволяющая проводить прижизненную диагностику заболеваний; возможность аппаратной реконструкции однократно полученных «сырых» КТ-данных в различных анатомических плоскостях (проекциях), а также трёхмерной реконструкции; возможность не только оценивать размеры и взаиморасположение органов, но и детально изучать их структурные особенности и даже некоторые физиологические характеристики, основываясь на показателях рентгеновской плотности и их изменении при внутривенном контрастном усилении.

С математической точки зрения построение изображения сводится к решению системы линейных уравнений . Так, например, для получения томограммы размером 200×200 пикселей система включает 40000 уравнений. Для решения подобных систем разработаны специализированные методы, ориентированные на параллельные вычисления .

Поколения компьютерных томографов: от первого до четвёртого

Прогресс КТ томографов напрямую связан с увеличением количества детекторов, то есть с увеличением числа одновременно собираемых проекций.

Аппарат 1-го поколения появился в 1973 г. КТ аппараты первого поколения были пошаговыми. Была одна трубка, направленная на один детектор. Сканирование производилось шаг за шагом, делая по одному обороту на слой. Один слой изображения обрабатывался около 4 минут.

Во 2-м поколении КТ аппаратов использовался веерный тип конструкции. На кольце вращения напротив рентгеновской трубки устанавливалось несколько детекторов. Время обработки изображения составило 20 секунд.

3-е поколение компьютерных томографов ввело понятие спиральной компьютерной томографии. Трубка и детекторы за один шаг стола синхронно осуществляли полное вращение по часовой стрелке, что значительно уменьшило время исследования. Увеличилось и количество детекторов. Время обработки и реконструкций заметно уменьшилось.

4-е поколение имеет 1088 люминесцентных датчиков, расположенных по всему кольцу гентри . Вращается лишь рентгеновская трубка. Благодаря этому методу время вращения сократилось до 0,7 секунд. Но существенного отличия в качестве изображений с КТ аппаратами 3-го поколения не имеет.

Спиральная компьютерная томография

Спиральная КТ используется в клинической практике с 1988 года , когда компания Siemens Medical Solutions представила первый спиральный компьютерный томограф. Спиральное сканирование заключается в одновременном выполнении двух действий: непрерывного вращения источника - рентгеновской трубки , генерирующей излучение, вокруг тела пациента , и непрерывного поступательного движения стола с пациентом вдоль продольной оси сканирования z через апертуру гентри. В этом случае траектория движения рентгеновской трубки, относительно оси z - направления движения стола с телом пациента, примет форму спирали.

В отличие от последовательной КТ скорость движения стола с телом пациента может принимать произвольные значения, определяемые целями исследования. Чем выше скорость движения стола, тем больше протяженность области сканирования. Важно то, что длина пути стола за один оборот рентгеновской трубки может быть в 1,5–2 раза больше толщины томографического слоя без ухудшения пространственного разрешения изображения.

Технология спирального сканирования позволила значительно сократить время, затрачиваемое на КТ-исследование и существенно уменьшить лучевую нагрузку на пациента.

Многослойная компьютерная томография (МСКТ)

Многослойная («мультиспиральная») компьютерная томография с внутривенным контрастным усилением и трёхмерной реконструкцией изображения.

Многослойная («мультиспиральная», «мультисрезовая» компьютерная томография - МСКТ) была впервые представлена компанией Elscint Co. в 1992 году . Принципиальное отличие мсКТ томографов от спиральных томографов предыдущих поколений в том, что по окружности гентри расположены не один, а два и более ряда детекторов. Для того, чтобы рентгеновское излучение могло одновременно приниматься детекторами, расположенными на разных рядах, была разработана новая - объёмная геометрическая форма пучка. В 1992 году появились первые двухсрезовые (двухспиральные) МСКТ томографы с двумя рядами детекторов, а в 1998 году - четырёхсрезовые (четырёхспиральные), с четырьмя рядами детекторов соответственно. Кроме вышеотмеченных особенностей, было увеличено количество оборотов рентгеновской трубки с одного до двух в секунду. Таким образом, четырёхспиральные мсКТ томографы пятого поколения на сегодняшний день в восемь раз быстрее, чем обычные спиральные КТ томографы четвертого поколения. В -2005 годах были представлены 32-, 64- и 128-срезовые МСКТ томографы, в том числе - с двумя рентгеновскими трубками. Сегодня же в некоторых клиниках уже имеются 320-срезовые компьютерные томографы. Эти томографы, впервые представленные в 2007 году компанией Toshiba, являются новым витком эволюции рентгеновской компьютерной томографии. Они позволяют не только получать изображения, но и дают возможность наблюдать почти что «в реальном» времени физиологические процессы, происходящие в головном мозге и в сердце ! Особенностью подобной системы является возможность сканирования целого органа (сердце, суставы, головной мозг и т.д.) за один оборот рентгеновской трубки, что значительно сокращает время обследования, а также возможность сканировать сердце даже у пациентов, страдающих аритмиями. Несколько 320-срезовых сканеров уже установлены и функционируют в России.

Преимущества МСКТ перед обычной спиральной КТ

  • улучшение временного разрешения
  • улучшение пространственного разрешения вдоль продольной оси z
  • увеличение скорости сканирования
  • улучшение контрастного разрешения
  • увеличение отношения сигнал/шум
  • эффективное использование рентгеновской трубки
  • большая зона анатомического покрытия
  • уменьшение лучевой нагрузки на пациента

Все эти факторы значительно повышают скорость и информативность исследований.

Основным недостатком метода остается высокая лучевая нагрузка на пациента, несмотря на то, что за время существования КТ её удалось значительно снизить.

  • Улучшение временного разрешения достигается за счёт уменьшения времени исследования и количества артефактов из-за непроизвольного движения внутренних органов и пульсации крупных сосудов .
  • Улучшение пространственного разрешения вдоль продольной оси z, связано с использованием тонких (1–1,5 мм) срезов и очень тонких, субмиллиметровых (0,5 мм) срезов. Чтобы реализовать эту возможность, разработаны два типа расположения массива детекторов в МСК томографах:
    • матричные детекторы (matrix detectors), имеющие одинаковую ширину вдоль продольной оси z;
    • адаптивные детекторы (adaptive detectors), имеющие неодинаковую ширину вдоль продольной оси z.
Преимущество матричного массива детекторов заключается в том, что количество детекторов в ряду можно легко увеличить для получения большего количества срезов за один оборот рентгеновской трубки. Так как в адаптивном массиве детекторов меньше количество самих элементов, то меньше и число зазоров между ними, что дает снижение лучевой нагрузки на пациента и уменьшение электронного шума. Поэтому три из четырёх мировых производителей МСК томографов выбрали именно этот тип.

Все вышеотмеченные нововведения не только повышают пространственное разрешение, но благодаря специально разработанным алгоритмам реконструкции позволяют значительно уменьшить количество и размеры артефактов (посторонних элементов) КТ-изображений. Основным преимуществом МСКТ по сравнению с односрезовой СКТ является возможность получения изотропного изображения при сканировании с субмиллиметровой толщиной среза (0,5 мм). Изотропное изображение возможно получить, если грани вокселя матрицы изображения равны, то есть воксель принимает форму куба . В этом случае пространственное разрешение в поперечной плоскости x-y и вдоль продольной оси z становится одинаковым.

  • Увеличение скорости сканирования достигается уменьшением времени оборота рентгеновской трубки, по сравнению с обычной спиральной КТ, в два раза - до 0,45–0,50 с.
  • Улучшение контрастного разрешения достигается вследствие увеличения дозы и скорости введения контрастных средств при проведении ангиографии или стандартных КТ-исследований, требующих контрастного усиления. Различие между артериальной и венозной фазой введения контрастного средства прослеживается более чётко.
  • Увеличение отношения сигнал/шум достигнуто благодаря конструктивным особенностям исполнения новых детекторов и используемых при этом материалов; улучшения качества исполнения электронных компонентов и плат ; увеличению тока накала рентгеновской трубки до 400 мА при стандартных исследованиях или исследованиях тучных пациентов.
  • Эффективное использование рентгеновской трубки достигается за счёт меньшего времени работы трубки при стандартном исследовании. Конструкция рентгеновских трубок претерпела изменения для обеспечения лучшей устойчивости при больших центробежных силах, возникающих при вращении за время, равное или менее 0,5 с. Использование генераторов большей мощности (до 100 кВт), конструктивные особенности исполнения рентгеновских трубок, лучшее охлаждение анода и повышение его теплоёмкости до 8 000 000 единиц также позволяют продлить срок службы трубок.
  • Зона анатомического покрытия увеличена благодаря одновременной реконструкции нескольких срезов полученных за время одного оборота рентгеновской трубки. Для МСКТ установки зона анатомического покрытия зависит от количества каналов данных, шага спирали, толщины томографического слоя, времени сканирования и времени вращения рентгеновской трубки. Зона анатомического покрытия может быть в несколько раз больше за одно и то же время сканирования по сравнению с обычным спиральным компьютерным томографом.
  • Лучевая нагрузка при многослойном спиральном КТ-исследовании при сопоставимых объёмах диагностической информации меньше на 30 % по сравнению с обычным спиральным КТ-исследованием. Для этого улучшается фильтрация спектра рентгеновского излучения и производится оптимизация массива детекторов. Разработаны алгоритмы , позволяющие в реальном масштабе времени автоматически уменьшать ток и напряжение на рентгеновской трубке в зависимости от исследуемого органа , размеров и возраста каждого пациента.

Компьютерная томография с двумя источниками излучения

DSCT - Dual Source Computed Tomography. Русскоязычной аббревиатуры в настоящее время нет.

Контрастное усиление

Для улучшения дифференцировки органов друг от друга, а также нормальных и патологических структур, используются различные методики контрастного усиления (чаще всего, с применением йодсодержащих контрастных препаратов).

Двумя основными разновидностями введения контрастного препарата являются пероральное (пациент с определенным режимом выпивает раствор препарата) и внутривенное (производится медицинским персоналом). Главной целью первого метода является контрастирование полых органов желудочно-кишечного тракта; второй метод позволяет оценить характер накопления контрастного препарата тканями и органами через кровеносную систему. Методики внутривенного контрастного усиления во многих случаях позволяют уточнить характер выявленных патологических изменений (в том числе достаточно точно указать наличие опухолей, вплоть до предположения их гистологической структуры) на фоне окружающих их мягких тканей, а также визуализировать изменения, не выявляемые при обычном («нативном») исследовании.

В свою очередь, внутривенное контрастирование можно проводить двумя способами: «ручное» внутривенное контрастирование и болюсное контрастирование .

При первом способе контраст вводится вручную рентгенлаборантом или процедурной медсестрой, время и скорость введения не регулируются, исследование начинается после введения контрастного вещества. Этот способ применяется на «медленных» аппаратах первых поколений, при МСКТ «ручное» введение контрастного препарата уже не соответствует значительно возросшим возможностям метода.

При болюсном контрастном усилении контрастный препарат вводится внутривенно шприцем-инжектором с установленными скоростью и временем подачи вещества. Цель болюсного контрастного усиления - разграничение фаз контрастирования. Время сканирования различается на разных аппаратах, при разных скоростях введения контрастного препарата и у разных пациентов; в среднем при скорости введения препарата 4–5 мл/сек сканирование начинается примерно через 20–30 секунд после начала введения инжектором контраста, при этом визуализируется наполнение артерий (артериальная фаза контрастирования). Через 40–60 секунд аппарат повторно сканирует эту же зону для выделения портально-венозной фазы, в которую визуализируется контрастирование вен. Также выделяют отсроченную фазу (180 секунд после начала введения), при которой наблюдается выведение контрастного препарата через мочевыделительную систему.

КТ-ангиография

КТ-ангиография позволяет получить послойную серию изображений кровеносных сосудов; на основе полученных данных посредством компьютерной постобработки с 3D-реконструкцией строится трёхмерная модель кровеносной системы.

Спиральная КТ-ангиография - одно из последних достижений рентгеновской компьютерной томографии. Исследование проводится в амбулаторных условиях. В локтевую вену вводится йодсодержащий контрастный препарат в объеме ~100 мл. В момент введения контрастного вещества делают серию сканирований исследуемого участка.

КТ-перфузия

Метод, позволяющий оценить прохождение крови через ткани организма, в частности.

Компьютерная томография - метод, который позволяет провести эффективную диагностику при помощи сканирования исследуемого участка и получить послойные изображения той или иной части тела. Каков принципы действия КТ?

Устройство аппарата и принцип действия метода компьютерной томографии

Что представляет собой специальный сканер? Этот аппарат напоминает куб или тоннель цилиндрической формы. В число основных частей прибора входят:

  • лучевая трубка, скрытая в корпусе КТ;
  • подвижный стол, который проходит через раму гентри;

Поскольку от аппарата исходит излучение, комната, в которой находится томограф защищается специальным экраном. Еще один вариант защиты пациентов и специалистов от негативного воздействия рентгеновского излучения - включение кабинета с медицинским оборудованием в структуру помещений отделения.

Как осуществляется управление сканером

Врач, располагающийся в специальной комнате, следит за ходом процедуры, и совершает необходимые манипуляции. Рядом с ним находятся:

  • компьютерный блок КТ;
  • мониторы, на которые выводится изображение;
  • специальные устройства. предназначенные для слежения за состоянием обследуемого.

Особенность процедуры

Возможности современной медицины позволяют предотвратить развитие серьезных болезней и обнаружить новообразования на ранних стадиях развития опухолевого процесса. Все это стало реальностью благодаря созданию установок, воздействующих на организм пациента при помощи излучения. Результатом процедуры становится детальный снимок, обеспечивающий безошибочную современную диагностику.

Для того чтобы разобраться в специфике обследования нужно определить, что такое КТ. Это метод, в основе которого лежит рентгеновское излучение. Специальный прибор осуществляет съемку тела больного под разными углами, а полученные срезы позже обрабатываются компьютерной программой и преобразуются в единое изображение. Проходя через тело исследуемого, X-лучи задерживаются в тканях,от степени поглощения которых зависит четкость и детализация проекции.

Принципы работы КТ (компьютерной томографии) просты: вокруг больного вращается рентгеновская трубка - специальное устройство, выпускающее рентгеновское излучение. Позже установка фиксирует сведения, попадающие на чувствительную матрицу, а компьютерная программа производит обработку полученной информации и позволяет увидеть четкую картинку.

Отличия компьютерной томографии от рентгенографии

  • КТ дает возможность рассмотреть мелкие новообразования, в то время как рентгеновская установка не обладает подобной детализацией из-за наложения одного слоя на другой - явления известного как суперпозиция тканей.
  • Компьютерная томография позволяет получить изображение в поперечной плоскости: это необходимо для точного представления о соотношении органов.

Как работает КТ

Пациента кладут на специальный стол, который не стоит неподвижно, а перемещается по направлению к раме гентри. В ее устройстве заключается одно из важнейших отличий компьютерной томографии от магнитно-резонансной: отверстие не узкое, а широкое, что не вызывает у обследуемых боязни закрытых пространств. Часто перед процедурой требуется введение контрастного вещества.

Как врач получает снимки? По мере того как установка производит сканирование обследуемого участка, рентгеновские лучи проходят через различные плоскости организма: плотность тканей становится той информацией, которая передается компьютеру в виде коэффициента - цифрового значения, обрабатываемого программой. После преобразования данных в оттенки серого, изображение выводится на монитор: специалист видит серию картинок, которые представляют собой поперечные срезы исследуемого органа или части тела.

Зачем может понадобиться КТ?

Её назначают, когда необходимо тщательно исследовать области тела или конечности.

    Грудная клетка

Осмотр ГК поможет выявить ранние и запущенные стадии легочных заболеваний. Кроме того, определит наличие проблем в тканях, сосудах или пищеводе. Продиагностировать наличие очагов воспаления, инфекций, метастаз. Покажет, если легочная эмболия и аневризма аорты.

    Брюшная полость

Если исследовать эту область с помощью КТ, то можно понять, если ли болезни желудка и печени. Узнать все о том, какого характера образовавшаяся киста или опухоль. Выявить образование абсцесса, деформаций аорты брюшины. Определить размеры лимфоузлов, найти кровотечения внутренних органов.

    Мочевыводящие пути

Исследовать такие органы как: почки, мочеточники и мочевой пузырь, можно, используя одну из разновидностей КТ, называющуюся урограммой.

С её помощью можно обнаружить наличие камней в почках или любых других элементов мочевыводящей системы.

В самых сложных случаях доктора прибегают к еще одному методу, который именуется пиелограммой. Суть его состоит в том, что пациенты вводится особое контрастное вещество, после этого можно обнаружить не только отложения солей, но и различные виды опухолевых образований, как злокачественные, так и доброкачественные.

    Поджелудочная железа

Компьютерная томография хорошо справляется с выявлением панкреатитов различной степени запущенности. Кроме того, с помощью такого исследования можно определить наличие и характер опухоли этого органа.

    Желчный пузырь и желчные протоки

Можно продиагностировать проходимость протоков желчного пузыря. Кроме этого, исследование позволяет определить наличие камней. Однако для этого чаще всего используют УЗИ, которое отлично справляется с поставленной задачей.

    Надпочечники

КТ хорошо показывает наличие опухолевых образований и позволяет определить состояние и структуру надпочечника.

    Селезенка

С помощью такой диагностики можно рассмотреть повреждения тканей данного органа и оценить его размеры.

Если вовремя произвести диагностику этого отдела организма, то можно предотвратить серьёзные изменения фаллопиевой трубы или предстательных желез у пациентов различных полов.

    Конечности

КТ поможет найти различные заболевания в суставах и частях костной ткани. С легкостью справиться с диагностированием опухолей или деформаций в элементах колен, костей, бедер, щиколоток или стоп.


Некоторым современным КТ достаточно 1 вращения для получения точного и детального изображения исследуемого органа. Подобные устройства называются мультиспиральными. Высокие технологии, применяемые разработчиками медицинского оборудования, позволили улучшить качество проводимой процедуры:

  • снизить шумы, издаваемые установкой во время вращения;
  • сократить время исследования;
  • уменьшить толщину срезов и повысить диагностические возможности КТ.

Последние модели компьютерных томографов позволяют рассмотреть отдельные участки и области человеческого тела за несколько секунд, что особенно удобно при обследовании пожилых пациентов в критическом состоянии или больных, страдающих клаустрофобией.

Возросшая эффективность подобной процедуры позволяет уменьшить долю рентгеновского излучения. Подобная безопасность КТ-сканирования делает эту технологию незаменимой при исследовании детей - снижение лучевой нагрузки дает возможность полностью исключить риск развития онкологических заболеваний.

Увеличить информативность обследования на компьютерном томографе помогает введение пациенту контрастного вещества. В результате проводимая процедура приобретает сходство с ангиографией.

Что чувствует пациент во время процедуры

На самом деле, человек не испытывает никаких неприятных ощущений или боли.

В некоторых случаях ему может быть неудобно из-за того, что он лежит на жесткой поверхности или из-за открытого в кабинете окна.

Впечатлительные пациенты нервничают, когда оказываются внутри аппарата. В этом случае им предлагают успокоительное средство, которое поможет им расслабиться и не придавать значения нахождению в замкнутом пространстве.

Во время введения контрастного вещества, если это необходимо, медсестра делает все возможное, чтобы причинить наименьшее количество боли, делая инъекцию в руку.

Следует сказать немного о специфике самого вещества. Иногда после его введения люди чувствуют небольшой жар или пощипывание в месте укола. Это нормально. Однако, если вас начало тошнить или появились резкие головные боли, об этом следует немедленно сообщить доктору.

Опасна ли КТ

Если до того, как прийти на томографию, вы знали о наличии какого-либо заболевания, то не беспокойтесь о том, что данная процедура провоцирует какие-то осложнения.

Однако, стоит учесть следующие моменты:

    У некоторые пациентов наблюдаются аллергические реакции на состав контрастного вещества.

    Если вы больны сахарным диабетом любого типа или употребляете метморфин, то контраст может ухудшить ваше состояние. Таким больным необходимо получить консультацию лечащего врача еще перед проведением диагностики.

    В некоторых случаях можно говорить о возникновении онкологических заболеваний, которые могут быть спровоцированными злоупотребления разных видов КТ. В зоне риска дети и старики.Если проводить исследование не чаще нескольких раз в месяц, то об опасности можно не волноваться.Вы можете пообщаться с врачом и узнать какую именно дозу облучения вы или ваш ребенок получите после каждой процедуры и насколько это безопасно.

  • Иногда имеются риски повреждения имплантатов или кардиостимуляторов, которые находятся внутри тела человека. Именно поэтому важно предупреждать специалистов о наличии подобных приборов в вашем случае. Однако такие ситуации крайне редки, поэтому говорить о статистике подобных явлений не приходится.

Может ли что-то повлиять на действие КТ

На результаты и проведение обследования могут повлиять следующие нюансы:

    Любой срок беременности у женщин. Данная диагностика не рекомендуется все будущим мамам, особенно на первых триместрах.

    Применение таких веществ, как висмут и барий до проведения КТ. Часто, когда медики назначают ирригоскопию, которая подразумевает применение данных составов, возникает необходимость переноса КТ. Ведь и виснут и барий проявятся на конечном снимке, что затруднит постановку правильного диагноза.

    Совершение каких либо телодвижений во время нахождения в аппарате. Очень важно во время КТ оставаться неподвижным.

    Различные металлические элементы в теле пациента. Части имплантов или другие фрагменты снижают качество готового изображения, делая область вокруг них размытой.

Принципы и методы работы компьютерной томографии

    Бывает, что результаты КТ не сответствуют данным, полученным в результате магнитного исследования или ультразвукового. На самом деле, это вовсе не значить, что какое-то из обследований проведено неверно. Томография позволяет сканировать определенный орган совершенно с другого ракурса, что наоборот, делает диагностику более развернутой.

    Если вы отправляете на процедуру ребенка, то обязательно приготовьте его морально ко всему, с чем ему придется столкнуться. Научите его задерживать дыхание, расскажите об ощущениях, настройте его правильно. Часто дети не могут спокойно лежать длительное время, поэтому врачи делают им инъекции успокоительного. Расскажите ему об этом, чтобы вид иглы не напугал его ещё больше.

    Обязательно получите консультацию педиатра. Он сможет определить, насколько уровень облучения навредит состоянию маленького пациента.

    Специалисты в самых сложных случаях рекомендуют применять различные виды оборудования, чтобы сделать исследования более тщательными и сформировать многослойное изображение.

    Часто результатами КТ можно заменить результаты ПЭТ. Особенно, если дело касается диагностирования онкологии.

    Чтобы определить, есть ли у пациента ишемия или атеросклероз, врачи используют одну из разновидностей данного исследования. ЭПТ занимает меньше времени, но прекрасно подходит для диагностики состояния сердца или сосудов.Сейчас эта технология уступает мультидекторной разновидности томографии, которая является более инновационной и точной.

    В данную процедуру может входить комплекс мер, назначенный на оценку уровня усвоения кальция коронарными артериями. Это способствует определению рисков возникновения болезней сердца и сосудов.

    Иногда намного эффективнее может быть использование МРТ-технологий. Следует допускать использование разных методов для диагностирования различных заболеваний.

    Не все специалисты едины во мнении, что если исследовать с помощью КТ все тело пациента, то можно выявить ишемическую болезнь. Обязательно проконсультируйтесь со своим доктором, если вам назначена процедура именно для этой цели.

  • Помните о том, что исследование всего организма с помощью КТ - это дорого и не совсем безопасно. Злоупотребление данной процедурой повышает риски оперативного вмешательства и образования злокачественных опухолей. Поэтому, если у вас нет предпосылок предполагать наличие какого-либо заболевания, не проводите такое исследование в подобных масштабах.

Где применяется компьютерная томография

С открытием КТ врачам по всему мира стала доступна диагностика множества серьезных заболеваний: первоначально метод использовался в нейрохирургии и неврологии. Еще одна сфера применения - выявление патологий легких, надпочечников, желчного пузыря, печени и других органов брюшной полости.Точное и детализованное изображение позволяет провести полноценное исследование костей, спинного мозга и позвоночного столба.

Загрузка...