docgid.ru

Переливание крови физиология. Переливание крови. Вопросы и задания к главе "Внутренняя среда организма"

Если человек теряет большое количество крови, то нарушается постоянство объема внутренней среды организма. И потому уже с древних времен в случае кровопотери, при заболеваниях люди пытались переливать больным кровь животных или здорового человека.

В письменных памятниках древних египтян, в трудах греческого ученого и философа Пифагора, в произведениях греческого поэта Гомера и римского поэта Овидия описываются попытки использовать кровь для лечения. Больным давали пить кровь животных или здоровых людей. Естественно, это не приносило успеха.

В 1667 г. во Франции Ж. Дени произвел первое в истории человечества внутривенное переливание крови человеку. Обескровленному умирающему юноше перелили кровь ягненка. Хотя чужеродная кровь и вызвала тяжелую реакцию, больной перенес ее и выздоровел. Успех окрылил врачей. Однако последующие попытки переливания крови были неудачными. Родственники потерпевших возбудили против врачей судебный процесс, и переливание крови было запрещено законом.

В конце XVIII в. было доказано, что неудачи и тяжелые осложнения, которые возникали при переливании человеку крови животных, объясняются тем, что эритроциты животного склеиваются и разрушаются в кровяном русле человека. При этом из них выделяются вещества, действующие на человеческий организм как яды. Стали пробовать переливать человеческую кровь.

Первое в мире переливание крови от человека человеку было сделано в 1819 г. в Англии. В России его произвел впервые в 1832 г. петербургский врач Вольф. Успех этого переливания был блестящим: жизнь женщины, находившейся при смерти из-за большой кровопотери, была спасена. А дальше все пошло по-старому: то блистательный успех, то тяжелое осложнение вплоть до смерти. Осложнения очень напоминали тот эффект, который наблюдался после переливания человеку крови животных. Значит, в некоторых случаях кровь одного человека может оказаться чужеродной для другого.

Научный ответ на этот вопрос дали почти одновременно два ученых - австриец Карл Ландштейнер и чех Ян Янский. Они обнаружили у людей 4 группы крови.

Ландштейнер обратил внимание на то, что иногда сыворотка крови одного человека склеивает эритроциты крови другого (рис. 10). Это явление получило название агглютинации . Свойство эритроцитов склеиваться при действии на них плазмы или сыворотки крови другого человека стало основой разделения крови всех людей на 4 группы (табл. 4).

Почему же происходит склеивание, или агглютинация, эритроцитов?

В эритроцитах были обнаружены вещества белковой природы, которые назвали агглютиногенами (склеиваемыми веществами). У людей их существуют два вида. Условно их обозначили буквами латинского алфавита - А и В.

У людей с I группой крови в эритроцитах агглютиногены отсутствуют, кровь II группы содержит агглютиноген А, в эритроцитах крови III группы есть агглютиноген В, кровь IV группы содержит агглютиногены А и В.

В связи с тем что в эритроцитах I группы крови агглютиногенов не содержится, эту группу обозначают нулевой (0) группой. II группу из-за наличия в эритроцитах агглютиногена А обозначают А, III группу - В, IV группу - АВ.

В плазме крови обнаружены агглютинины (склеивающие вещества) двух видов. Их обозначают буквами греческого алфавита - α (альфа) и β (бета).

Агглютинин α склеивает эритроциты с агглютиногеном А, агглютинин β склеивает эритроциты с агглютиногеном В.

В сыворотке крови I (0) группы содержатся агглютинины α и β, в крови II (А) группы - агглютинин β, в крови III (В) группы - агглютинин α, в крови IV (АВ) группы агглютининов нет.

Определить группу крови можно, если иметь готовые сыворотки крови II и III групп.

Принцип методики определения группы крови следующий. В пределах одной группы крови нет агглютинации (склеивания) эритроцитов. Однако агглютинация может произойти, и эритроциты соберутся в комочки, если они попадут в плазму или сыворотку крови другой группы. Следовательно, совмещая кровь испытуемого с заведомо известной (стандартной) сывороткой, можно по реакции агглютинации решить вопрос о групповой принадлежности исследуемой крови. Стандартные сыворотки в ампулах можно получить на станции (или в пунктах) переливания крови.

Опыт 10

На предметное стекло палочкой нанесите по капле сыворотки II и III групп крови. Чтобы избежать ошибки, на стекле возле каждой капли поставьте соответствующий номер группы сыворотки. Иглой проколите кожу пальца и при помощи стеклянной палочки перенесите по капле исследуемой крови в каплю стандартной сыворотки; тщательно размешайте кровь в капле сыворотки палочкой до тех пор, пока смесь не станет равномерно окрашенной в розовый цвет. Через 2 мин к каждой из капель прибавьте по 1-2 капли физиологического раствора и снова перемешайте. Следите за тем, чтобы для каждой манипуляции использовалась чистая стеклянная палочка. Предметное стекло поместите на белую бумагу и через 5 мин рассмотрите результаты. При отсутствии агглютинации капля представляет собой равномерную мутную взвесь эритроцитов. В случае же агглютинации простым глазом видно образование хлопьев эритроцитов в прозрачной жидкости. При этом возможны 4 варианта, которые позволяют отнести испытуемую кровь к одной из четырех групп. В решении этого вопроса вам может помочь рисунок 11.

Если агглютинация отсутствует во всех каплях, то это указывает на принадлежность исследуемой крови к I группе. Если агглютинация отсутствует в сыворотке III (В) группы и произошла в сыворотке II (А) группы, то исследуемая кровь принадлежит к III группе. Если агглютинация отсутствует в сыворотке II группы и имеется в сыворотке III группы, то кровь принадлежит ко II группе. При агглютинации обеими сыворотками можно говорить о принадлежности крови к IV (АВ) группе.

При этом нужно помнить, что реакция агглютинации сильно зависит от температуры. На холоде она не происходит, а при высокой температуре может произойти агглютинация эритроцитов и с неспецифической сывороткой. Лучше всего производить работу при температуре 18-22°С.

I группу крови в среднем имеют 40% людей, II группу - 39%, III- 15%, IV группу - 6%.

Кровь всех четырех групп одинаково полноценна в качественном отношении и отличается только описанными свойствами.

Принадлежность к той или другой группе крови не зависит ни от расы, ни от национальности. Группа крови не меняется в течение жизни человека.

В обычных условиях в крови одного и того же человека не могут встретиться одноименные агглютиногены и агглютинины (А не может встретиться с α, В не может встретиться с β). Это может произойти только при неправильном переливании крови. Тогда наступает реакция агглютинации, эритроциты склеиваются. Комочки склеившихся эритроцитов могут закупорить капилляры, что очень опасно для человека. Вслед за склеиванием эритроцитов наступает их разрушение. Ядовитые продукты распада эритроцитов отравляют организм. Этим и объясняются тяжелые осложнения и даже смерть при неправильно произведенном переливании крови.

Правила переливания крови

Изучение групп крови позволило установить правила переливания крови.

Людей, дающих кровь, называют донорами , а людей, которым вливают кровь, - реципиентами .

При переливании надо обязательно учитывать совместимость групп крови. При этом важно, чтобы в результате переливания крови эритроциты донора не склеивались кровью реципиента (табл. 5).

На таблице 5 агглютинация обозначена знаком плюс (+), а отсутствие агглютинации - знаком минус (-).

Кровь людей I группы можно переливать всем людям, поэтому людей с I группой крови называют универсальными донорами. Кровь людей II группы можно переливать людям, имеющим II и IV группу крови, кровь людей III группы - людям с III и IV группой крови.

Из таблицы 5 также видно (см. по горизонтали), что если у реципиента I группа крови, то ему можно переливать кровь только I группы, во всех остальных случаях произойдет агглютинация. Людей же с IV группой крови называют универсальными реципиентами, так как им можно переливать кровь всех четырех групп, зато их кровь можно переливать только людям с IV группой крови (рис. 12).

Резус-фактор

При переливании крови, даже при тщательном учете групповой принадлежности донора и реципиента, иногда встречались тяжелые осложнения. Оказалось, в эритроцитах 85% людей имеется так называемый резус-фактор . Так он назван потому, что впервые был обнаружен в крови мартышки Macacus rhesus. Резус-фактор - белок. Людей, эритроциты крови которых содержат этот белок, называют резус-положительными . В эритроцитах крови 15% людей резус-фактора нет, это - резус-отрицательные люди.

В отличие от агглютиногенов, для резус-фактора в плазме крови людей готовых антител (агглютининов) не имеется. Но антитела против резус-фактора могут образоваться. Если в кровь резус-отрицательным людям перелить кровь резус-положительную, то разрушения эритроцитов при первом переливании не наступит, поскольку в крови реципиента нет готовых антител к резус-фактору. Но после первого же переливания они образуются, так как резус-фактор является чужеродным белком для крови резус-отрицательного человека. При повторном переливании резус-положительной крови в кровь резус-отрицательного человека образовавшиеся ранее антитела вызовут разрушение эритроцитов перелитой крови. Поэтому при переливании крови надо учитывать совместимость и по резус-фактору.

Очень давно врачи обратили внимание на тяжелее, в прошлом часто смертельное заболевание младенцев - гемолитическую желтуху. Причем в одной семье заболевало несколько детей, что наводило на мысль о наследственном характере болезни. Единственное, что не укладывалось в это предположение, - отсутствие признаков недуга у первого родившегося ребенка и нарастание тяжести заболевания у второго, третьего и последующих детей.

Оказалось, гемолитическая болезнь новорожденных вызывается несовместимостью эритроцитов матери и плода по резус-фактору. Это происходит в том случае, если мать имеет резус-отрицательную кровь, а плод унаследовал от отца резус-положительную кровь. В период внутриутробного развития происходит следующее (рис. 13). Эритроциты плода, имеющие резус-фактор, попадая в кровь матери, эритроциты которой не содержат его, являются там "чужеродными", антигенами, и против них вырабатываются антитела. Но вещества крови матери через плаценту снова попадают в организм ребенка, теперь уже имея антитела против эритроцитов плода.

Возникает резус-конфликт, следствием чего является разрушение эритроцитов ребенка и болезнь гемолитическая желтуха.

С каждой новой беременностью концентрация антител в крови матери возрастает, что может приводить даже к гибели плода.

В браке резус-отрицательного мужчины с резус-положительной женщиной дети рождаются здоровыми. К болезни ребенка может привести лишь комбинация "резус-отрицательная мать и резус-положительный отец".

Знание этого явления дает возможность заранее планировать профилактические и лечебные мероприятия, с помощью которых в наши дни удается спасти 90-98% новорожденных. С этой целью все беременные женщины с резус-отрицательной кровью берутся на особый учет, осуществляется их ранняя госпитализация, заготовляется резус-отрицательная кровь на случай появления младенца с признаками гемолитической желтухи. Обменные переливания с введением резус-отрицательной крови спасают таких детей.

Способы переливания крови

Существуют два способа переливания крови. При прямом (непосредственном) переливании кровь с помощью специальных приспособлений прямо от донора переливают реципиенту (рис. 14). Прямое переливание крови применяют редко и только в специальных лечебных учреждениях.

Для непрямого переливания кровь донора предварительно собирают в сосуд, где смешивают с веществами, препятствующими ее свертыванию (чаще всего добавляют лимоннокислый натрий). Кроме того, к крови прибавляют консервирующие вещества, которые позволяют хранить ее в годном для переливания виде длительное время. Такую кровь можно перевозить в запаянных ампулах на далекие расстояния.

При переливании консервированной крови на конец ампулы насаживают резиновую трубку с иглой, которую затем вводят в локтевую вену больного (рис. 15). На резиновую трубку надевают зажим; с его помощью можно регулировать скорость введения крови - быстрым ("струйным") или медленным ("капельным") способом.

В некоторых случаях переливают не цельную кровь, а ее составные части: плазму или эритроцитарную массу, которую применяют при лечении малокровия. Тромбоцитарную массу переливают при кровотечениях.

Несмотря на большую лечебную ценность консервированной крови, все же есть необходимость в растворах, могущих заменить кровь. Предложено много рецептов заменителей крови. Состав их отличается большей или меньшей сложностью. Все они обладают теми или иными свойствами плазмы крови, но не имеют свойств форменных элементов.

В последнее время в лечебных целях используют кровь, взятую от трупа. Кровь, извлеченная в первые шесть часов после внезапной смерти от несчастного случая, сохраняет все ценные биологические свойства.

Переливание крови или ее заменителей получило в нашей стране широкое распространение и является одним из эффективных способов сохранения жизни при больших кровопотерях.

Оживление организма

Переливание крови сделало возможным возвращать к жизни людей, у которых наступала клиническая смерть , когда прекращалась сердечная деятельность и останавливалось дыхание; необратимые изменения в организме при этом еще не наступали.

Первое успешное оживление собаки было произведено в 1913 г. в России. Через 3-12 мин после наступления клинической смерти собаке в сонную артерию по направлению к сердцу под давлением вводили кровь, в которую были добавлены вещества, стимулирующие сердечную деятельность. Введенная таким образом кровь направлялась в сосуды, снабжающие кровью сердечную мышцу. Через некоторое время восстанавливалась деятельность сердца, затем появлялось дыхание, и собака оживала.

В годы Великой Отечественной войны опыт первых успешных оживлений в клинике был перенесен в условия фронта. Вливание крови под давлением в артерии в сочетании с искусственным дыханием возвращало к жизни бойцов, доставленных в походную операционную с только что прекратившейся сердечной деятельностью и остановившимся дыханием.

Опыт советских ученых показывает, что при своевременном вмешательстве можно достигнуть оживления после смертельных кровопотерь, при травмах и некоторых отравлениях.

Доноры крови

Несмотря на то что предложено большое количество различных заменителей крови, все же самой ценной для переливания является натуральная кровь человека. Она не только восстанавливает постоянство объема и состава внутренней среды, но и лечит. Кровь нужна, чтобы заполнить аппараты искусственного кровообращения, которые на время некоторых операций заменяют сердце и легкие больного. Для работы аппарата "искусственная почка" требуется от 2 до 7 л крови. Человеку с тяжелым отравлением иногда для спасения переливают до 17 л крови. Много людей было спасено благодаря своевременному переливанию крови.

Люди, добровольно дающие свою кровь для переливания, - доноры - пользуются глубоким уважением и признанием народа. Донорство является почетной общественной функцией гражданина СССР.

Донором может стать каждый здоровый человек, достигший 18 лет, независимо от пола и рода деятельности. Взятие у здорового человека небольшого количества крови не оказывает отрицательного влияния на организм. Кроветворные органы легко восполняют эти небольшие потери крови. За один раз у донора берут около 200 мл крови.

Если сделать анализ крови у донора до и после сдачи крови, то окажется, что сразу же после взятия крови содержание в ней эритроцитов и лейкоцитов будет даже выше, чем до взятия. Это объясняется тем, что в ответ на такую небольшую кровопотерю организм сразу же мобилизует свои силы и находящаяся в виде резерва (или депо) кровь поступает в кровоток. Причем организм восполняет потерю крови даже с некоторым избытком. Если человек регулярно сдает кровь, то через некоторое время содержание в его крови эритроцитов, гемоглобина и других составных частей становится выше, чем до того, как он стал донором.

Вопросы и задания к главе "Внутренняя среда организма"

1. Что называют внутренней средой организма?

2. Каким образом поддерживается постоянство внутренней среды организма?

3. Как можно ускорить, замедлить или предотвратить свертывание крови?

4. Капля крови помещена в 0,3-процентный раствор NaCl. Что произойдет при этом с эритроцитами крови? Объясните это явление.

5. Почему в высокогорных местностях количество эритроцитов в крови увеличивается?

6. Кровь какого донора можно переливать вам, если у вас III группа крови?

7. Посчитайте, сколько процентов учеников вашего класса имеют кровь I, II, III и IV группы.

8. Сравните содержание гемоглобина в крови у нескольких учеников вашего класса. Для сравнения возьмите данные опытов полученные при определении содержания гемоглобина в крови мальчиков и девочек.

Карл Ландштайнер обнаружил, что эритроциты одних людей склеиваются плазмой крови других людей. Ученый установил существование в эритроцитах особых антигенов – агглютиногенов и предположил наличие в сыворотке крови соответствующих им антител – агглютининов. Он описал три группы крови по системе АВ0. IV группа крови была открыта Яном Янским. Групповую принадлежность крови определяют изоантигены, у человека их около 200. Они объединяются в групповые антигенные системы, их носителем являются эритроциты. Изоантигены передаются по наследству, постоянны на протяжении жизни, не изменяются под воздействием экзо– и эндогенных факторов.

Антигены – высокомолекулярные полимеры естественного или искусственного происхождения, которые несут признаки генетически чужеродной информации. Организм реагирует на антигены образованием специфических антител.

Антитела – иммуноглобулины образуются при введении антигена в организм. Они способны взаимодействовать с одноименными антигенами и вызывать ряд реакций. Различают нормальные (полные) и неполные антитела. Нормальные антитела (?– и?– агглютинины) находятся в сыворотке крови людей, не иммунизированных антигенами. Неполные антитела (антирезус-агглютинины) образуются в ответ на введение антигена. В антигенной системе АВ0 четыре группы крови. Антигены (агглютиногены А, В) – полисахариды, они находятся в мембране эритроцитов и связаны с белками и липидами. В эритроцитах может содержаться антиген 0, у него слабовыраженные антигенные свойства, поэтому в крови нет одноименных ему агглютининов.

Антитела (агглютинины? и?) находятся в плазме крови. Одноименные агглютиногены и агглютинины не встречаются в крови одного и того же человека, так как в этом случае произошла бы реакция агглютинации.

Она сопровождается склеиванием и разрушением (гемолизом) эритроцитов.

Деление по группам крови системы АВ0 основано на комбинациях агглютиногенов эритроцитов и агглютининов плазмы.

I (0) – в мембране эритроцитов нет агглютиногенов, в плазме крови присутствуют?– и?-агглютинины.

II (A) – в мембране эритроцитов присутствует агглютиноген.

A, в плазме крови – ?-агглютинин.

III (B) – в мембране эритроцитов присутствует агглютиноген.

B, в плазме крови – ?-агглютинин.

IV (AB) – в мембране эритроцитов присутствует агглютиноген А и агглютиноген В, в плазме нет агглютининов.

Для определения группы крови используют стандартные гемагглютинирующие сыворотки I, II, III, IV групп двух серий с разным титром антител.

При смешивании крови с сыворотками происходит реакция агглютинации или она отсутствует. Наличие агглютинации эритроцитов указывает на наличие в эритроцитах агглютиногена, одноименного агглютинину в данной сыворотке. Отсутствие агглютинации эритроцитов указывает на отсутствие в эритроцитах агглютиногена, одноименного агглютинину данной сыворотки.

Тщательное определение групп крови донора и реципиента по антигенной системе АВ0 необходимо для успешной гемотрансфузии.

2. Антигенная система эритроцитов, иммунный конфликт

Антигены – высокомолекулярные полимеры естественного или искусственного происхождения, которые несут признаки генетически чужеродной информации.

Антитела – это иммуноглобулины, образующиеся при введении антигена в организм.

Изоантигены (внутривидовые антигены) – антигены, происходящие от одного вида организмов, но генетически чужеродные для каждого индивидуума. Наибольшее значение имеют эритроцитарные антигены, особенно антигены системы АВ0 и системы Rh-hr.

Иммунологический конфликт в системе АВ0 происходит при встрече одноименных антигенов и антител, вызывает агглютинацию эритроцитов и их гемолиз. Иммунологический конфликт наблюдается:

1) при переливании группы крови, несовместимой в групповом отношении;

2) при переливании в больших количествах группы крови людям с другими группами крови.

При переливании крови учитывают прямое и обратное правило Оттенберга.

Прямое правило Оттенберга: при переливании малых объемов крови (1/10 объема циркулирующей крови) обращают внимание на эритроциты донора и плазму реципиента – человек с I группой крови – универсальный донор.

Обратное правило Оттенберга: при переливании больших объемов крови (более 1/10 объема циркулирующей крови) обращают внимание на плазму донора и эритроциты реципиента. Человек с IV группой крови – универсальный реципиент.

Антигенная система Rh открыта в 1940 г. К. Ландштайнером и А. Винером.

Они обнаружили в сыворотке крови обезьян-макак, резусов антитела – антирезусагглютинин.

Антигены системы резус – липопротеиды. Эритроциты 85 % людей содержат резус-агглютиноген, кровь их резус-положительна, у 15 % людей резус-антигена нет, их кровь резус-отрицательна. Описаны шесть разновидностей антигенов системы Rh. Наиболее важными являются Rh0 (D), rh`(C), rh»(E). Наличие хотя бы одного из трех антигенов указывает, что кровь резус-положительна.

Особенность системы Rh заключается в том, что она не имеет естественных антител, они являются иммунными и образуются после сенсибилизации – контакта Rh– крови с Rh+.

При первичном переливании Rh– человеку Rh+ кровь резусконфликт не развивается, так как в крови реципиента нет естественных антирезус-агглютининов.

Иммунологический конфликт по антигенной системе Rh происходит при повторном переливании Rh(-) крови человеку Rh+, в случаях беременности, когда женщина Rh(-), а плод Rh+.

При первой беременности Rh(-) матери Rh+ плодом резусконфликт не развивается, так как титр антител невелик. Иммунные антирезус-агглютинины не проникают через плацентарный барьер. Они имеют большой размер белковой молекулы (иммуноглобулин класса М).

При повторной беременности титр антител увеличивается. Антирезус-агглютинины (иммуноглобулины класса G) имеют небольшую молекулярную массу и легко проникают через плацентарный барьер в организм плода, где вызывают агглютинацию и гемолиз эритроцитов.

Антигенная специфичность присуща не только ядерным клеткам, но и эритроцитам. Наличие антигенной специфичности эритроцитов определяет .
Групповые антигены фиксированы на гликокаликсе мембраны эритроцитов. По своей природе это гликолипиды или гликопротеиды. На сегодня их обнаружено более 400.

Система АВ0

Наибольшее значение имеют антигены системы АВ0. Молекула этих антигенов состоит на 75% из углеводов и на 15%-из аминокислот. Пептидная компонент во всех трех антигенов, обозначенных Н, А, В, одинаков. Специфичность их определяется углеводной частью. Люди с группой 0 имеют антиген Н, специфичность которого обусловлено тремя конечными углеводными остатками. Появление четвертого углеводного остатка в структуре Н-антигена придает ему специфичности, обозначается буквой А (если подключена М ацетши-О-галактоза) или В (если подключена D-галактоза).
Если смешать на стекле кровь, взятая от двух человек, то в большинстве случаев наблюдается склеивание (агглютинация) эритроцитов. После этого наступает их гемолиз. Это же наблюдается и при переливании несовместимой крови, вследствие чего закупориваются капилляры и возникают осложнения, которые приводят к смерти. Агглютинация происходит в результате реакции антиген-антитело. Антиген А или В взаимодействуют с антителами, которые есть в сыворотке крови другого человека, и обозначаются как я и Бета. Это и приводит к агглютинации. По названию реакции антигены и антитела носят название аглютиногенив и агглютининов. Считают, что агглютинины а и Бета имеют два активных центра, благодаря чему происходит связывание двух соседних эритроцитов. При этом А взаимодействует с а, а В - с г. К аглютиногену Н в сыворотке крови нет агглютининов. Лизис эритроцитов происходит при участии системы комплемента и создаваемых протеолитических ферментов, гемолиз - при наличии высокого титра антител. Антитела но и Бета являются IgM и IgG. Как правило, высокий титр в IgM, которые еще называются гемолизины.
В естественных условиях в крови человека не могут одновременно содержаться одноименные антиген и антитело, например, А и а или В и Бета. Это может привести к агглютинации эритроцитов. Но при отсутствии аглютиногену А или В в эритроците в сыворотке крови обязательно агглютинин к нему.
По соотношению этих факторов все люди могут быть разделены на 4 группы: I - эритроциты содержат 0-антиген, плазма - а-и В-антитела; II - соответственно а-и В-антитела; III - соответственно В-и а-антитела; IV - соответственно АВ и 0.
Антигены являются наследственными, причем А и В - доминантные. Обнаружено несколько подтипов этих ацтигенив. На
знак уважения к труду их первооткрывателя Ландштейнера в современной названии системы оставлено «0-антиген» вместо «Н».
Плазма крови новорожденного, как правило, еще нет антител а и г. После рождения они постепенно появляются (растет титр) до того фактора, который отсутствовал. Утверждают, что продукция указанных антител связана с "поступлением в кровь детей некоторых веществ с пищей или тех, которые производятся кишечной микрофлорой. Эти вещества могут поступать в кровь в связи со способностью организма новорожденного всасывать непереваренные белки и другие крупные молекулы. Титр агглютининов достигает максимума в возрасте 10-14 лет, после чего постепенно снижается.

Другие антигенны эритроцитов

На мембране эритроцитов, кроме антигенов АВН, есть другие антигены, которые определяют их антигенной специфичности. Из них около 30 встречается довольно часто. Они могут вызвать агглютинацию и гемолиз эритроцитов при переливании крови. Выделяют более 20 различных систем крови с наличием антигенов: Rh, М, S, Р, А, УК и др.. Но большинство из них в естественных условиях не имеют антител. Как и обычные иммунные антитела, они образуются при поступлении в организм антигенов и вызывают гемолиз эритроцитов при повторном переливании крови. Поэтому при переливании крови желательно, чтобы кровь была совместима не только по системе АВО, а за другими факторами. В реальных условиях полной совместимости достичь невозможно, поскольку только из указанных антигенов можно составить почти 300 милл комбинаций.

Резус-фактор

Теперь считают, что при переливании крови для определения ее группы только по системе АВО НЕ
достаточно. Как минимум, нужно определить еще и резус-принадлежность. В большинстве (до 85%) людей на мембране эритроцита является так называемый резус-фактор, который содержится и в эритроцитах одного из видов обезьян - макак резус.
Но, в отличие от антигенов А и В, в сыворотке крови человека с резус-отрицательным фактором Есть антирезусных антител. Они появляются после поступления резус-положительных эритроцитов в русло крови людей с резус-отрицательным фактором. их насчитывается примерно 15%.
Резус-принадлежность (Rh) определяется наличием в мембране эритроцита нескольких антигенов, обозначаемых С, D, Е, С, d, Е. Наибольшее значение имеет D-аглютиноген, потому что антитела к нему появляются более активно, чем к другим. При наличии в эритроците D-фактора крови человека считается резус-положительной (Rh +), при его отсутствии - резус-отрицательной (Rh-).
Переливание Rh +-epHTpomrriB человеку с резус-отрицательным фактором приводит к иммунизации. Максимум титра антирезусных тел наблюдается через 2-4 мес. Но к этому времени перелиты эритроциты исчезают из организма. Присутствие в организме реципиента антител при следующем переливании Rh +-epHTponHTiB приводит к их гемолизу.
Резус-фактор имеет значение не только при переливании крови, а при беременности. Так, если у матери с резус-отрицательным фактором кровь плода содержит резус-положительный фактор, то в ответ на попадание в его организм эритроцитов плода постепенно в течение нескольких месяцев появляются антирезус-антитела. При нормальном течении беременности это возможно, как правило, лишь при родах, когда нарушается плацентарный барьер. Природные изоаглютинины а и В относятся к классу IgM. Агглютинины против резус-положительного фактора, как и ряда других, которые появляются при иммунизации, относятся к классу IgG. Через плаценту легко проходят антитела типа IgG, в то время как антитела класса IgM не проходят. Поэтому при повторной резус-конфликтной беременности именно иммунные антирезус-антитела проходят через плаценту и вызывают изменения эритроцитов плода, вследствие чего наблюдаются соответствующие осложнения. Но если почему-то эритроциты плода попадают в кровеносное русло женщины во время первой беременности, тогда гемолитическая анемия новорожденных, обусловленная резус-несовместимостью, может наблюдаться при первой беременности. Иногда гемолиз эритроцитов плода может быть следствием проникновения и природных изоаглютининив матери.

Плазма крови

Плазма крови состоит на 90% из воды и на 10% из растворенных веществ. Из твердого остатка на долю белков приходится около 2 / 3 , остальное - это низкомолекулярные вещества и электролиты. За этими сухими цифрами скрывается поразительное многообразие функций. Особенно разнообразны функции белков плазмы. Они принимают участие в процессах транспорта, а также в защитной и свертывающей функциях крови. Кроме того, они определяют величину объема плазмы. Наряду с белками в плазме имеются еще гормоны и питательные вещества, которые переносятся между различными органами. К продуктам обмена веществ относятся органические кислоты и азотсодержащие вещества (мочевина, мочевая кислота, креатинин). И наконец, в плазме еще имеются электролиты, различное распределение которых между экстра- и внутриклеточной жидкостью является необходимым условием для возникновения мембранного потенциала клеток, а также для поддержания постоян-ства клеточного объема.

Плазму крови получают с помощью центрифугирования крови, обработанной антикоагулянтами. Концентрация белков в этой жидкости составляет около 70 г/л. Центрифугируя свернувшуюся кровь, можно получить кровяную сыворотку. Она отличается от плазмы отсутствием главного белка свертывaния крови, фибриногена. Белки плазмы крайне гетерогенны: в настоящее время доказано существование более ста белков, имеющих различное молекулярное строение. Разделение этих белков с помощью электрофореза позволило выявить пять основных фракций: альбумин, α 1 - и α 2 -глобулины, β-глобулины и γ-глобулины. В таблице представлены некоторые представители этих классических белковых групп.

Альбумин обеспечивает коллоидно-осмотическое (онкотическое) давление крови, которое важно для поддержания постоянства объема плазмы. Альбумин, благодаря своему низкому по сравнению с другими белкам плазмы молекулярному весу (66 кDа) и высокой концентрации (45 г/л плазмы), обеспечивает 80% коллоидно-осмотического давления (КОД). При нормальных концентрациях белка КОД плазмы составляет 25 мм рт.ст. (3,3 кПа). Стенка капилляров мало проницаема для белков, поэтому их концентрация в жидкости межклеточного пространства меньше, чем в плазме крови. КОД в межклеточной жидкости составляет лишь 5 мм рт.ст. (0,7 кПа). Разница КОД плазмы крови и межклеточной жидкости определяет соотношение между объемом плазмы крови и объемом жидкости межклеточного пространства. Эта разница в величине КОД противодействует гидростатическому давлению и удерживает жидкость в системе кровообращения.

Специфические транспортные белки, такие как апотрансферрин (железосвязывающий белок), транскобаламин (глобулин, связывающий витамин B 12) или транскортин (кортизолсвязывающий глобулин), представляют собой не просто цистерны, перевозящие вещества к клеткам-мишеням, но и являются системой запасания, из которой при острой необходимости могут быть извлечены те или иные вещества.

Огромное физиологическое и медицинское значение имеют липопротеины, которые принимают участие в транспорте холестерина, холиновых эфиров, фосфоглицеридов и триацилглицерина. Известны различные классы липопротеинов, чьи липидные и белковые части могут сильно различаться.

Хиломикроны особенно богаты триацилглицеринами. Хиломикроны обеспечивают транспорт этих жиров из тонкого кишечника в периферическую кровь (пищевой жир).

Рис. 8-1. Белки плазмы крови человека (табл. 8-1)

Таблица 8-1. Белки плазмы крови человека

Происхождение клеток крови

Клетки крови происходят из гемопоэтической ткани, которая находится у плода в печени и в селезенке, а у взрослого - в красном костном мозге плоских костей и селезенке. Гемопоэтическая ткань содержит стволовые клетки, из которых образуется все многообразие клеток крови: эритроциты, все формы лейкоцитов, тромбоциты и лимфоциты. Стволовые клетки обладают двумя свойствами, которые в подобной комбинации не встречаются у других клеток организма: они полипотентны, т.е. их дифференцировка ведет к появлению различных форм клеток крови, и обладают способностью самообновления, т.е. они способны производить абсолютно идентичную копию самих себя. Полипотентные стволовые клетки в процессе дифференцировки превращаются в клетки-предшественники, развивающиеся в зрелые клеточные формы, которые и встречаются в крови или тканях (рис. 8-2). Путь окончательной дифференцировки гемопоэтической клетки-предшественника необратим. Скопление всех клеток-предшественников, которые под влиянием гемопоэтических факторов роста (гемопоэтинов) делятся и дальше дифференцируются, называется пролиферирующим пулом. Митоз и созревание клеток-предшественников регулируют образуемые локально гемопоэтические факторы роста (colony stimulating factors, CSF), а также интерлейкины (например, интерлейкин 3). Развитие эритроидного ростка стимулирует эритропоэтин, миелоидной лейкопоэтин, мегакариоцитарного - тромбопоэтин.

При необходимости способность к делению этой клеточной популяции может сильно возрасти; например, эритропоэзный резервный потенциал костного мозга позволяет в 5-10 раз увеличить продукцию эритроцитов.

Время жизни зрелой клетки крови в организме различно. Эритроциты циркулируют 120 дней, прежде чем они будут разрушены мононуклеарной фагоцитарной системой селезенки и печени. При скорости замены 1% эритроцитов/день можно вычислить, что у взрослого человека в секунду образуется 3 млн новых эритроцитов для того, чтобы поддерживать количество эритроцитов крови на постоянном уровне. Чтобы поддерживать эту скорость обновления, необходима соответствующая скорость синтеза ДНК и гемоглобина. Важным кофактором для образования ДНК является кобаламин (витамин B 12) и фолиевая кислота, тогда как наличие железа определяет скорость синтеза гемоглобина. При недостатке одного из этих веществ может возникнуть недостаток эритроцитов (анемия). При этом в циркулирующих эритроцитах, в зависимости от причины, наблюдаются характерные изменения. Время жизни других, не эритроцитарных, клеток крови очень различно: лимфоциты, которые образуются в костном мозге и проходят дальнейшую дифференцировку в лимфатической ткани, циркулируют между кровью, лимфой и лимфатической тканью в течение нескольких месяцев в качестве «стражников». Напротив, гранулоциты живут очень недолго, их время жизни составляет лишь около 10 ч, тогда как моноциты и тромбоциты циркулируют 7-10 дней.

Рис. 8-2. Генеалогическое древо развития и дифференцировки клеток крови.

Исходным пунктом дифференцировки клеток крови является полипотентная стволовая клетка, процесс саморазмножения регулируется факторами, которые выделяются клетками стромы костного мозга (пунктирные стрелки). Из полипотентных стволовых клеток возникают прежде всего три формы дифференцированных миелоидных, эритроидных мегакариоцитарных и лимфоидных клеток-предшественников, которые, в свою очередь, развиваются в зрелые клетки крови за счет дальнейших этапов дифференцировки. Эти стадии развития объединяются понятием «конечная дифференцировка», так как они необратимы и могут проходить лишь в направлении дальнейшего развития к зрелым клеткам крови. Лимфоидные предшественники приобретают свои окончательные свойства в тимусе (Т-лимфоциты) или в костном мозге (В-лимфоциты). Кроме того, как гормоны действуют тромбопоэтин на мегакариоциты

Эритроциты

Эритроциты представляют собой двояковогнутые диски, которые имеют диаметр порядка 7,5 мкм и толщину по середине 1,5 мкм. Эритроциты хорошо приспособлены для транспорта газа, поскольку их двояковогнутая форма обеспечивает высокое отношение поверхность/объем, а при прохождении по капиллярам они могут хорошо деформироваться (рис. 8-3 A). Это, в соответствии с эффектом Фареуса-Линдквиста, значительно улучшает реологические характеристики крови. В обеспечении этих свойств важную роль играет подмембранный цитоскелет эритроцита, о чем и пойдет речь ниже.

Мембрана эритроцита состоит из двойного липидного слоя, который пронизан гликофорином, а также белками каналов: переносчиком глюкозы GLUT1, водным каналом аквапорином или обменником Cl - /HCO 3- (белок Band 3). На стороне, обращенной к цитозолю, располагается молекулярная сеть, т.е. подмембраный цитоскелет.

Главные компоненты этой сети образованы нитеподобными молекулами спектрина, которые связаны друг с другом анкирином и другими связывающими белками (белок Band 4.1, актин) (рис. 8-3 Б). Пока не известно, какие из этих компонентов цитоскелета эритроцита отвечают за деформацию. Все же можно связать определенную форму анемии с дефектом анкирина, белка цитоскелета эритроцитов, который приводит к кеглеобразному изменению формы самих эритроцитов (врожденный сфероцитоз). Эти сфероциты механически крайне нестабильны, в результате чего их время жизни сильно сокращено (<10 дней). Вследствие этого возникает анемия, так как повышенное новообразование эритроцитов не способно компенсировать их ускоренное разрушение. Поскольку элиминация состарившихся или имеющих дефектную мембрану эритроцитов осуществляется мононуклеарной фагоцитарной системой селезенки (MPS), после удаления селезенки длительность жизни сфероцитов возрастает до 80 дней, за счет чего анемия значительно уменьшается.

Рис. 8-3. Эритроциты.

А - обратимое изменение формы эритроцитов в области капилляров. Б - расположение важнейших составных частей подмембранного цитоскелета эритроцита. Нитеподобные димеры спектрина образуют сети, которые скрепляются друг с другом за счeт анкирина и белка Band 4.1. Прикрепление Cl - /HCO 3 - -обменников (белков Band 3) на димерах спектрина осуществляется посредством молекул анкирина. Гликофорин - это белок мембраны, который пронизывает мембрану эритроцита по всей ее длине. Он связан внутри мембраны с белком Band 3 и белком Band 4.1. (Цифры в названиях белков относятся к нумерации электрофорезных полосок при разделении компонентов белков мембраны эритроцитов)

Группы крови

На поверхности мембраны эритроцитов находятся гликолипиды, обладающие антигенными свойствами. Они называются антигенами, так как они побуждают иммунную систему чужого организма к образованию антител. Антигены групп крови узнаются антителами сыворотки, что приводит к агглютинации (склеиванию) эритроцитов с последующим их гемолизом. Антигены групп крови встречаются не только на мембранах эритроцитов, но и на мембранах других клеток организма (эндотелиальных клетках, эпителиальных клетках, тромбоцитах, лейкоцитах). Они являются в своем строении генетически зафиксированными и, таким образом, представляют часть иммунологической индивидуальности человека. Лишь однояйцевые близнецы обладают полностью идентичными образцами антигенов клеточной поверхности и, вследствие этого, одинаковыми группами крови. Поскольку группы крови обусловлены специфическими компонентами мембраны, которые вызывают у чужих организмов реакцию иммунной системы в виде образования антител, их необходимо учитывать при переливании крови и при любых условиях определять совместимость групп крови. В практике переливания крови особое значение имеют AB0-система и Rhesus-система, поэтому они должны быть обсуждены подробнее.

AB0-система. АВ0-система групп крови наследуется в соответствии с законом Менделя. Гены А и В кодируют группы крови А и В, которым соответствует специфический углеводный компонент на конце молекулы гликолипида. Таким образом, люди различаются между собой наличием на мембране эритроцитов антигенов А, В или обоих, АВ. У людей с группой крови 0 (группа крови H) в молекуле гликолипида отсутствует углеводный

компонент, определяющий группы крови А или В. Эта основная структура является антигенно «немой» и получила поэтому наглядное обозначение - группа крови «0», хотя, собственно, не имеется никакого «0-антигена».

В плазме крови людей содержатся антитела (агглютинины) к соответственно отсутствующему антигену, итак: анти-В (β-агглютинин) у лиц с группой крови А, анти-А (α-агглютинин) у людей с группой крови В, анти-А и анти-В (α-агглютинин и β-агглютинин) у лиц с группой крови 0, и у людей с группой крови АВ в плазме крови нет α-агглютинина и β-агглютинина (см. табл. 8-2). Антитела системы АВ0 относятся к иммуноглобулинам класса М (IgM).

Rh-система. Добавление к сыворотке крови кролика, иммунизированного эритроцитами макаки-резус, эритроцитов человека приводит к агглютинации эритроцитов в пробах крови у 85% всех европейцев. Эта Rh - система групп крови состоит у человека из трех различных антигенов (агглютиногенов), которые обозначаются C, D и E.

Антиген D имеет наиболее сильное антигенное действие, так что люди, эритроциты которых обладают антигеном D, называются резусположительными. У резус-отрицательных людей отсутствует антиген D на поверхности мембраны эритроцитов. В Европе Rh-положительные свойства обнаруживаются у 85% и Rh-отрицательные у 15% населения. В отличие от АВ0-системы нет врожденных антител против резус-антигенов, и они обычно не встречаются в плазме крови. Эти антитела возникают лишь тогда, когда кровь от донора, который является резус-положительным, переливается резус-отрицательному реципиенту. Иммунная система реципиента будет в таком случае сенсибилизирована против резусантигенов, это означает, что она формирует антитела против резус-антигенов.

Рис. 8-4. Группы крови человека в АВ0-системе.

Пробы крови, чьи группы крови неизвестны (1), смешиваются либо с анти-А, с анти-В или с анти-А плюс анти-В сыворотки. В зависимости от возникновения или отсутствия агглютинации (2) может быть определена группа крови (3). В таблице (4) приведены соответствующие каждой группе крови антигены эритроцитов, присутствующие в плазме антитела, возможный генотип, равно как и средняя частота встречаемости групп крови у населения Средней Европы

Система комплемента

Иммунные процессы рассматриваются как проявления врожденного (естественного, неизменяющегося) и приобретенного (адаптивного, приспособительного) иммунитета.

Система врожденного иммунитета эволюционно сформировалась до приобретения способности к перегруппировке генов иммуноглобулинов и Т-клеточного рецептора, к узнаванию «своего», полноценной иммунной памяти. Врожденный иммунитет реализуется через клеточные (макрофаги, дендритные клетки, нейтрофилы, киллерные и др.) и гуморальные (естественные антитела, комплемент, белки острой фазы, некоторые цитокины, ферменты, лизоцим и др.) факторы. Конкретно их действие проявляется в реакциях фагоцитоза, цитолиза, в том числе бактериолиза, нейтрализации, блокады и многих других. Факторы врожденного иммунитета, участвующие, преимущественно в узнавании чужеродных белков и углеводов инфекционной природы, предсуществуют или индуцируются быстро (минуты, часы) после инфекции. Они не изменяются в процессе жизни организма, контролируются генами зародышевой линии и передаются по наследству.

Система комплемента - это семья из около 20 протеаз, которые действуют комплементарно к специфическим антителам и вместе с ними убивают чужеродные клетки посредством лизирования (растворения клеток) (рис. 8-5). Белки системы комплемента образуют два связанных друг с другом ферментативных каскада, протекание их реакций сходно с другими протеазными системами, например такой, как система свертывания крови. Каскад реакций системы комплемента начинается с того, что расщепляется первый компонент, в результате чего возникают протеазы, расщепляющие следующий C-компонент.

В дальнейшем образуется атакующий мембрану комплекс, который состоит из компонентов C5-C9 и с чьей помощью нарушается целостность мембраны бактерий, что приводит к их гибели.

Система комплемента может быть запущена посредством иммуноглобулинов (IgG, IgM): в этом случае говорят о классическом пути активации. При альтернативном пути активации «сигнал старта» обеспечивается полисахаридами мембраны, которые характерны для определенных микроорганизмов, а также посредством C-реактивного белка, который опсонирует поверхность мембраны для системы комплемента. Некоторые промежуточные продукты расщепления, которые возникают при активировании системы комплемента, выполняют и другие биологические функции при защите от инфекции.

Продукт С3b объединяет оба пути реакции. C3b расщепляет C5 на C5a и C5b. Компоненты С5Ь-8 полимеризируются с С9 и образуют трубкообразный мембранно-атакующий комплекс, который проходит сквозь мембрану клетки-мишени и приводит к проникновению внутрь клетки Ca 2+ (при высоких внутриклеточных концентрациях цитотоксичен!), а также Na + и Н 2 О. Активация каскада реакций системы комплемента включает гораздо больше этапов, чем приводится на схеме. В частности отсутствуют различные тормозные факторы, которые в случае системы свертывания и фибринолитической системы помогают контролировать избыточную реакцию.

Система приобретенного иммунитета сформировалась эволюционно в наиболее совершенной форме у позвоночных в результате уникального процесса перегруппировки генов иммуноглобулинов (антител) и Т-клеточного рецептора. Из первоначального небольшого набора генов зародышевой линии, передаваемых по наследству, в процессе соматической перегруппировки генных сегментов V, D, J и C, ответственных за синтез молекул антител или Т-клеточных рецепторов, создается огромное разнообразие распознающих элементов, перекрывающих все существующие в природе антигены. После рождения иммунная система человека потенциально способна к узнаванию любого антигена и способна различать антигены, отличающиеся по одной или нескольким аминокислотным остаткам.

Рис. 8-5. Активация системы комплемента ведет к растворению (лизированию) чужеродных и инфицированных вирусом собственных клеток организма

Фагоцитоз

Клетки врожденных иммунных реакций принимают участие в процессах воспаления, поглощают и переваривают чужеродный материал.

Проникающие микроорганизмы в жидких средах организма быстро захватываются фагоцитирующими клетками. К ним принадлежат нейтрофильные полиморфноядерные лейкоциты крови и встречающиеся в крови и тканях мононуклеарные фагоциты (моноциты, макрофаги). Если при ранении патогенные микробы проникли в ткани организма, то в первую очередь к месту повреждения привлекаются клетки неспецифической системы защиты. Это происходит за счет хемотаксиса, что означает направленное передвижение неспецифических воспалительных клеток, которое запускается и поддерживается за счет градиентов концентраций химических веществ. Хемотаксически активные вещества крайне многочисленны и здесь перечислена лишь их небольшая часть: некоторые из них продуцируются эндотелием поврежденных сосудов (простагландин, лейкотриен В 4), часть тромбоцитами (Platelet Activating Factor = PAF), некоторые входят в состав системы комплемента (белки C3 и C5). Кроме того, известны более чем 30 различных, так называемых хемокинов, которые привлекают определенные типы клеток.

Фагоцитоз начинается с захвата микроорганизмов и их связывания с мембранной поверхностью фагоцитов. Нагруженные C3b или антителами частицы (бактерии, поврежденные клетки организма) связываются с мембраной фагоцитов через C3b- или Fc-рецепторы (рис. 8-6). После связывания фагоцит образует псевдоподии, которые окружают чужеродное тело (образование фагосомы). Непосредственное разрушение чужеродного тела происходит, когда фагосомы сливаются с лизосомами в фаголизосому, и ферменты лизосом вступают в контакт с фагоцитируемым материалом. Лизосомальные ферменты включают протеазы, пептидазы, оксидазы дезоксирибонуклеазы и липазы. Кроме того фагоциты (прежде всего нейтрофильные гранулоциты) продуцируют

Рис. 8-6. Фагоцитоз на примере нейтрофильных гранулоцитов.

Фаза 1: Чужеродное тело, несущее антитела (например, IgG) или фактор системы комплемента C3b, распознается соответствующими рецепторами фагоцитов (Fc- и C3b-рецепторами) как нечто чужое. Фаза 2: После вступления в контакт с чужеродным организмом фагоциты образуют псевдоподии, которыми они «обхватывают» чужеродное тело. Фаза 3: После полного захвата чужеродного тела (фагоцитоз в собственном смысле) происходит образование фагосом. Фаза 4: Лизосомы, богатые гидролазой, сливаются с фагосомами и образуют фаголизосомы, в которых переваривается чужеродное тело. Фаза 5: Непереваренный материал выделяется наружу; на поверхности клетки появляются вновь Fc- и C3b-рецепторы, которые были расщеплены перед образованием фагосом (вторичная переработка)

В-лимфоциты

Плазматические клетки синтезируют молекулы иммуноглобулинов, которые опосредуют гуморальный иммунный ответ и происходят из зрелых В-лимфоцитов, которые в качестве рецепторных молекул имеют встроенные в мембрану иммуноглобулины (IgM-мономер, IgD). Антигенный эпитоп распознается только B-клетками, обладающими подходящим иммуноглобулиновым рецептором (паратоп) (V-отрезок Fab-участка). Соответствие между эпитопом и паратопом обеспечивает связывание антигена с В-лимфоцитом. Это ведет к активации этих клеток и их пролиферации, в результате чего образуются идентичные дочерние клетки - клеточный клон. В-лимфоциты - это лишь промежуточная стадия образования клона, клетки которого теперь называются плазматическими клетками, способными продуцировать антитела. Последние отличаются от покоящихся В-клеток тем, что они направлены исключительно на то, чтобы производить иммуноглобулины и выделять их в окружающую среду (рис. 8-7). Каждая продуцирующая антитела клетка синтезирует только один сорт антител. Решение о том, какое антитело должно быть образовано, генетически детерминировано до вступления клетки в контакт с антигеном. Контакт с антигеном вызы-

вает массовое деление того типа клеток, который выделяет нужные антитела.

В абсолютном большинстве случаев для «узнавания» антигена В-клетками и для их превращения в плазматические клетки, выделяющие антитела, необходимы еще антиген-презентирующие клетки и Т-хелпера. Только очень большие антигены с многими повторяющимися структурами оказываются в состоянии напрямую стимулировать В-клетки (рис. 8-7). На основании большого многообразия возможных антигенов необходимо предположить, что имеются многие миллиарды различных клонов В-клеток.

Наряду с плазматическими клетками при контакте с антигеном возникают В-клетки памяти, которые после контакта с антигеном не выделяют иммуноглобулины, а сохраняют информацию о структуре антигена. При последующем контакте с антигеном они под влиянием Т-хелперов и Т-клеток памяти, могут незамедлительно продуцировать большие количества антител. Эта «функция памяти» иммунной системы не столько связана со специфическими клетками памяти, сколько является результатом постоянного и повторяющегося контакта малейших количеств антигена с субпопуляцией В- и Т-клеток, которая держит антиген в «поле зрения», чтобы не забыть его.

Рис. 8-7. Клональная селекция и дифференцировка В-лимфоцитов.

Изображены три различных типа В-лимфоцитов, характеризующиеся, в зависимости от обстоятельств, наличием специфического IgG-рецептора (паратопа) (клеточные клоны 1,2,3). Только клеточный клон 2 обладает рецептором, подходящим к антигенному эпитопу. Это специфическое распознавание характерных признаков ведет к клональной селекции с последующим размножением клеточного клона 2 (клональная экспансия). Последующая дифференцировка развивающегося клона способствует образованию плазматических клеток, продуцирующих антитела, и В-клеток памяти. Плазматические клетки выделяют иммуноглобулины с паратопом, идентичным рецепторам В-клетки (см. увеличенное изображение иммуноглобулинов). В-клетки памяти сохраняют информацию о происшедшем контакте антиген-антитело, так что при повторной встрече с этим антигеном происходит более быстрое и усиленное образование антител

Структура иммуноглобулинов

Плазматические клетки обеспечивают гуморальную защиту, которая состоит из иммуноглобулинов (Ig). Иммуноглобулины можно разделить на классы IgG, IgM, IgE, и IgD (см. табл. 8-2). Каждый мономер иммуноглобулина имеет одинаковую основную конфигурацию: он состоит из двух идентичных легких (light) L-цепочек и двух идентичных тяжелых (heavy) Н-цепочек (рис. 8-8).

Трехмерная форма Ig-молекулы сравнима с буквой Y, при этом обе короткие руки, называемые Fab, представляют собой антигенсвязывающие (antigen binding) участки молекул. Те части Н- и L-цепочек, которые образуют дистальную часть молекул Fab-отрезка (V-область), вариабельны (variable) по аминокислотной последовательности. Каждое специфическое антитело,

которое направлено против определенного антигенного эпитопа, имеет различные V-участки в Н- и L-цепочках, тогда как остаток внутри соответствующего Ig-класса идентичен и определяет принадлежность к Ig-классу. Fc-область, которая после связывания Fab-домена на антигене выходит на внешнюю поверхность, ответственна за связывание с соответсвующими неспецифическими клетками защиты, которые движутся по ткани и несут на своей поверхности Fc-рецептор, как, например, нейтрофильные гранулоциты, естественные клетки-убийцы (NK-клетки) и макрофаги. Вслед за этим чужеродные клетки повреждаются оксидантами (О 2 -, ОН.), NO и перфорином, их обломки фагоцитируются и «перевариваются» лизосомальными ферментами. Кроме того, через Fc-отрезок Ig запускается классический путь активации системы комплемента.

Рис. 8-8. Основная структура иммуноглобулина G и функциональная роль различных участков их молекулы.

Легкие цепочки (V L + C L) и тяжелые цепочки (V H + C H1,2,3) связаны между собой через нековалентные связи, а также дисульфитные мостики. После протеолитического расщепления папаином молекула распадается на антигенсвязывающий фрагмент (antigen binding fragment, F ab) и на фрагмент, который легко кристаллизуется (F c). (Это протеолитическое расщепление IgG-молекулы папаином служит лишь для структурного исследования; оно не имеет места in vivo). Между F ab - и F c -частями находится участок, который особенно хорошо подвижен (шарнирный участок, «hinge region»), так что F ab -части Y-подобной молекулы более или менее сильно раскрываются и за счет этого могут приспосабливаться к различным пространственным расстояниям антигенного эпитопа. В различных участках аминокислот H-цепочки и L-цепочки наблюдаются характерные пространственные структуры; они обозначаются как домены. В изображенной IgG-молекуле имеется в общей сложности 12 доменов (V L и C L , а также V H и C H1,2,3). Способность к связыванию молекул определяется доменами, которые на соответствующих отрезках окрашены по-разному

Взаимодействие антигена с антигенпрезентирующей клеткой

Т-эффекторов, которые могут быть двух видов: ТЦТ (цитотоксические лимфоциты) и ТГЗТ (лимфоциты гиперчувствительности замедленного типа). Также Th1-клетки продуцируютинтерферон γ - эффекторный цитокин, обладающий прямой противовирусной и противоопухолевой активностью. На увеличенном изображении показано, в качестве примера, взаимодействие между CD4 + -клеткой и комплексом MHC с антигеном.

Если образуются Th2-лимфоциты, активизируется гуморальный ответ, направленный против растворимых и клеточных антигенов. Th-лимфо- циты, которые преобразуются в Th2-лимфоциты, взаимодействуют с рецепторами В-лимфоцитов, которые являются встроенными в мембрану иммуноглобулинами (IgM-мономер, IgD). В результате взаимодействия происходит передача антигенной детерминанты от Th2 к B-клетке и продукция Th2 клетками ростовых факторов IL-4,5,6. Под действием этих факторов антиген-специфические B-лимфоциты начинают размножаться и дифференцироваться в плазматические клетки, которые продуцируют Ig (антитела). Антитела связываются с растворимыми антигенами, образуют иммунные комплексы, элиминируемые в последствии из организма. Второй вариант эффекторной фазы гуморального иммунного ответа может быть направлен на вирусинфицированные или опухолевые клетки. В этом случае АТ связывается с антигеном на поверхности клетки; происходит активация комплемента и нарушение целостности цитоплазматической мембраны.

Рис. 8-9. Стимуляция Т- и В-лимфоцитов антиген-презентирующими клетками (АПК).

В тканях АПК захватывает АГ, лизирует и презентирует его в виде антигенной детерминанты на поверхность клетки вместе с молекулами HLA класса II. Процессинг - расщепление АГ в фаголизосоме. Вторичные органы иммунной системы. Презентация - взаимодействие АПК с Th0, который распознает АГ и дифференцируется на Th1 и Th2.

Thl-лимфоциты запускают клеточный ответ и за счет размножения Т-эффекторов двух видов: ТЦТ и ТГЗТ. Тh2-лимфоциты активизируют гуморальный ответ, взаимодействуя с рецепторами, встроенными в мембрану В-лимфоцитов (IgM-мономер, IgD).

Th0 - «наивные» недифференцированные Т-лимфоциты, Thl-лимфоциты - Т-хелперы 1, Тh2-лимфоциты - Т-хелперы 2

Иммуноглобулины

Иммуноглобулины - это белки, которые синтезируются под влиянием антигена и специфически с ним реагируют. Иммуноглобулины состоят из полипептидных цепей. В молекуле иммуноглобулина различают 4 структуры:

1.Первичная - это последовательность определенных аминокислот. Она строится из нуклеотидных триплетов, генетически детерминируется и определяет основные последующие структурные особенности.

2.Вторичная определяется конформацией полипептидных цепей.

3.Третичная определяет характер расположения отдельных участков цепи, создающих пространственную картину.

4.Четвертичная характерна для иммуноглобулинов. Из четырех полипептидных цепей возникает биологически активный комплекс. Цепи попарно имеют одинаковую структуру. Иммуноглобулины М - это наиболее «ранние»

из всех классов Ig, включающие 2 субкласса: IgM1 (65%) и IgM2 (35%). IgM активируют систему комплемента.

Иммуноглобулины Е - это мономеры, содержание которых в сыворотке крови ничтожно мало -

0,00005-0,0003 г/л или 0,002% от общего количества Ig. IgE связывается со специфическими рецепторами на поверхности тучных клеток и базофилов с высвобождением из этих клеток медиаторов аллергии.

Иммуноглобулины А - это секреторные ИГ, включающие 2 субкласса: IgА1 (90%) и IgА2 (10%). IgA секретируется в различные жидкости организма, обеспечивая секреторный иммунитет.

Иммуноглобулины D - это мономеры; их содержание в крови составляет 0,03-0,04 г/л или 1% от общего количества Ig. IgD функционирует в основном в качестве мембранных рецепторов для антигена.

Иммуноглобулины G - это мономеры, включающие 4 субкласса (IgG1 - 77%; IgG2 - 11%; IgG3 - 9%; IgG4 - 3%), которые отличаются друг от друга по аминокислотному составу и антигенным свойствам. IgG проявляет разнообразные виды активности, в том числе способность проникать через плаценту.

Рис. 8-10. Иммуноглобулины человека (табл. 8-2)

Таблица 8-2. Иммуноглобулины человека

Сосудисто-тромбоцитарный гемостаз

Тромбоциты не активируются неповрежденным эндотелием (рис. 8-11 А). Это можно объяснить особыми свойствами гликокаликса мембраны клеток эндотелия, для которого у тромбоцитов нет рецепторов. Кроме того, эндотелиальные клетки отдают в просветы сосудов факторы, противодействующие активации тромбоцитов. Прямое тормозящее воздействие на активацию тромбоцитов оказывает простациклин = простагландин I 2 , эйкозаноид, который образуется и выделяется клетками эндотелия, а также монооксид азота (NO). Третий продукт клеток эндотелия, который косвенно тормозит агрегацию тромбоцитов, гепарин. Гепарин тормозит образование и активность тромбина (через антитромбин III) и индуцированную тромбином активацию тромбоцитов.

Тромбоциты появляются в результате отшнуровки от мегакариоцитов в костном мозге, при этом каждая из этих самых больших клеток костного мозга порождает около 500 тромбоцитов (кровяных пластинок). Нормальное количество тромбоцитов составляет 170 000-400 000/мкл крови; при снижении уровня числа тромбоцитов до 50 000/мкл (тромбоцитопения) начальная стадия остановки кровотечения нарушается.

При повреждении сосудов открываются лежащие под эндотелием волокна коллагена, к которым тотчас же прикрепляются тромбоциты. Прикрепление (адгезия, рис. 8-11 Б) осуществляется с помощью белка, образуемого клетками эндотелия и мегакариоцитами (фактор фон Виллебранда, vWF), который вместе с фибронектином и ламинином образует молекулярные мосты между волокнами коллагена и специфическим комплексом рецепторов (GPIb-IX-V) на мембране тромбоцитов. При дефекте этого гликопротеинового комплекса (GP) прикрепление

тромбоцитов к коллагену становится невозможным. Непосредственно после адгезии происходит активация тромбоцитов (рис. 8-11 В). Этот процесс активации состоит в основном из трех этапов: секреции различных веществ, изменения формы тромбоцитов и агрегации кровяных пластинок. Первым этапом является секреция агонистов (ADP, тромбоксан А 2 , серотонин), вследствие чего происходит активация тромбоцитов. Эти тромбоциты становятся клейкими и образуют агрегат, «тромбоцитарная пробка» (белый тромб). Изменения формы тромбоцитов являются морфологическим эквивалентом их активации.

Главными отличительными признаками агрегации являются: а) реорганизация мембраны тромбоцитов и б) сокращение актин-миозиновых компонентов тромбоцитарного цитоскелета. Реорганизация плазматической мембраны приводит к экспозиции рецепторного комплекса, гликопротеина (GP) IIb/IIIa, на мембране тромбоцита. Фибриноген плазмы, равно как и «клеящие вещества» фибриноген и тромбоспондин, выделяемые активированными тромбоцитами, связываются с GP IIb/IIIa и вызывают агрегацию тромбоцитов (рис. 8-11 Г). Прежде чем тромбоциты начнут склеиваться друг с другом, они сначала должны быть привлечены к поврежденному месту в достаточном количестве. Те тромбоциты, которые активированы прикреплением к субэндотелиальному коллагену, выделяют вещества, за счет которых тромбоциты, плавающие в крови, «призываются на помощь». Все активированные тромбоциты склеиваются вместе и образуют за короткое время (<1 мин) белый тромб.

С агрегацией и контракцией завершается первичный гемостаз, т.е. образование белого тромбоцитарного агрегата. При нормальных условиях этот процесс длится 2-4 мин (время остановки кровотечения).

Рис. 8-11. Активация тромбоцитов.

Морфологические изменения. А - фаза покоя тромбоцитов - неповрежденные капилляры. Б - реакция наслоения тромбоцитов на коллаген после повреждения сосуда (адгезия на коллагене посредством тромбоцитарного гликопротеина GPIb и эндотелиального vWF). B - активация тромбоцитов: после наслоения на поврежденный эндотелий происходит активация фосфолипазы C (PLC), высвобождение инозитолтрифосфата (IP 3) с последующим Ca 2+ -oпосредованным превращением глобулярного актина в фибриллярный. Г - образование тромба: после экспозиции гликопротеина IIb/IIIa из активированных тромбоцитов с помощью фибриногена образуется тромбоцитарный агрегат (белый тромб)

Факторы свертывания крови

Факторы, принимающие участие в каскадах свертывания крови, обозначаются по договоренности римскими цифрами, при этом активное состояние соответствующего компонента маркируется через «а». Ранее часто использовались собственные имена, которые вместе с цифровой номенклатурой приведены в таблице. Как и в системе комплемента, работа системы свертывания - это

каскад реакций активации ферментов, центральное место в котором занимает фактор X. В активной форме фактор X образует совместно с фактором Va, фосфолипидами и Ca 2+ ферментативный комплекс прототромбиназу, которая переводит неактивный прототромбин в активный тромбин. Ca 2+ обеспечивает при этом фиксацию протромбиназного комплекса на отрицательно заряженных фосфолипидах клеточной мембраны, за счет чего его активность многократно возрастает.

Рис. 8-12. Факторы свертывания крови (табл. 8-3)

Таблица 8-3. Факторы свертывания крови

Коагуляционный гемостаз

Фаза активации. Активация фактора X может происходить посредством факторов, входящих в состав внешней и внутренней систем свертывания. Фактор Xa является конечным итогом систем свертывания. Внешний путь активации запускается тканевым тромбопластином из поврежденной ткани. Фактор тканевой тромбопластин активирует фактор VII, который как фактор IXa образует с Ca 2+ и фосфолипидами комплекс, активирующий фактор активации X. Внутренний путь свертывания запускается взаимодействием фактора XII с отрицательно заряженной поверхностью сосуда в присутствии высокомолекулярного кининогена и калликреина. В последствии активируются факторы XI и IX. Фактор IXa образует вместе с фосфолипидами, Ca 2+ и фактором VIIIa комплекс, который активирует фактор X в фактор Xa, вследствие чего наконец возникает тромбин. Эта сериновая протеаза регулирует не только активацию тромбоцитов, но действует через протеазоактивированные рецепторы как эффективный митоген клеток эндотелия и клеток гладкой мускулатуры.

О том, насколько насколько важен комплекс из факторов VIIIa и IXa для работы внутренней системы свертывания, можно судить по симптомам, которые появляются при отсутствии одного из этих факторов. При классической гемофилии А, наиболее частом врожденном нарушении процессов свертывания крови, недостает фактора VIII, при гемофилии B - фактора IX. Симптомы при обеих формах гемофилии одинаковы, однако гемофилия А встречается в 5 раз чаще, чем гемофилия В. Пациенты страдают обильными кровоизлияниями (гематомами) прежде всего в области конечностей

и головы, долго длящимися кровотечениями после повреждений, кровотечениями в суставах (гемартрозами), особенно локтевых и коленных суставов, которые приводят со временем к неподвижности сустава. Долговременное лечение гемофилии возможно либо полученным из плазмы, либо рекомбинантным фактором VIII.

Фаза коагуляции. Фаза активации заканчивается с образованием ферментативно активного тромбина. В последующей коагуляционной фазе тромбин отщепляет от фибриногена низкомолекулярные пептиды (фибринопептиды). Так образуются мономеры фибрина, которые через нековалентные связи (например, водородные мостики) складываются (коагулируют) в полимеры фибрина. Возникший сгусток все же недостаточно стабилен. Лишь в результате воздействия фактора XIII, который активируется тромбином, происходит образование ковалентных связей между γ-карбоксилгруппами остатков глютамина одного мономера фибрина и ε-аминогруппами остаков лизина другого мономера фибрина.

Фаза ретракции. Нити фибрина укладываются над тромбоцитарным агрегатом и связываются через мембранный рецептор гликопротеин IIb/IIIa с тромбоцитами. При адгезии фибрина на тромбоцитах и окружающей ткани принимает участие также еще «заякоривающий белок» фибронектин (см. рис. 8-11). Возникающий при вторичном гемостазе тромбин способствует не только агрегации тромбоцитов, но и активации их сократительной актин-миозиновой системы. Под тягой сокращающихся тромбоцитов на сети фибриновых нитей тромб сжимается и становится значительно меньше своего изначального объема (ретракция). Таким образом происходит дальнейшее укрепление тромба и механическое закрытие раны изнутри.

Рис. 8-13. Свертывание крови и фибринолиз.

Внешний путь активации: повреждение ткани является причиной контакта крови с составными частями разрушенных клеток, в которых находится тканевой тромбопластин. Этот липидно-белковый комплекс активирует фактор VII, который образует комплекс с Ca 2+ и фосфолипидами (P-Lip), который активирует фактор X. Внутренний путь активации: Реакция запускается активацией фактора XII (фактор Хагемана) на отрицательно заряженной поверхности. При активации задействованы также другие белки, например высокомолекулярный кининоген и калликреин. Следом активируются факторы IX и XI. Фактор IXa образует вместе с фосфолипидами (P-Lip), Ca 2+ и активированным фактором VIII ферментативный комплекс, который активирует фактор X. Возникающий после этого комплекс (P-Lip, Ca 2+ , Xa, Va) обозначается как протромбин активатор или протромбиназа; он запускает образование фибрина.

Синим залиты неактивные (покоящиеся) профакторы; розовым - активированные факторы с ферментативной активностью; желтым - процессы активации совместно действующих комплексов. Красные стрелки указывают на ферментативно активируемые процессы. В нижней (залитой серым цветом) части рисунка нарисованы факторы, переводящие при фибринолизе плазминоген в плазмин. Плазмин является протеазой, которая снова может растворить связанный фибрин, возникающий как конечный продукт свертывания. Стрепто- и стафилокиназы являются бактериальными активаторами плазминогена, которые не встречаются в физиологических условиях, однако могут быть применены для растворения тромба терапевтически.

ТАП - тканевый активатор плазминогена

Более 100 лет назад физиолог Клод Бернар пришел к заключению, что «постоянство внутренней среды организма есть условие независимого существования», т.е. жизни. На основании этого введен термин гомеостаз . Под ним понимают динамическое постоянство внутренней среды организма. Универсальной внутренней средой организма является кровь . Она циркулирует по всему живому организму и любые, выходящие за границы гомеостаза, изменения ее свойств нарушают жизненно важные процессы практически во всех тканях человека. Наряду с гомеостатической, кровь выполняет транспортную и защитную функции.

Разновидностями транспортной функции являются дыхательная (перенос кислорода и углекислого газа), трофическая (перенос питательных веществ), экскреторная (транспорт конечных продуктов обмена, избытка воды, органических и минеральных веществ к органам выделения), регуляторная или гуморальная (доставка гормонов, пептидов, ионов и других физиологически активных веществ от мест их синтеза к клеткам организма, что позволяет осуществлять регуляцию многих физиологических функций) и терморегуляторная (перенос тепла от более нагретых органов к менее нагретым).

Защитная функция обеспечивает иммунные реакции и свертывание крови.

Объем крови в организме взрослого человека составляет 6-8% от массы тела. Относительная плотность крови - 1.050-1.060. Вязкость - 5 усл. ед. (вязкость воды принята за 1 усл. ед.).

Осмотическое давление крови (сила, с которой растворитель переходит через полунепроницаемую мембрану в более концентрированный раствор) близко к 7,6 атм. Оно приблизительно на 60% создается хлористым натрием и определяет распределение воды между тканями и клетками. Если эритроциты поместить в солевой раствор, имеющий осмотическое давление, одинаковое с кровью, они не изменяют свой объем. Такой раствор называют изотоническим, или физиологическим. В растворе с повышенным осмотическим давлением (гипертонический раствор) эритроциты теряют воду и сморщиваются. В растворе с низким осмотическим давлением (гипотонический раствор), эритроциты набухают. Онкотическое давление крови (часть осмотического давления, создаваемая белками) равно 0,03-0,04 атм., или 25-30 мм рт.ст. При снижении онкотического давления крови, вода выходит из сосудов в межклеточное пространство, что приводит к отеку.

Кислотно-основное состояние крови (КОС) измеряется в единицах pH. В норме pH артериальной крови - 7,4; венозной - 7,35. Сдвиг реакции в кислую сторону называется ацидозом , в щелочную - алкалозом . Поддержание постоянства pH крови обеспечивается гемоглобиновой, карбонатной, фосфатной и белковой буферными системами. Гемоглобиновая буферная система на 70-75% обеспечивает буферную емкость крови. Карбонатная система по своей мощности занимает второе место. Поддержание pH осуществляется также с помощью легких и почек. Через легкие удаляется избыток углекислоты, а почки могут выделять фосфаты и бикарбонаты.


Кровь состоит из плазмы (55-60% от объема крови) и форменных элементов (40-45%). Объем клеток в крови (выраженный в процентах, по отношению к объёму всей крови) назван гематокритом .

Плазма на 91% состоит из воды. Органические вещества сухого остатка плазмы в основном (7-8% от массы крови) представлены белками: альбуминами, глобулинами и фибриногеном. Наименьшую молекулярную массу и большую концентрацию среди белков плазмы имеют альбумины . Они создают около 80% онкотического давления, осуществляют питательную функцию (резерв аминокислот для клеток), переносят холестерин, жирные кислоты, билирубин, соли желчных кислот и тяжелые металлы. Глобулины делят на альфа-, бета- и гамма-фракции. Гамма-глобулины образуются в лимфоцитах и плазматических клетках, а практически все другие белки плазмы синтезируются в печени. Альфа- и бета- глобулины транспортируют гормоны, витамины, макро- и микроэлементы, липиды. К этим фракциям глобулинов относят и биологически активные вещества (например, эритропоэтин и факторы свертывания крови). Гамма-глобулины выполняют функции антител (иммуноглобулинов), защищающих организм от вирусов и бактерий. К органическим веществам плазмы крови относятся также многие небелковые азотсодержащие соединения (аминокислоты, полипептиды, мочевина, мочевая кислота, креатинин, аммиак) и безазотистые вещества (глюкоза, нейтральные жиры, липиды и др.). Неорганические вещества плазмы крови составляют 0,9-1%. Значительную их часть составляют ионы натрия, кальция, калия, магния, хлора, фосфаты и карбонаты. Ионы обеспечивают нормальную функцию всех клеток организма, обусловливают осмотическое давление, регулируют pH. В плазме присутствуют витамины, микроэлементы и промежуточные продукты метаболизма (например, молочная кислоты).

К форменным элементам крови относятся эритроциты, лейкоциты и тромбоциты. Их содержание в крови должно быть постоянным. Повышение количества клеток в крови называется цитозом (например, эритроцитоз), уменьшение – пенией (например, эритропения).

Эритроциты человека лишены ядра, заполнены гемоглобином и имеют форму двояковогнутого диска. Они выполняют дыхательную (переносят молекулярный кислород от легких к тканям и углекислый газ от тканей к легким), буферную, питательную (доставляют необходимые для обмена вещества) и защитную (связывают токсины и участвуют в свертывании крови) функции.

Основным белком в эритроцитах является гемоглобин . В крови плода много гемоглобина F (фетальный гемоглобин), а у взрослого человека - гемоглобина А (гемоглобин взрослых). У фетального гемоглобина сродству к кислороду больше, чем у гемоглобина А. Это помогает плоду получать кислород из крови матери.

После обратимого связывания с молекулярным кислородом дезоксигемоглобин превращается в оксигемоглобин , а углекислого газа - в карбгемоглобин . Не способны отдавать связанный кислород и, поэтому, опасны для жизни соединения гемоглобина с угарным газом (карбоксигемоглобин ) и с сильными окислителями (бертолетовая соль и др.) - метгемоглобин .

Степень насыщения эритроцитов гемоглобином вычисляют по цветовому показателю (в норме он близок к единице).

Разрушение оболочки эритроцитов и выход из них гемоглобина называется гемолизом . По вызвавшей его причине, он может быть осмотическим (возникает в гипотонической среде), химическим (разрушают эритроцит кислоты и некоторые другие химические вещества), биологическим (в результате действия антител, при переливании несовместимой крови, а также компонентов яда змей и насекомых), температурным (при замораживании и размораживании крови) и механическим (вызывается сильными механическими воздействиями, например – встряхиванием крови).

Скорость оседания эритроцитов (СОЭ) зависит от количества, объема и заряда эритроцитов, их способности к агрегации и белкового состава плазмы. СОЭ увеличивается при беременности, стрессе, воспалительных заболеваниях, эритропении и повышенном содержании фибриногена.

Образование эритроцитов (эритропоэз) происходит в красном костном мозге. Для этого организм получает железо из гемоглобина разрушающихся эритроцитов и с пищей. При недостатке железа развивается железодефицитная анемия. Для образования эритроцитов требуются и витамины. Витамин В12 способствует синтезу глобина и вместе с фолиевой кислотой участвует в синтезе ДНК для созревающих эритроцитов. Витамин В 2 необходим для образования клеточных мембран. Витамин В 6 участвует в образовании гема. Витамин С стимулирует усвоение железа и усиливает действие фолиевой кислоты. Витамины Е и PP защищают эритроциты от гемолиза. Для нормального эритропоэза нужны также медь, никель, кобальт и цинк.

Эритроциты циркулируют в крови 100-120 дней, а затем разрушаются в печени, селезенке и костном мозге.

Физиологическими регуляторами эритропоэза являются эритропоэтины (образуются в почках, печени и селезенке). Они ускоряют образование эритроцитов и увеличивают их выход в кровь.

Лейкоциты – бесцветные клетки с ядром. Физиологические (возникающие в здоровом организме) лейкоцитозы по причинам их возникновения делят на пищевой, миогенный (вызван мышечной работой) и эмоциональный. С учетом особенностей окраски и выполняемых функций лейкоциты делят (рис. 13) на зернистые (гранулоциты ) и незернистые (агранулоциты ). Среди гранулоцитов выделяют нейтрофилы, эозинофилы и базофилы. К агранулоцитам относятся моноциты и лимфоциты.

Загрузка...