docgid.ru

От чего бывает защемление нерва в пояснице. Симптомы защемления нерва в пояснице и лечение. Вот основные требования

Механизмы регуляции физиологических функций традиционно подразделяют на нервные и гуморальные, хотя в действительности они образуют единую регуляторную систему, обеспечивающую поддержание гомеостаза и приспособительную деятельность организма. Эти механизмы имеют многочисленные связи как на уровне функционирования нервных центров, так и при передаче сигнальной информации эффекторным структурам. Достаточно сказать, что при осуществлении простейшего рефлекса как элементарного механизма нервных регуляций передача сигнализации с одной клетки на другую осуществляется посредством гуморальных факторов — нейромедиаторов. Чувствительность сенсорных рецепторов к действию раздражителей и функциональное состояние нейронов изменяется под действием гормонов, нейромедиаторов, ряда других биологически активных веществ, а также простейших метаболитов и минеральных ионов (К+, Na+, Ca-+, С1~). В свою очередь, нервная система может запускать или выполнять коррекцию гуморальных регуляций. Гуморальные регуляции в организме находятся под контролем нервной системы.

Гуморальные механизмы филогенетически более древние, они имеются даже у одноклеточных животных и приобретают большое разнообразие у многоклеточных и особенно у человека.

Нервные механизмы регуляций образовались филогенетически и формируются постепенно в онтогенезе человека. Такие регуляции возможны лишь в многоклеточных структурах, имеющих нервные клетки, объединяющиеся в нервные цепи и составляющие рефлекторные дуги.

Гуморальные регуляции осуществляются путем распространения сигнальных молекул в жидкостях организма по принципу "всем, всем, всем", или принципу "радиосвязи".

Нервные регуляции осуществляются по принципу "письмо с адресом", или "телеграфной связи". Сигнализация передается от нервных центров к строго определенным структурам, например к точно определенным мышечным волокнам или их группам в конкретной мышце. Только в этом случае возможны целенаправленные, координированные движения человека.

Гуморальные регуляции, как правило, осуществляются медленнее, чем нервные. Скорость проведения сигнала (потенциала действия) в быстрых нервных волокнах достигает 120 м/с, в то время как скорость транспорта сигнальной молекулы с током крови в артериях приблизительно в 200 раз, а в капиллярах — в тысячи раз меньше.

Приход нервного импульса к органу-эффектору практически мгновенно вызывает физиологический эффект (например, сокращение скелетной мышцы). Реакция на многие гормональные сигналы более медленная. Например, проявление ответной реакции на действие гормонов щитовидной железы и коры надпочечников происходит через десятки минут и даже часы.

Гуморальные механизмы имеют преимущественное значение в регуляции процессов обмена веществ, скорости деления клеток, роста и специализации тканей, полового созревания, адаптации к изменению условий внешней среды.

Нервная система в здоровом организме оказывает влияние на все гуморальные регуляции, осуществляет их коррекцию. Вместе с тем у нервной системы имеются свои специфические функции. Она регулирует жизненные процессы, требующие быстрых реакций, обеспечивает восприятие сигналов, приходящих от сенсорных рецепторов органов чувств, кожи и внутренних органов. Регулирует тонус и сокращения скелетных мышц, которые обеспечивают поддержание позы и перемещение тела в пространстве. Нервная система обеспечивает проявление таких психических функций, как ощущение, эмоции, мотивации, память, мышление, сознание, регулирует поведенческие реакции, направленные на достижение полезного приспособительного результата.

Гуморальные регуляции подразделяют на эндокринные и местные. Эндокринные регуляции осуществляются благодаря функционированию желез внутренней секреции (эндокринных желез), которые представляют собой специализированные органы, выделяющие гормоны.

Отличительной особенностью местных гуморальных регуляций является то, что биологически активные вещества, вырабатываемые клеткой, не поступают в кровоток, а действуют на продуцирующую их клетку и ее ближайшее окружение, распространяясь за счет диффузии по межклеточной жидкости. Такие регуляции подразделяют на регуляцию обмена веществ в клетке за счет метаболитов, аутокринию, паракринию, юкстакринию, взаимодействия через межклеточные контакты. Во всех гуморальных регуляциях, осуществляемых с участием специфических сигнальных молекул, важную роль играют клеточные и внутриклеточные мембраны.

Похожая информация:

Поиск на сайте:

(От латинского слова гумор - «жидкость») осуществляется за счет веществ, выделяемых во внутреннюю среду организма (лимфу, кровь, тканевую жидкость). Это более древняя, по сравнению с нервной, система регуляции.

Примеры гуморальной регуляции:

  • адреналин (гормон)
  • гистамин (тканевой гормон)
  • углекислый газ в высокой концентрации (образуется при активной физической работе)
  • вызывает локальное расширение капилляров, к этому месту притекает больше крови
  • возбуждает дыхательный центр продолговатого мозга, дыхание усиливается

Сравнение нервной и гуморальной регуляции

  • По скорости работы: нервная регуляция гораздо быстрее: вещества передвигаются вместе с кровью (действие наступает через 30 сек), нервные импульсы идут почти мгновенно (десятые доли секунды).
  • По длительности работы: гуморальная регуляция может действовать гораздо дольше (пока вещество находится в крови), нервный импульс действует кратковременно.
  • По масштабу воздействия: гуморальная регуляция действует более масштабно, т.к.

    Гуморальная регуляция

    химические вещества разносятся кровью по всему организму, нервная регуляция действует точно - на один орган или часть органа.

Таким образом, нервную регуляцию выгодно применять для быстрой и точной регуляции, а гуморальную - для длительной и масштабной.

Взаимосвязь нервной и гуморальной регуляции: химические вещества действуют на все органы, в том числе и на нервную систему; нервы идут ко всем органам, в том числе и к железам внутренней секреции.

Координацию нервной и гуморальной регуляции осуществляет гипоталамо-гипофизарная система, таким образом, можно говорить о единой нервно-гуморальной регуляции функций организма.

Основная часть. Гипоталамо-гипофизарная система является высшим центром нейро-гуморальной регуляции

Введение.

Гипоталамо-гипофизарная система является высшим центром нейро-гуморальной регуляции организма. В частности нейроны гипоталамуса обладают уникальными свойствами – секретировать гормоны в ответ на ПД и генерировать ПД (схожий с ПД при возникновении и распространении возбуждения) в ответ на секрецию гормона, то бишь они обладают свойствами одновременно и секреторных и нервных клеток. Это и обуславливает связь нервной системы с эндокринной.

Из курса морфологии и практических занятий по физиологии нам хорошо известно расположение гипофиза и гипоталамуса, а так же их тесная связь между собой. Поэтому не будем останавливаться на анатомической организации данной структуры, и перейдём сразу к функциональной организации.

Основная часть

Главной железой внутренней секреции является гипофиз – железа желёз, дирижёр гуморальной регуляции в организме. Гипофиз подразделяют на 3 анатомо-функциональные части:

1. Передняя доля или аденогипофиз – состоит преимущественно из секреторных клеток, секретирующих тропные гормоны. Работа этих клеток регулируется работой гипоталамуса.

2. Задняя доля или нейрогипофиз – состоит из аксонов нервных клеток гипоталамуса и кровеносных сосудов.

3. Эти доли разделены промежуточной долей гипофиза, которая у человека редуцирована, но тем не менее способна продуцировать гормон интермедин (меланоцитстимулирующий гормон). Этот гормон у человека выделяется в ответ на интенсивное раздражение светом сетчатки глаза и активирует клетки чёрного пигментного слоя в глазу, защищая сетчатку от повреждения.

Работа всего гипофиза регулируется гипоталамусом. Аденогипофиз подчиняется работе тропных гормонов, выделяемых гипофизом – релизинг-факторы и ингибирующие факторы по одной номенклатуре, или либерины и статины по другой. Либерины или релизинг-факторы – стимулируют, а статины или ингибирующие факторы – ингибируют выработку соответствующего гормона в аденогипофизе. Эти гормоны поступают в переднюю долю гипофиза посредством портальных сосудов. В гипоталамической области вокруг этих капилляров формируется нейронная сеть, образованная отростнаки нервных клеток, формирующих на капиллярах нейро-капиллярные синапсы. Отток крови от этих сосудов идёт прямиком в аденогипофиз, перенося с собой гипоталамические гормоны. Нейрогипофиз имеет прямую нейронную связь с ядрами гипоталамуса, по аксонам нервных клеток которых гормоны транспортируются в заднюю долю гипофиза. Там они хранятся в расширенных терминалях аксонов, и оттуда попадают в кровь, при генерации ПД соответствующими нейронами гипоталамуса.

Касательно регуляции работы задней доли гипофиза, следует сказать, что гормоны, выделяемые ей, продуцируются в супраоптическом и паравентрикулярном ядрах гипоталамуса, и транспортируются в нейрогипофизу аксональным транспортом в транспортных гранулах.

Важно также отметить, что зависимость работы гипофиза от гипоталамуса доказывается пересадкой гипофиза на шею. В этом случае он перестаёт секретировать тропные гормоны.

Теперь обсудим гормоны, выделяемые гипофизом.

Нейрогипофиз продуцирует всего 2 гормона окситоцин и АДГ (антидиуретический гормон) или вазопрессин (лучше АДГ, т.к. это назв. лучше отражает действие гормона). Оба гормона синтезируются как в супраоптическом, так и в паравентрикулярном ядрах, но каждый нейрон синтезирует только один гормон.

АДГ – орган-мишень – почки (в очень больших концентрациях влияет на сосуды, повышая кровяное давление, а в воротной системе печени снижая его; важно при большой кровопотере), при секреции АДГ собирательные трубочки почек становятся проницаемы для воды, что увеличивает реабсорбцию, а при отсутствии – реабсорбция минимальна, и практически отсутствует. Алкоголь снижает выработку АДГ, именно поэтому повышается диурез, происходит потеря воды, отсюда и появляется так называемый синдром похмелья (или в простонародье — сушняк). Можно так же сказать, что в условиях гиперосмолярности (когда концентрация соли в крови высока) стимулируется выработка АДГ, который опеспечивает минимальную потерю воды (образуется концентрированная моча). И наоборот, в условиях гипоосмолярности, АДГ увеличивает диурез (образуется разбавленная моча). Следовательно, можно сказать о наличии осмо- и барорецепторов, контролирующих осмотическое давление и АД (артер.давл.). Осморецепторы находятся вероятно в самом гипоталамусе, нейрогипофизе и воротных сосудах печени. Барорецепторы находятся в сонной артерии и луковице аорты, а так же в грудном отделе и в предсердии, где давление минимальное. Регулируют АД в горизонтальном и вертикальном положениях.

Патология. При нарушении секреции АДГ, развивается несахарный диабетбольшое количество мочеотделения, причём моча не сладкая на вкус. Раньше действительно пробовали мочу на вкус и ставили диагноз: если сладкая – сахарный, а если нет – несахарный диабет.

Окситоцин – органы-мишени – миометрий и миоэпителий молочной железы.

1. Миоэпителий молочной железы: после родов, молоко начинает выделяться в течении 24 часов. Соски груди сильно раздражаются при акте сосания. Раздражение идёт в головной мозг, где стимулируется выделение окситоцина, влияющего на миоэпителий молочной железы. Это мышечный эпителий, касположенный параальвеолярно, и при сокращении выдавливает молоко из молочной железы. Лактация в присутствии младенца прекращается медленнее, чем в его отсутствии.

2. Миометрий: при раздражении шейки матки и влагалища, стимулируется выработка окситоцина, который заставляет сокращаться миометрий, проталкивающий плод к шейке матки, от механорецепторов которых раздражение вновь поступает в мозг и стимулирует ещё большую выработку окситоцина. Этот процесс в пределе переходит в роды.

Интересен факт, что окситоцин выделяется и у мужчин, но его роль не ясна. Возможно он стимулирует мышцу, поднимающую яичко при эякуляции.

Аденогипофиз. Сразу укажем патологический момент в филогенезе аденогипофиза. В эмбриогенезе он закладывается в области первичной ротовой полочти, и заме смещается к турецкому седлу. Это может привести к тому, что на пути перемещения могут остаться частички нервной ткани, которая при жизни может начать развиваться как эктодерма, и дать начало опухолевым процессам в области головы. Сам аденогипофиз имеет происхождение железистого эпителия (отражено в названии).

Аденогипофиз выделяет 6 гормонов (отражены в таблице).

Гландотропные гормоны – это гормоны, органы-мишени которых эндокринные железы. Выделение этих гормонов стимулируют активность желёз.

Гонадотропные гормоны – гормоны, стимулирующие работу гонад (половых органов). ФСГ стимулирует созревание фолликула в яичниках у женщин, и созревание спермы у мужчин. А ЛГ (лютеин – пигмент, относящийся к группе кислородсожержащих каротиноидов – ксантофиллы; ксантос — жёлтый) вызывает овуляцию и образование жёлтого тела у женщин, а у мужчин стимулирует синтез тестостерона в интерстициальных клетках Лейдига.

Эффекторные гормоны – влияют на весь организм в целом или на его системы. Пролактин участвует в лактации, другие функции скорее всего присутствуют, но они не известны у человека.

Секрецию соматотропина вызывают следующие факторы: гипогликемия голодания, определённые виды стресса, физическая работа. Гормон выделяется во время глубокого сна и кроме того, гипофиз эпизодически секретирует большие количества этого гормона при отсутствии стимуляции. На рост гормон виляет опосредованно, вызывая образование гормонов печени – соматомединов . Они оказывают влияние на костную и хрящевую ткань, способствуя поглощению ими неорганических ионов. Основным является соматомедин С , стимулирующий синтез белка во всех клетках тела. На метаболизм гормон влияет непосредственно, мобилизируя жирные кислоты из жировых запасов, способствую поступлению в кровь дополнительного энергетического материала. Обращаю внимание девушек на то, что выработка соматотропина стимулируется физическими нагрузками, и соматотропин обладает липомобилизирующим эффектом. На углеводный же обмен, ГР оказывает 2 противоположных эффекта. Через 1 после введения гормона роста, концентрация глюкозы в крови резко падает (инсулин-подобное действие соматомедина С), но затем концентрация глюкозы начинает возрастать в результате прямого действия ГР на жировую ткань и гликоген. Одновременно с этим ингибируя поглощение глюкозы клетками. Таким образом оказывается диабетогенное воздействие. Гипофункция вызывает нормальную карликовость, гиперфункция гигантизм у детей и акромегалию у взрослых.

Регуляция же секрета гормонов гипофизом, как оказалось сложнее чем предполагалось. Ранее считалось, что для каждого гормона существует свой либерин и статин.

Но оказалось, что секрет некоторых гормонов стимулируется только либерином, секрет же двух других одним лишь либерином (см.таблицу 17.2).

Гипоталамические гормоны синтезируются посредством возникновения ПД на нейронах ядер. Самые сильные ПД приходят из среднего мозга и лимбической системы, в частности гиппокампа и миндалевидного ядра через норадренергические, адренергические и серотонинэкгические нейроны. Это позволяет интегрировать внешние и внутренние воздействия и эмоциональное состояние с нейроэндокринной регуляцией.

Заключение

Остаётся только сказать, что такая сложная система, должна работать как часы. И малейший сбой может привести к нарушению работы всего организма. Не даром говорят: «Все болезни от нервов».

Использованная литература

1. Под.ред. Шмидта, Физиология человека, 2-й том, с.389

2. Косицкий, физиология человека, с.183

mybiblioteka.su — 2015-2018 год. (0.097 сек.)

Гуморальные механизмы регуляции физиологических функций организма

В процессе эволюции первыми сформировались гуморальные механизмы регуляции. Они возникали на этапе, когда появилась кровь и кровообращение. Гуморальная регуляция (от латинского humor – жидкость), это механизм координации процессов жизнедеятельности организма, осуществляемый через жидкие среды — кровь, лимфу, межтканевую жидкость и цитоплазму клетки с помощью биологически активных веществ. Важную роль в гуморальной регуляции играют гормоны. У высокоразвитых животных и человека гуморальная регуляция подчинена нервной регуляции, вместе с которой они составляют единую систему нейро-гуморальной регуляции, обеспечивающей нормальное функционирование организма.

Жидкими средами организма, являются:

— экстравазарные (внутриклеточная и межтканевая жидкость);

— интравазарные (кровь и лимфа)

— специализированные (ликвор — цереброспинальная жидкость в желудочках мозга, синовиальная жидкость – смазка суставных сумок, жидкие среды глазного яблока и внутреннего уха).

Под контролем гормонов находятся все основные процессы жизнедеятельности, все этапы индивидуального развития, все виды клеточного метаболизма.

В гуморальной регуляции участвуют следующие биологически активные вещества:

— поступающие с кормом витамины, аминокислоты, электролиты и др.;

— вырабатываемые эндокринными железами гормоны;

— образованные в процессе обмена веществ СО2, амины и медиаторы;

— тканевые вещества — простагландины, кинины, пептиды.

Гормоны . Наиболее важными специализированными химическими регуляторами являются гормоны. Они вырабатываются в железах внутренней секреции (эндокринных железах, от греч. endo – внутрь, krino — выделять).

Железы внутренней секреции бывают двух типов:

— со смешанной функцией – внутренней и внешней секреции, к этой группе относят половые железы (гонады) и поджелудочную железу;

— с функцией органов только внутренней секреции, к этой группе относят гипофиз, эпифиз, надпочечники, щитовидную и околощитовидную железы.

Передача информации и регуляция деятельности организма осуществляется ЦНС с помощью гормоно. Свое влияние на железы внутренней секреции ЦНС оказывает через гипоталамус, в котором располагаются центры регуляции и специальные нейроны, продуцирующие посредники гормонов – рилизинг-гормоны, с помощью которых регулируется деятельность главной эндокринной железы – гипофиза. Складывающиеся оптимальные концентрации гормонов в крови называется гормональным статусом .

Гормоны вырабатываются в секреторных клетках. Хранятся в гранулах внутрии клеточных органелл, отделенных от цитоплазмы мембраной. По химическому строению различают белковые (производные белков, полипептидов), аминые (производные аминокислот) и стероидные (производные холестерина) гормоны.

По функциональному признаку различают гормоны:

— эффекторные – действуют непосредственно на органы-мишени;

— тропные – вырабатываются в гипофизе и стимулируют синтез и выделение эффекторных гормонов;

рилизинг-гормоны (либерины и статины), они выделяются непосредственно клетками гипоталамуса и регулируют синтез и секрецию тропных гормонов. Через рилизинг-гормоны осуществляют связь между эндокринной и центральной нервной системами.

Для всех гормонов характерны такие свойства:

— строгая специфичность действия (она связана с наличием в органах-мишенях высокоспецифичных рецепторов, особых белков, с которыми связываются гормоны);

— дистантность действия (органы-мишени находятся вдали от места образования гормонов)

Механизм действия гормонов. Он основан на: стимуляции или угнетении каталитической активности ферментов; изменении проницаемости клеточных мембран. Различают три механизма: мембранный, мембранно-внутриклеточный, внутриклеточный (цитозольный.)

Мембранный – обеспечивает связывание гормонов с клеточной мембраной и в месте связывания изменяет ее проницаемость для глюкозы, аминокислот и некоторых ионов. Например, гормон поджелудочной железы инсулин, повышает транспорт глюкозы, через мембраны клеток печени и мускулов, где из глюкозы синтезируется глюкагон (рис **)

Мембранно-внутриклеточный. Гормоны не проникают в клетку, а влияют на обмен через внутриклеточные химические посредники. Таким действием обладают белково-пептидные гормоны и производные аминокислот. В качестве внутриклеточных химических посредников выступают циклические нуклеотиды: циклический 3′,5′-аденозинмонофосфат (цАМФ) и циклический 3′,5′-гуанозинмонофосфат (цГМФ), а также простагландины и ионы кальция (рис **).

На образование циклических нуклеотидов гормоны влияют через ферменты – аденилатциклазу (для цАМФ) и гуанилатциклазу (для цГМФ). Адеилатциклаза встроена в мембрану клетки и состоит из 3-х частей: рецепторной (R), сопрягающей (N), каталитической (С).

Рецепторная часть включает набор мембранных рецепторов, которые находятся на внешней поверхности мембраны. Каталитическая часть является ферментным белком, т.е. собственно аденилатциклазой, которая превращает АТФ в цАМФ. Механизм действия аденилатциклазы осуществляется следующим образом. После связывания гормона с рецептором образуется комплекс гормон-рецептор, затем происходит образование комплекса N-белок-ГТФ (гуанозинтрифосфат), который активизирует каталитическую часть аденилатциклазы. Сопрягающая часть представлена особым N-белком, расположенным в липидном слое мембраны. Активация аденилатциклазы приводит к образованию цАМФ внутри клетки из АТФ.

Под действием цАМФ и цГМФ происходит активация протеинкиназ, которые находятся в цитоплазме клетки в неактивном состоянии (рис **)

В свою очередь активированные протеинкиназы активируют внутриклеточные ферменты, которые, действуя на ДНК, участвуют в процессах транскрипции генов и синтеза нужных ферментов.

Внутриклеточный (цитозольный) механизм действия характерен для стероидных гормонов, которые имеют меньшую величину молекул, чем белковые гормоны. В свою очередь они относятся с липофильным веществам по физико-химическим свойствам, что позволяет им легко проникать через липидный слой плазматической мембраны.

Проникнув внутрь клетки стероидный гормон взаимодействует со специфическим белком-рецептором (R), находящимся в цитоплазме, образуя гормон-рецепторный комплекс (ГRа). Этот комплекс в цитоплазме клетки подвергается активации и проникает через ядерную мембрану к хромосомам ядра, вступая с ними во взаимодействие. При этом происходит активация генов, сопровождающаяся образованием РНК, что приводит к усиленному синтезу соответствующих ферментов. В данном случае белок-рецептор служит посредником в действии гормона, однако он приобретает эти свойства только после его соединения с гормоном.

Наряду с непосредственным влиянием на ферментные системы тканей, действие гормонов на строение и функции организма может осуществляться более сложными путями при участии нервной системы.

Гуморальная регуляция и процессы жизнедеятельности

В этом случае гормоны воздействуют на интерорецепторы (хеморецепторы), расположенные в стенках кровеносных сосудов. Раздражение хеморецепторов служит началом рефлексной реакции, которая изменяет функциональное состояние нервных центров.

Физиологическое действие гормонов весьма разнообразно. Они оказывают выраженное влияние на обмен веществ, дифференциацию тканей и органв, рост и развитие. Гормоны участвуют в регуляции и интеграции многих функций организма, адаптируя его к изменяющимся условиям внуренней и внешней среды, поддерживают гомеостаз.

Биология человека

Учебник для 8 класса

Гуморальная регуляция

В организме человека постоянно происходят разнообразные процессы жизнеобеспечения. Так, в период бодрствования одновременно функционируют все системы органов: человек двигается, дышит, по его сосудам течет кровь, в желудке и кишечнике идут процессы пищеварения, осуществляется терморегуляция и др. Человек воспринимает все изменения, происходящие в окружающей среде, реагирует на них. Все эти процессы регулируются и контролируются нервной системой и железами эндокринного аппарата.

Гуморальная регуляция (от лат. «гумор» - жидкость)- форма регуляции деятельности организма, присущая всему живому, осуществляется с помощью биологически активных веществ - гормонов (от греч. «гормао» - возбуждаю), которые вырабатываются специальными железами. Их называют железами внутренней сек> реции или эндокринными (от греч. «эндон» - внутри, «кринео» - выделять). Выделяемые ими гормоны поступают непосредственно в тканевую жидкость и в кровь. Кровь разносит эти вещества по организму. Попав в органы и ткани, гормоны оказывают на них определенное воздействие, например влияют на рост тканей, ритм сокращения сердечной мышцы, вызывают сужение просвета сосудов и т. д.

Гормоны влияют на строго определенные клетки, ткани или ор-ганы. Они очень активны, действуют даже в ничтожно малых количествах. Однако гормоны быстро разрушаются, поэтому они должны по мере надобности поступать в кровь или тканевую жидкость по мере надобности.

Обычно железы внутренней секреции невелики: от долей грамма до нескольких граммов.

Важнейшей железой внутренней секреции является гипофиз, расположенный под основанием мозга в особой выемке черепа - турецком седле и связанный с мозгом тонкой ножкой. Гипофиз подразделяют на три доли: переднюю, среднюю и заднюю. В передней и средней долях вырабатываются гормоны, которые, попадая в кровь, достигают других желез внутренней секреции и управляют их работой. В заднюю долю гипофиза поступают по ножке два гормона, вырабатываемых в нейронах промежуточного мозга. Один из этих гормонов регулирует обьем образующейся мочи, а второй усиливает сокращение гладких мышц и играет очень важную роль в процессе родов.

На шее впереди гортани расположена щитовидная железа. Она вырабатывает ряд гормонов, которые участвуют в регуляции процессов роста, развития тканей. Они повышают интенсивность обмена веществ, уровень потребления кислорода органами и тканями.

Околощитовидные железы расположены на задней поверхности щитовидной железы. Этих желез четыре, они очень маленькие, общая масса их составляет всего 0,1-0,13 г. Гормон этих желез регулирует содержание солей кальция и фосфора в крови, при недостатке этого гормона нарушается рост костей, зубов, повышается возбудимость нервной системы.

Парные надпочечники расположены, как видно из их названия, над почками. Они выделяют несколько гормонов, которые регулируют обмен углеводов, жиров, влияют на содержание в организме натрия, калия, регулируют деятельность сердечно-сосудистой системы.

Особенно важен выброс гормонов надпочечников в тех случаях, когда организм вынужден работать в условиях умственного и физического напряжения, т. е. в условиях стресса: эти гормоны усиливают работу мышц, повышают содержание глюкозы в крови (для обеспечения возросших энергетических затрат мозга), усиливают кровоток в мозге и других жизненно важных органах, повышают уровень системного кровяного давления, усиливают сердечную деятельность.

Некоторые железы нашего организма выполняют двойную функцию, т. е. действуют одновременно как железы внутренней и внешней - смешанной - секреции. Это, например, половые железы и поджелудочная железа. Поджелудочная железа выделяет пищеварительный сок, поступающий в двенадцатиперстную кишку; одновременно отдельные ее клетки функционируют как железы внутренней секреции, вырабатывая гормон инсулин, регулирующий обмен yглеводов в организме. В процессе пищеварения углеводы расщепляются до глюкозы, которая всасывается из кишечника в кровеносные сосуды. Снижение выработки инсулина приводит к тому, что большая часть глюкозы не может проникнуть из кровеносных сосудов дальше в ткани органов. В результате клетки различных тканей остаются без важнейшего источника энергии - глюкозы, которая в итоге выводится из организма с мочой. Это заболевание называется диабет. Что же происходит, когда поджелудочная железа вырабатывает слишком много инсулина? Глюкоза очень быстро расходуется различными тканями, прежде всего мышцами, и содержание сахара о крови падает до опасно низкого уровня. В результате мозгу не хватает «горючего», человек впадает в так называемый инсулиновый шок и теряет сознание. В этом случае надо быстро вводить в кровь глюкозу.

Половые железы образуют половые клетки и вырабатывают гормоны, регулирующие рост и созревание организма, формирование вторичных половых признаков. У мужчин это рост усов и бороды, огрубление голоса, изменение телосложения, у женщин - высокий голос, округлость форм тела. Половые гормоны обусловливают развитие половых органов, созревание половых клеток, у женщин управляют фазами полового цикла, течением беременности.

Строение щитовидной железы

Щитовидная железа - один из важнейших органов внутренней секреции. Описание щитовидной железы дал еще в 1543 г. А. Везалий, а свое название она получила более чем век спустя - в 1656 г.

Современные научные представления о щитовидной железе стали складываться к концу XIX в., когда швейцарский хирург Т. Кохер в 1883 г. описал признаки умственной отсталости (кретинизма) у ребенка, развившиеся после удаления у него этого органа.

В 1896 г. А. Бауман установил высокое содержание иода в железе и обратил внимание исследователей на то, что еще древние китайцы успешно лечили кретинизм золой морских губок, содержащей большое количество иода. Экспериментальному изучению щитовидная железа была впервые подвергнута в 1927 г. Девять лет спустя была сформулирована концепция о ее внутрисекреторной функции.

В настоящее время известно, что щитовидная железа состоит из двух долей, соединенных узким перешейком. Ото самая крупная железа внутренней секреции. У взрослого человека ее масса составляет 25- 60 г; располагается она спереди и по бокам от гортани. Ткань железы состоит в основном из множества клеток - тироци-тов, объединяющихся в фолликулы (пузырьки). Полость каждого такого пузырька заполнена продуктом деятельности тироцитов - коллоидом. К фолликулам снаружи прилегают кровеносные сосуды, откуда в клетки поступают исходные вещества для синтеза гормонов. Именно коллоид дает возможность организму какое-то время обходиться без иода, поступающего обычно с водой, продуктами питания, вдыхаемым воздухом. Однако при длительном дефиците иода производство гормонов нарушается.

Главный гормональный продукт щитовидной железы - тироксин. Другой гормон - трииодтирании - лишь в малом количестве продуцируется щитовндаой железой. Он образуется в основном из тироксина после отщепления от него одного атома иода. Этот процесс происходит во многих тканях (особенно в печени) и играет важную роль в поддержании гормонального равновесия организма, поскольку трииодтиронин значительно активнее тироксина.

Заболевания, связанные с нарушениями функционирования щитовидной железы, могут возникать не только при изменениях в самой железе, но и при нехватке в организме иода, а также заболеваниях передней доли гипофиза и др.

При снижении функций (гипофункции) щитовидной железы в детстве развивается кретинизм, характеризующийся торможением в развитии всех систем организма, малым ростом, слабоумием. У взрослого человека при нехватке гормонов щитовидной железы возникает микседема, при которой наблюдаются отеки, слабоумие, понижение иммунитета, слабость. Данное заболевание хорошо поддается лечению препаратами гормонов щитовидной железы. При повышенной выработке гормонов щитовидной железы возникает базедова болезнь, при которой резко возрастает возбудимость, интенсивность обмена веществ, частота сердечных сокращений, развивается пучеглазие (экзофтальм) и происходит потеря веса. В тех географических зонах, где вода содержит мало иода (обычно это встречается в горах), у населения часто наблюдается зоб - заболевание, при котором секретирующая ткань щитовидной железы разрастается, но не может в отсутствие необходимого количества иода синтезировать полноценные гормоны. В таких районах потребление иода населением должно быть повышенным, что может быть обеспечено, например, использованием поваренной соли с обязательными небольшими добавками иодида натрия.

Гормон роста

Впервые предположение о выделении гипофизом специфического гормона роста было высказано в 1921 г. группой американских ученых. В эксперименте им удалось стимулировать рост крыс до размеров, вдвое превышающих обычные, путем ежедневного введения экстракта гипофиза. В чистом виде гормон роста был выделен только в 1970-е гг., сначала из гипофиза быка, а затем - лошади и человека. Этот гормон воздействует не на одну какую-то железу, а на весь организм.

Рост человека — величина непостоянная: он увеличивается до 18-23 лет, сохраняется неизменным примерно до 50 лет, а затем каждые 10 лет уменьшается на 1-2 см.

Кроме того, показатели роста варьируют у разных людей. Для «условного человека» (такой термин принят Всемирной организацией здравоохранения при определении различных параметров жизнедеятельности) средний рост составляет 160 см у женщин и 170 см у мужчин. А вот человек ниже 140 см или выше 195 см считается уже очень низким или очень высоким.

При недостатке гормона роста у детей развивается гипофизарная карликовость, а при переизбытке - гипофизарный гигантизм. Самым высоким гипофизарным гигантом, рост которого точно измерен, был американец Р. Уодлоу (272 см).

Если же избыток этого гормона наблюдается у взрослого человека, когда нормальный рост уже прекратился, возникает заболевание акромегалия, при котором разрастаются нос, губы, пальцы рук и ног и некоторые другие части тела.

Проверьте свои знания

  1. В чем суть гуморальной регуляции процессов, происходящих в организме?
  2. Какие железы относятся к железам внутренней секреции?
  3. Каковы функции надпочечников?
  4. Назовите основные свойства гормонов.
  5. В чем заключается функция щитовидной железы?
  6. Какие вы знаете железы смешанной секреции?
  7. Куда поступают гормоны, выделяемые железами внутренней секреции?
  8. Какова функция поджелудочной железы?
  9. Перечислите функции околощитовидных желез.

Подумайте

К чему может привести недостаток гормонов, выделяемых организмом?

Направление процесса в гуморальной регуляции

Железы внутренней секреции выделяют непосредственно в кровь гормоны - биоло! ически активные вещества. Гормоны регулируют обмен веществ, рост, развитие организма и работу его органов.

Нервная и гуморальная регуляция

Нервная регуляция осуществляется с помощью электрических импульсов, идущих по нервным клеткам. По сравнению с гуморальной она

  • происходит быстрее
  • более точная
  • требует больших затрат энергии
  • более эволюционно молодая.

Гуморальная регуляция процессов жизнедеятельности (от латинского слова гумор - «жидкость») осуществляется за счет веществ, выделяемых во внутреннюю среду организма (лимфу, кровь, тканевую жидкость).

Гуморальная регуляция может осуществляться с помощью:

  • гормонов - биологически активных (действующих в очень маленькой концентрации) веществ, выделяемых в кровь железами внутренней секреции;
  • других веществ . Например, углекислый газ
  • вызывает местное расширение капилляров, к этому месту притекает больше крови;
  • возбуждает дыхательный центр продолговатого мозга, дыхание усиливается.

Все железы организма делятся на 3 группы

1) Железы внутренней секреции (эндокринные ) не имеют выводных протоков и выделяют свои секреты непосредственно в кровь. Секреты эндокринных желез называются гормонами , они обладают биологической активностью (действуют в микроскопической концентрации). Например: щитовидная железа, гипофиз, надпочечники.

2) Железы внешней секреции имеют выводные протоки и выделяют свои секреты НЕ в кровь, а в какую-либо полость или на поверхность организма. Например, печень , слезные , слюнные , потовые .

3) Железы смешанной секреции осуществляют и внутреннюю, и внешнюю секрецию. Например

  • поджелудочная железа выделяет в кровь инсулин и глюкагон, а не в кровь (в 12-перстную кишку) - поджелудочный сок;
  • половые железы выделяют в кровь половые гормоны, а не в кровь - половые клетки.

БОЛЬШЕ ИНФОРМАЦИИ: Гуморальная регуляция, Виды желез, Типы гормонов, сроки и механизмы их действия, Поддержание концентрации глюкозы в крови
ЗАДАНИЯ ЧАСТИ 2: Нервная и гуморальная регуляция

Тесты и задания

Установите соответствие между органом (отделом органа), участвующим в регуляции жизнедеятельности организма человека, и системой, к которой он относится: 1) нервная, 2) эндокринная.
А) мост
Б) гипофиз
В) поджелудочная железа
Г) спинной мозг
Д) мозжечок

Установите, в какой последовательности осуществляется гуморальная регуляция дыхания при мышечной работе в организме человека
1) накопление углекислого газа в тканях и крови
2) возбуждение дыхательного центра в продолговатом мозге
3) передача импульса к межреберным мышцам и диафрагме
4) усиление окислительных процессов при активной мышечной работе
5) осуществление вдоха и поступление воздуха в легкие

Установите соответствие между процессом, происходящим при дыхании человека, и способом его регуляции: 1) гуморальная, 2) нервная
А) возбуждение рецепторов носоглотки частицами пыли
Б) замедление дыхания при погружении в холодную воду
В) изменение ритма дыхания при избытке углекислого газа в помещении
Г) нарушение дыхания при кашле
Д) изменение ритма дыхания при уменьшении содержания углекислого газа в крови

1. Установите соответствие между характеристикой железы и видом, к которому ее относят: 1) внутренней секреции, 2) внешней секреции. Запишите цифры 1 и 2 в правильном порядке.
А) имеют выводные протоки
Б) вырабатывают гормоны
В) обеспечивают регуляцию всех жизненно важных функций организма
Г) выделяют ферменты в полость желудка
Д) выводные протоки выходят на поверхность тела
Е) вырабатываемые вещества выделяются в кровь

2. Установите соответствие между характеристикой желез и их типом: 1) внешней секреции, 2) внутренней секреции.

Гуморальная регуляция организма

Запишите цифры 1 и 2 в правильном порядке.
А) образуют пищеварительные ферменты
Б) выделяют секрет в полость тела
В) выделяют химически активные вещества – гормоны
Г) участвуют в регуляции процессов жизнедеятельности организма
Д) имеют выводные протоки

Установите соответствие между железами и их типами: 1) внешней секреции, 2) внутренней секреции. Запишите цифры 1 и 2 в правильном порядке.
А) эпифиз
Б) гипофиз
В) надпочечник
Г) слюнная
Д) печень
Е) клетки поджелудочной железы, вырабатывающие трипсин

Установите соответствие между примером регуляции работы сердца и типом регуляции: 1) гуморальная, 2) нервная
А) учащение сердцебиений под влиянием адреналина
Б) изменение работы сердца под влиянием ионов калия
В) изменение сердечного ритма под влиянием вегетативной системы
Г) ослабление деятельности сердца под влиянием парасимпатической системы

Установите соответствие между железой в организме человека и её типом: 1) внутренней секреции, 2) внешней секреции
А) молочная
Б) щитовидная
В) печень
Г) потовая
Д) гипофиз
Е) надпочечники

1. Установите соответствие между признаком регуляции функций в организме человека и его видом: 1) нервная, 2) гуморальная. Запишите цифры 1 и 2 в правильном порядке.
А) доставляется к органам кровью
Б) большая скорость ответной реакции
В) является более древней
Г) осуществляется с помощью гормонов
Д) связана с деятельностью эндокринной системы

2. Установите соответствие между характеристиками и видами регуляции функций организма: 1) нервная, 2) гуморальная. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) включается медленно и действует долго
Б) сигнал распространяется по структурам рефлекторной дуги
В) осуществляется действием гормона
Г) сигнал распространяется с током крови
Д) включается быстро и действует коротко
Е) эволюционно более древняя регуляция

Выберите один, наиболее правильный вариант. Какие из перечисленных желез выделяют свои продукты через специальные протоки в полости органов тела и непосредственно в кровь
1) сальные
2) потовые
3) надпочечники
4) половые

Установите соответствие между железой организма человека и типом, к которому её относят: 1) внутренней секреции, 2) смешанной секреции, 3) внешней секреции
А) поджелудочная
Б) щитовидная
В) слёзная
Г) сальная
Д) половая
Е) надпочечник

Выберите три варианта. В каких случаях осуществляется гуморальная регуляция?
1) избыток углекислого газа в крови
2) реакция организма на зеленый сигнал светофора
3) избыток глюкозы в крови
4) реакция организма на изменение положения тела в пространстве
5) выделение адреналина при стрессе

Установите соответствие между примерами и видами регуляции дыхания у человека: 1) рефлекторная, 2) гуморальная. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) остановка дыхания на вдохе при входе в холодную воду
Б) увеличение глубины дыхания из-за увеличения концентрации углекислого газа в крови
В) кашель при попадании пищи в гортань
Г) небольшая задержка дыхания из-за снижения концентрации углекислого газа в крови
Д) изменение интенсивности дыхания в зависимости от эмоционального состояния
Е) спазм сосудов мозга из-за резкого увеличения концентрации кислорода в крови

Выберите три железы внутренней секреции.
1) гипофиз
2) половые
3) надпочечники
4) щитовидные
5) желудочные
6) молочные

Выберите три варианта. Гуморальные воздействия на физиологические процессы в организме человека
1) осуществляются с помощью химически активных веществ
2) связаны с деятельностью желёз внешней секреции
3) распространяются медленнее, чем нервные
4) происходят с помощью нервных импульсов
5) контролируются продолговатым мозгом
6) осуществляются через кровеносную систему

© Д.В.Поздняков, 2009-2018


План:

1. Гуморальная регуляция

2. Гипоталамо-гипофизарная система как основной механизм нервно-гуморальной регуляции секреции гормонов.

3. Гормоны гипофиза

4. Гормоны щитовидной железы

5. Гормоны паращитовидных желез

6. Гормоны поджелудочной железы

7. Роль гормонов в адаптации организма при действии стрессовых факторов

Гуморальная регуляция - это разновидность биологической регуляции при которой информация передается с помощью биологически активных веществ, которые разносятся по организму кровью, лимфой, межклеточной жидкостью.

Гуморальная регуляция отличается от нервной:

носитель информации - химическое вещество (при нервной - нервный импульс, ПД);

передача информации осуществляется током крови, лимфы, путем диффузии (при нервной - нервными волокнами);

гуморальный сигнал распространяется медленнее (с током крови в капиллярах - 0,05 мм/с) чем нервный (до 120-130 м/с);

гуморальный сигнал не имеет такого точного «адресата» (нервный - очень конкретный и точный), воздействия на те органы, которые имеют к гормону рецепторы.

Факторы гуморальной регуляции:


«классические» гормоны

Гормоны АПУД системы

Классические, собственно гормоны - это вещества синтезируемые железами внутренней секреции. Это гормоны гипофиза, гипоталамуса, эпифиза, надпочечников; поджелудочной, щитовидной, паращитовидной, вилочковой, половых желез, плаценты (Рис. I).

Кроме эндокринных желез, в различных орынач и тканях есть специализированные клетки, которые сини шруют вещества, действующие на клетки-мишени с помощью диффузии, т. е. поступая в сровь, местно. Это гормоны паракринного действия.

К ним принадлежат нейроны гипоталамуса, которые вырабатывают некоторые гормоны и нейропептиды, а также клетки АРUD-системы, или системы захвата предшественников аминов и их декарбоксилирования. Примером могут служить: либерины, статины, нейропептиды гипоталамуса; интерстинальные гормоны, компоненты ренин-ангиотензиновой системы.

2) Тканевые гормоны секретируются неспециализированными клетками разного вида: простагландины, энкефалины, компоненты калликреин- ининовой системы, гистамин, серотонин.

3) Метаболические факторы - это неспецифические продукты, которые образуются во всех клетках организма: молочная, пировиноградная ислоты, СО 2 , аденозин и др, а также продукты распада при напряженном метаболизме: повышенное содержание К + , Са 2+ , Na + и т.д.

Функциональное значение гормонов:

1) обеспечение роста, физического, полового, интеллектуального развития;

2) участие в адаптации организма в различных изменяющихся условиях внешней и внутренней среды;

3) поддержание гомеостаза..

Рис. 1 Железы внутренней секреции и их гормоны

Свойства гормонов:

1) специфичность действия;

2) дистантный характер действия;

3) высокая биологическая активность.

1. Специфичность действия обеспечивается тем, что гормоны взаимодействуют со специфическими рецепторами, находящимися в определенных органах-мишенях. В результате каждый гормон действует лишь на конкретные физиологические системы или органы.

2. Дистантность заключается в том, что органы-мишени, на которые действуют гормоны, как правило, расположены далеко от места их образования в эндокринных железах. В отличие от «классических» гормонов, тканевые действуют паракринно, т е. местно, недалеко от места их образования.

Гормоны действуют в очень небольших количествах, в чем и проявляется их высокая биологическая активность . Так, суточная потребность для взрослого составляет: тиреоидных гормонов - 0,3 мг, инсулина - 1,5мг, андрогенов - 5мг, естрогенов - 0,25мг и т.д.

Механизм действия гормонов зависит от их структуры


Гормоны белковой структуры Гормоны стероидной структуры

Рис. 2 Механизм гормонального контроля

Гормоны белковой структуры (Рис.2) взаимодействуют с рецепторами плазматической мембраны клетки, которые являются гликопротеидами, причем специфичность рецептора обусловлена углеводным компонентом. Результатом взаимодействия является активация протеинфосфокиназ, которые обеспечивают

фосфорилирование белков-регуляторов, перенос фосфатных групп от АТФ к гидроксильным группам серина, треонина, тирозина, белка. Конечный эффект действия этих гормонов может быть - сокращение, усиление ферментных процессов, например, гликогенолиза, повышение синтеза белка, повышение секреции и т.д.

Сигнал от рецептора, с которым провзаимодействовал белковый гормон, к протеинкиназе передается с участием специфического посредника или вторичного мессенджера. Такими мессенджерами могут быть (Рис.З):

1) цАМФ;

2) ионы Са 2+ ;

3) диацилглицерин и инозитолтрифосфат;

4) другие факторы.

Рис.З. Механизм мембранной рецепции проведения гормонального сигнала в клетке при участии вторичных посредников.



Гормоны стероидной структуры (Рис.2) легко проникают внутрь клетки через плазматическую мембрану в силу своей липофильности и взаимодействуют в цитозоле со специфическими рецепторами, образуя комплекс «гормон-рецептор», который движется в ядро. В ядре комплекс распадается и гормоны взаимодействуют с ядерным хроматином. В результате этого происходит взаимодействие с ДНК, а затем - индукция матричной РНК. Вследствие активации транскрипции и трансляции спустя 2-3 часа, после воздействия стероида наблюдается усиленный синтез индуцированных белков. В одной клетке стероид влияет на синтез не более 5-7 белков. Известно также, что в одной и той же клетке стероидный гормон может вызывать индукцию синтеза одного белка и репрессию синтеза другого белка (Рис. 4).


Действие тиреоидных гормонов осуществляется через, рецепторы цитоплазмы и ядра, в результате чего индуцируется синтез 10-12 белков.

Рефляция секреции гормонов осуществляется такими механизмами:

1) прямое влияние концентраций субстратов крови на клетки железы;

2) нервная регуляция;

3) гуморальная регуляция;

4) нейрогуморальная регуляция (гипоталамо-гипофизарная система).

В регуляции деятельности эндокринной системы важную роль играет принцип саморегуляции, который осуществляется по типу обратных связей. Различают положительную (например, повышение сахара в крови приводит к повышению секреции инсулина) и отрицательную обратную связь (при повышении в крови уровня тиреоидных гормонов уменьшается продукция тиреотропного гормона и тиреолиберина, которые обеспечивают выброс тиреоидных гормонов).

Итак, прямое влияние концентраций субстратов крови на клетки железы идет по принципу обратных связей. Если в крови изменяется уровень вещества, который контролируется конкретным гормоном, то «слеза отвечает повышением или снижением секреции данного гормона.

Нервная регуляция осуществляется благодаря прямому влиянию симпатических и парасимпатических нервов на синтез и секрецию гормонов нейрогипофиз, мозговой слой надпочечников), а также опосредованно, «меняя интенсивность кровоснабжения железы. Эмоциональные, юихические воздействия через структуры лимбической системы, через ипоталамус - способны существенно влиять на продукцию гормонов.

Гормональная регуляция осуществляется также по принципу обратной связи: если в крови уровень гормона повышается, то в агвет на это снижается выброс тех гормонов, которые контролируют содержание данного гормона, что и приводит к уменьшению его концентрации в кроки.

Например, при повышении уровня кортизона в крови, снижается выброс АКТГ (гормон стимулирующий секрецию гидрокортизона) и как следствие

Снижение его уровня в крови. Другим примером гормональной регуляции может быть такой: мелатонин (гормон эпифиза) модулирует функцию надпочечников, щитовидной железы, половых желез т е. определенный гормон может влиять на содержание в крови других гормональных факторов.

Гипоталамо-гипофизарная система как основной механизм нервно-гуморальной регуляции секреции гормонов.

Функция щитовидной, половых желез, коры надпочечников регулируется гормонами передней доли гипофиза - аденогипофизом. Здесь синтезируются тропные гормоны : адренокортикотропный (АКТГ), тиреотропный (ТТГ), фолликулостимулирующий (ФС) и лютеинизирующий (ЛГ) (Рис. 5).

С некоторой условностью к тройным гормонам относится и соматотропный гормон (гормон роста), который оказывает свое влияние на рост не только прямо, но и опосредованно через гормоны - соматомедины, образующиеся в печени. Все эти тропные гормоны так названы в связи с тем, что они обеспечивают секрецию и синтез соответствующих гормонов других эндокринных желез: АКТГ -

глюкокортикоидов и минералокортикоидов: ТТГ - тиреоидных гормонов; гонадотропные - половые гормоны. Кроме того, в аденогипофизе образуется интермедии (меланоцитостимулирутощий гормон, МЦГ) и пролактин, которые обладают эффектом на периферические органы.

Рис. 5. Регуляция эндокринных желез ЦНС. ТЛ, СЛ, ПЛ, ГЛ и КЛ - оответственно, тиреолиберин, соматолиберин, пролактолиберин, гонадолиберин и кортиколиберин. СС и ПС - соматостатин и пролактостатин. ТТГ - тиреотропный гормон, СТГ - соматотропный гормон (гормон роста), Пр - пролактин, ФСГ - фолликулостимулирующий гормон, ЛГ - лютеинизирующий гормон, АКТГ - адренокортикотропный гормон



Тироксин Трийодтиронин Андрогенны Глюкортикоиды

Эстрогены

В свою очередь, высвобождение всех 7 указанных гормонов аденогипофиза зависит от гормональной активности нейронов гипофизотропной зоны гипоталамуса - в основном паравентрикулярным ядром (ПВЯ). Здесь образуются гормоны, оказывающие стимулирующее или тормозящее влияние на секрецию гормонов аденогипофиза. Стимуляторы называются рилизинг-гормонами (либеринами), ингибиторы - статинами. Выделены тиреолиберин, гонадолиберин. соматостатин, соматолиберин, пролактостатин, пролактолиберин, меланостатин, меланолиберин, кортиколиберин.

Рилизинг-гормоны освобождаются из отростков нервных клеток паравентрикулярного ядра, поступают в портальную венозную систему гипоталамо-гипофиза и с кровью доставляются к аденогипофизу.

Регуляция гормональной активности большинства желез внутренней секреции осуществляется по принципу отрицательной обратной связи: сам гормон, его количество в крови регулирует свое образование. Указанное воздействие опосредуется через образование соответствующих рилизинг- гормонов(Рис. 6,7)

В гипоталамусе (супраоптическое ядро), кроме рилизинг-гормонов, синтезируются вазопрессин (антидиуретический гормон, АДГ) и окситоцин. Которые в виде гранул транспортируются по нервным отросткам в нейрогипофиз. Выделение нейроэндокринными клетками гормонов в кровоток обусловлено рефлекторной нервной стимуляцией.

Рис. 7 Прямые и обратные связи в нейроэндокринно системе.

1 - медленно развивающееся и продолжительное ингибирование секреции гормонов и нейромедиаторов, а также изменение поведения и формирование памяти;

2 - быстро развивающееся, но продолжительное ингибирование;

3 - кратковременное ингибирование

Гормоны гипофиза

В задней доле гипофиза - нейрогипофизе - находятся окситоцин и вазопрессин (АДГ). АДГ влияет на клетки трех типов:

1) клетки почечных канальцев;

2) гладкомышечные клетки кровеносных сосудов;

3) клетки печени.

В почках он способствует реабсорбции воды, а значит сохранению ее в организме, снижению диуреза (отсюда название антидиуретический), в кровеносных сосудах вызывает сокращение гладких мышц, суживая их радиус, и как следствие - повышает артериальное давление (отсюда название «вазопрессин»), в печени - стимулирует глюконеогенез и гликогенолиз. Кроме этого, вазопрессин обладает антиноцицептивным эффектом. АДГ предназначен для регуляции осмотического давления крови. Его секреция увеличивается под влиянием таких факторов: повышение осмолярности крови, гипокалиемии, гипокальциемии, повышении уменьшении ОЦК, снижении артериального давления, повышении температуры тела, активации симпатической системы.

При недостаточности выделения АДГ развивается несахарный диабет: объем выделенной мочи за сутки может достигать 20л.

Окситоцин у женщин играет роль регулятора маточной активности и участвует в процессах лактации как активатор миоэпителиальных клеток. Повышение продукции окситоцина происходит во время раскрытия шейки матки в конце беременности, обеспечивая ее сокращение в родах, а также во время кормления ребенка, обеспечивая секрецию молока.

В передней доле гипофиза, или аденогипофизе, вырабатываются тиреотропный гормон (ТТГ), соматотропный гормон (СТГ) или гормон роста, гонадотропные гормоны, адренокортикотропный гормон (АКТГ), пролактин, а в средней доле - меланоцитостимулирующий гормон (МСГ) или интермедии.

Гормон роста стимулирует синтез белка в костях, хрящах, мышцах и печени. В неполовозрелом организме обеспечивает рост в длину за счет повышения пролиферативной и синтетической активности хрящевых клеток особенно в зоне роста длинных трубчатых костей, одновременно стимулируя у них рост сердца, легких, печени, почек и др органов. У взрослых он контролирует рост органов и тканей. СТГ снижает эффекты инсулина. Выброс его в кровь увеличивается во время глубокого сна, после мышечных нагрузок, при гипогликемии.

Ростовой эффект гормона роста опосредуется воздействием гормона на печень, где образуются соматомедины (А,В,С) или ростовые факторы, обуславливающие активацию синтеза белка в клетках. Особенно велико значение СТГ в период роста (препубертатный, пубертатный периоды).

В этот период агонистами ГР являются половые гормоны, увеличение секреции которых способствует резкому ускорению роста костей. Однако, длительное образование больших количеств половых гормонов приводит к противоположному эффекту - к прекращению роста. Недостаточное количество ГР приводит к карликовости (нанизм), а чрезмерное - к гигантизму. Рост некоторых костей взрослого человека может возобновиться в случае чрезмерной секреции СТГ. Тогда возобновляется пролиферация клеток ростковых зон. Что приводит к разрастанию

Кроме того, глюкокортикоиды угнетают все компоненты воспалительной реакции - уменьшают проницаемость капилляров, тормозят экссудацию, снижают интенсивность фагоцитоза.

Глюкокортикоиды резко снижают продукцию лимфоцитов, уменьшают активность Т-киллеров, интенсивность иммунологического надзора, гиперчувствительность и сенсибилизацию организма. Все это позволяет рассматривать глюкокортикоиды как активные иммунодепрессанты. Это свойство используется в клинике для купирования аутоиммунных процессов, для снижения иммунной защиты организма хозяина.

Глюкокортикоиды повышают чувствительность к катехоламинам, повышают секрецию соляной кислоты и пепсина. Избыток этих гормонов вызывает деминерализацию костей, остеопороз, потерю Са 2+ с мочой, снижают всасывание Са 2+ . Глюкокортикоиды влияют на функцию ВНД - повышают активность обработки информации, улучшают восприятия внешних сигналов.

Минералокортикоиды (альдосгерон, дезоксикортикостерон) участвуют в регуляции минерального обмена. Механизм действия альдостерона связан с активацией синтеза белка, участвующего в реабсорбции Na + - Na + , К ч -АТФазы. Повышая реабсорбцию и снижая ее для К + в дистальных канальцах почки, слюнных и половых железах, альдостерон способствует задержке №" и СГ в организме и выведению К + и Н из организма. Таким образом, альдостерон является натрийсберегающим, а также калийуретическим гормоном. За счет задержки Иа\ а вслед за ним и воды, он способствует повышению ОЦК и, как следствие, повышению артериального давления. В отличие от глкжокортикоидов, минералокортикоиды способствуют развитию воспаления, т.к. повышают проницаемость капилляров.

Половые гормоны надпочечников выполняют функцию развития половых органов и появление вторичных половых признаков в тот период, когда половые железы еще не развиты, т е. в детском возрастем также в пожилом возрасте.

Гормоны мозгового слоя надпочечников - адреналин (80%) и норадреналин (20%) - вызывают эффекты во многом идентичные активации нервной системы. Их действие реализуется за счет взаимодействия с а- и (3- адренорецепторами. Следовательно, им присуща активация деятельности сердца, сужение сосудов кожи, расширение бронхов и т.д. Адреналин влияет на углеводный и жировой обмен, усиливая гликогенолиз и липолиз.

Катехоламины участвуют в активации термогенеза, в регуляции секреции многих гормонов - усиливают выброс глюкагона, ренина, гастрина, паратгормона, кальцитонина, тиреоидных гормонов; снижают выброс инсулина. Под влиянием этих гормонов повышается работоспособность скелетных мышц, возбудимость рецепторов.

При гиперфункции коры надпочечников у больных заметно изменяются вторичные половые признаки (например, у женщин могут появляться мужские половые признаки - борода, усы, тембр голоса). Наблюдаются ожирение (особенно в.области шей, лица, туловища), гипергликемия, задержка воды и натрия в организме и др.

Гипофункция коры надпочечников вызывает болезнь Аддисона – бронзовый оттенок кожи (особенно лица, шеи, рук), потеря аппетита, рвота, повышенная чувствительность к холоду и боли, высокая восприимчивость к инфекциям, повышенный диурез (до 10 л мочи за сутки), жажда, снижение работоспособности.


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-02-13

При физиологической регуляции организма функции осуществляются на оптимальном уровне для нормальной работоспособности, поддержки гомеостатических условий с процессами метаболизма. Её цель заключается в том, чтобы организм всегда был приспособлен к изменяющимся внешнесредовым условиям.

У организма человека регуляционная деятельность представлена следующими механизмами:

  • нервная регуляция;

Работа нервной и гуморальной регуляции совместная, между собой они тесно связаны. Химические соединения, осуществляющие регуляцию организма, осуществляют воздействие на нейроны с полным изменением их состояния. Гормональные соединения, секретирующиеся в соответствующих железах, также влияют на НС. А функции желез, продуцирующих гормоны, управляются НС, значение которой при поддержке регуляторной функции для организма огромно. Гуморальный фактор является частью нервно-гуморальной регуляции.

Примеры регуляций

Наглядность регуляции покажет пример того, как изменяется осмотическое давление крови при состоянии, когда человек хочет пить. Данный тип давления увеличивается из-за дефицита влаги внутри организма. Это приводит к раздражённости осмотических рецепторов. Появившаяся возбуждённость через нервные пути передаётся в ЦНС. Из неё множество импульсов попадают к гипофизарной железе, происходит стимуляция с выделением в кровоток антидиуретического гипофизарного гормона. В кровотоке гормон проникает к изогнутым почечным каналам, происходит усиление обратного всасывания влаги из клубочкового ультрафильтрата (первичной мочи) в кровоток. Результат этого ─ наблюдается снижение выделяемой с водой мочи, происходит восстановление отклонившегося от нормальных показателей осмотического давления организма.

При избыточном глюкозном уровне кровотока нервной системой осуществляется стимуляция функций интросекреторной области эндокринного органа, вырабатывающего инсулиновывй гормон. Уже в кровотоке поступление инсулинового гормона увеличилось, ненужная глюкоза вследствие его влияния переходит к печени, мышцам в гликогеновом виде. Усиленная физическая работа способствует увеличению потребления глюкозы, в кровотоке её объём уменьшается, осуществляется усиление функций надпочечников. Адреналиновым гормоном осуществляется переход гликогена в глюкозу. Таким образом, нервная регуляция, воздействующая на внутрисекреторные железы, осуществляет стимуляцию либо торможение функций важных активных биологических соединений.

Гуморальная регуляция жизненных функций организма в отличие от нервной регуляции при переносе информации применяет разную жидкостную среду организма. Передача сигналов осуществляется с помощью химических соединений:

  • гормональных;
  • медиаторных;
  • электролитных и многих других.

Гуморальная регуляция, также, как и нервная регуляция содержит некоторые отличия.

  • отсутствует конкретный адресат. Течение биовеществ доставляется к разным клеткам организма;
  • информация доставляется с небольшой скоростью, которая сопоставима скорости течения биоактивных сред: от 0.5-0.6 до 4.5-5 м/с;
  • действие длинное.

Нервная регуляция жизненных функций в теле человека осуществляется с помощью ЦНС и ПНС. Передача сигналов осуществляется с помощью многочисленных импульсов.

Данная регуляция характерна своими отличиями.

  • существует конкретный адрес доставки сигнала к конкретному органу, ткани;
  • доставка информации осуществляется с большой скоростью. Скорость импульса ─ до 115-119 м/с;
  • действие кратковременное.

Гуморальное регулирование

Гуморальный механизм ─ это древняя форма взаимодействия, которая со временем совершенствовалась. У человека существуют несколько разных вариантов реализации данного механизма. Неспецифическим вариантом регуляции является местным.

Местная клеточная регуляция осуществляется тремя методами, их основание составляет перенос сигналов соединениями в границе единственного органа либо ткани при помощи:

  • креаторной клеточной связи;
  • простых видов метаболита;
  • активных биологических соединений.

Благодаря креаторной связи происходит межклеточный информационный обмен, необходимый для направленной настройки внутриклеточного синтезировния белковых молекул с другими процессами для преобразования клеток в ткани, дифференцирования, развитием с ростом, а в итоге выполнения функций клеток, содержащихся в ткани, как целостной многоклеточной системы.

Метаболит является продуктом процессов метаболизма, может действовать аутокринно, то есть изменять клеточную работоспособность, посредством которой он выделяется, или паракринно, то есть изменять клеточную работу, где клетка располагается в границе той же ткани, достигая её через внутриклеточную жидкость. К примеру, при накоплении молочной кислоты во время физической работы сосуды, приносящие к мышцам кровь, расширяются, кислородное насыщение мышцы увеличивается, однако, сила мышечной сокращаемости снижается. Так проявляется гуморальная регуляция.

Гормоны, расположенные в тканях, также являются биологическими активными соединениями - продуктами метаболизма клеток, но имеют более сложное химическое строение. Они представлены:

  • биогенными аминами;
  • кининами;
  • ангиотензинами;
  • простогландинами;
  • эндотелиями и другими соединениями.

Данные соединения изменяют следующие биофизические клеточные свойства:

  • мембранная проницаемость;
  • настройку энергетических обменных процессов;
  • мембранный потенциал;
  • ферментные реакции.

Ещё они способствуют образованию второстепенных посредников и изменяют тканевое кровоснабжение.

БАВ (биологически активные вещества) исполняют регуляцию клеток с помощью специальных клеточно-мембранных рецепторов. БАВ также модулируют регуляторные влияния, поскольку меняют клеточную чувствительность к нервным и гормональным воздействиям путём изменённого числа клеточных рецепторов и их сходства к различным молекулам, несущих информацию.

БАВ, образовываясь в разных тканях, воздействуют аутокринно и паракринно, но способны проникать в кровь и действовать системно. Одни из них (кинины) образуются из предшественников в крови плазмы, поэтому эти вещества, при местном действии, даже вызывают распространённый результат, подобный гормональному.

Физиологическая настройка функций организма осуществляется путём слаженного взаимодействия НС и гуморальной системы. Нервная регуляция и гуморальная осуществляют объединение функций организма для его полноценной функциональности, а человеческий организм работает как одно целое.

Взаимодействие организма человека с внешнесредовыми условиями осуществляется с помощью активной НС, работоспособность которой определяется рефлексами.

Предмет физиологии, ее связь с другими науками

Физиология - это наука о функциях и механизмах деятельности клеток, тканей, органов, систем и всего организма в целом. Физиологическая функция - это проявление жизнедеятельности, имеющее приспособительное значение.

физиология как наука неразрывно связана с другими дисциплинами. Она базируется на знаниях физики, биофизики и биомеханики, химии и биохимии, общей биологии, генетики, гистологии, кибернетики, анатомии. В свою очередь, физиология является основой медицины, психологии, педагогики, социологии, теории и методики физического воспитания. В процессе развития физиологической науки из общей физиологии выделились различные ее частные разделы физиология труда, физиология спорта, авиакосмическая физиология, физиология подводного труда, возрастная физиология, психофизиология и др.

Общая физиология представляет собой теоретическую основу физиологии спорта. Она описывает основные закономерности деятельности организма людей разного возраста и пола, различные функциональные состояния, механизмы работы отдельных органов и систем организма и их взаимодействия. Ее практическое значение состоит в научном обосновании возрастных этапов развития организма человека, индивидуальных особенностях отдельных людей, механизмов проявления их физических и умственных способностей, особенностей контроля и возможностей управления функциональным состоянием организма. Физиология вскрывает последствия вредных привычек у человека, обосновывает пути профилактики функциональных нарушений и сохранение здоровья. Знания физиологии помогают педагогу и тренеру в процессах спортивного отбора и спортивной ориентации, в прогнозировании успешности соревновательной деятельности спортсмена, в рациональном построении тренировочного процесса, в обеспечении индивидуализации физических нагрузок и открывают возможности использования функциональных резервов организма.

Методы исследования в физиологии

Для изучения различных процессов и функций живого организма в физиологии используются методы наблюдения и эксперимента.

Наблюдение - метод получения информации путем непосредственной, как правило, визуальной регистрации физиологических явлений и процессов, происходящих в определенных условиях.

Эксперимент - метод получения новой информации о причинно-следственных отношениях между явлениями и процессами в контролируемых и управляемых условиях. Острым называется эксперимент, реализуемый относительно кратковременно. Хроническим называется эксперимент, протекающий длительно (дни, недели, месяцы, годы).

Метод наблюдения

Сущность этого метода заключается в оценке проявления определенного физиологического процесса, функции органа или ткани в естественных условиях. Это самый первый метод, который зародился еще в Древней Греции. В Египте при мумицифи- ровании трупы вскрывали и жрецы анализировали состояние различных органов в связи с ранее зафиксированными данными о частоте пульса, количестве и качестве мочи и другими показателями у наблюдаемых ими людей.

В настоящее время ученые, проводя исследования методом наблюдений, используют в своем арсенале ряд простых и сложных приборов (наложение фистул, вживление электродов), что позволяет надежнее определить механизм функционирования органов и тканей. Например, наблюдая за деятельностью слюнной железы, можно установить, какой объем слюны выделяется за определенный период суток, ее цвет, густоту и т.д.

Однако наблюдение явления не дает ответа на вопрос, каким образом осуществляются тот или иной физиологический процесс или функция.

Более широко наблюдательный метод применяют в зоопсихологии и этологии.

Экспериментальный метод

Физиологический эксперимент - это целенаправленное вмешательство в организм животного с целью выяснить влияние разных факторов на отдельные его функции. Такое вмешательство иногда требует хирургической подготовки животного, которая может носить острую (вивисекция) или хроническую (экспериментально-хирургическая) форму. Поэтому эксперименты подразделяются на два вида: острый (вивисекция) и хронический.

Экспериментальный метод, в отличие от метода наблюдения, позволяет выяснить причину осуществления какого-то процесса или функции.

Вивисекцию проводили на ранних этапах развития физиологии на обездвиженных животных без применения наркоза. Но начиная с XIX в. в остром эксперименте стали использовать общую анестезию.

Острый эксперимент имеет свои достойнства и недостатки. К достоинствам относится возможность моделировать разные ситуации и получать результаты в относительно короткий срок. К недостаткам относится то, что в остром эксперименте исключается влияние центральной нервной системы на организм при применении общей анестезии и нарушается целостность реагирования организма на разные воздействия. Кроме того, часто животных после острого эксперимента приходится усыплять.

Поэтому позднее были разработаны методыхронического эксперимента , при котором проводят длительное наблюдение за животными после оперативного вмешательства и выздоровления животного.

Академиком И.П. Павловым был разработан метод наложения фистул на полые органы (желудок, кишечник, мочевой пузырь). Использование фистульной методики позволило выяснить механизмы функционирования очень многих органов. В стерильных условиях анестезированному животному выполняют хирургическую операцию, позволяющую получить доступ к определенному внутреннему органу, вживляют фистульную трубку или выводят наружу и подшивают к коже проток железы. Непосредственно опыт начинают после заживления послеоперационной раны и выздоровления животного, когда физиологические процессы приходят в норму. Благодаря этой методике стало возможным длительно изучать картину физиологических процессов в естественных условиях.

Метод эксперимента, как и метод наблюдения, предусматривает использование простой и сложной современной аппаратуры, приборов, входящих в системы, предназначенные для воздействия на объект и регистрации различных проявлений жизнедеятельности.

Изобретение кимографа и разработка метода графической регистрации артериального давления немецким ученым К. Людвигом в 1847 г. открыло новый этап в развитии физиологии. Кимограф позволил осуществлять объективную запись изучаемого процесса.

Позднее были разработаны методы регистрации сокращения сердца и мышц (Т. Энгельман) и методика регистрации изменения сосудистого тонуса (плетизмография).

Объективнаяграфическая регистрация биоэлектрических явлений стала возможной благодаря струнному гальванометру, изобретенному голландским физиологом Эйнтховеном. Ему впервые удалось записать на фотопленке электрокардиограмму. Графическая регистрация биоэлектрических потенциалов послужила основой развития электрофизиологии. В настоящее время электроэнцефалографию широко используют в практике и научных исследованиях.

Важным этапом в развитии электрофизиологии явилось изобретение микроэлектродов. При помощи микроманипуляторов их можно вводить непосредственно в клетку и регистрировать биоэлектрические потенциалы. Микроэлектродная техника позволила расшифровать механизмы генерации биопотенциалов в мембранах клетки.

Немецкий физиолог Дюбуа-Реймон является основоположником метода электрического раздражения органов и тканей с помощью индукционной катушки для дозированного электрического раздражения живых тканей. В настоящее время для этого используют электронные стимуляторы, позволяющие получить электрические импульсы любой частоты и силы. Электростимуляция стала важным методом исследования функций органов и тканей.

К экспериментальным методам относится множество физиологических методов.

Удаление (экстирпация) органа, например определенной железы внутренней секреции, позволяет выяснить ее влияние на различные органы и системы животного. Удаление различных участков коры головного мозга позволило ученым выяснить их влияние на организм.

Современные успехи физиологии были обусловлены использованием радиоэлектронной техники.

Вживление электродов в различные участки мозга помогло установить активность различных нервных центров.

Введениерадиоактивных изотопов в организм позволяет ученым изучать метаболизм разных веществ в органах и тканях.

Томографический метод с использованием ядерного магнитного резонанса имеет очень важное значение для выяснения механизмов физиологических процессов на молекулярном уровне.

Биохимические ибиофизические методы помогают с высокой точностью выявлять различные метаболиты в органах и тканях у животных в состоянии нормы и при патологии.

Знание количественных характеристик различных физиологических процессов и взаимоотношений между ними позволило создать их математические модели. С помощью этих моделей физиологические процессы воспроизводят на компьютере и исследуют различные варианты реакций.

3. Этапы развития развития физиологии. Аналитический и системный поход к изучению функций организма.

В развитии физиологии условно выделяют два этапа:

до научный (до 1628 года);

научный (после 1628 года).

Донаучный этап развития физиологии. Представителями до научного этапа можно считать известных ученых древности Гиппократа, Авицену, Галена, Парацельса и многих других. Гиппократ и Гален, например, разработали представления о типах поведения человека (представления о холериках, сангвиниках, меланхоликах и флегматиках). Авицена разработал ряд оригинальных представлений об индивидуальном здоровье и способах его укрепления.

Научный этап развития физиологии.Датой начала научного этапа физиологии считают дату выхода в свет труда известного английского врача и физиолога Уильяма Гарвея «Анатомические исследования о движении сердца и крови у животных» (1628). В данной работе впервые У.Гарвей сформулировал представления о движении крови у животных по большому кругу кровообращения. При этом все данные были получены экспериментально с использованием нового для того времени метода-метода вивисекции (буквально термин вивисекция означает живосечение).

Важной вехой в развитии физиологии можно считать работы известного французского ученого Рене Декарта (1596-1650), который впервые сформулировал представления об отражательном механизме, который впоследствии был назван чешским ученым И.Прохазкой (1749-1820) рефлексом.

Аналитическая физиология рассматривала отдельные органы и их функции – способ организации деятельности этих органов, функциональное их значение в жизни организма.

Объединяя, интегрируя все добытые биологические знания, физиология обеспечивала системный подход к изучению жизнедеятельности организма, рассматривая его как сложную, целостную и динамическую систему, активно взаимодействующую с окружающей средой.

5.Общие свойства возбудимых тканей. Виды раздражителей

Особое место в физиологии отводится возбудимым тканям. Не все ткани в организме способны одинаково быстро отвечать на действия раздражителей. Только некоторые из них в процессе эволюции выработали это свойство -- быстрый ответ на действие раздражителя.

Под раздражителемпонимают любое изменение условий внешней и внутренней среды, если оно возникает внезапно, имеет достаточную силу, удерживается определенное время, вызывает обратимые изменения структуры и деятельности живых тканей и клеток. Процесс воздействия раздражителя на живые структуры называется раздражением.

Различают три группы раздражителей: физические, физико-химические и химические. Особо выделяют как раздражитель нервный импульс.

По физиологическому значению все раздражители подразделяют на адекватные и неадекватные. Адекватные -- это раздражители, которые действуют на организм и его структуры в естественных условиях, и структуры организма приспособлены к восприятию этого раздражителя. Неадекватные -- это раздражители, которые в естественных условиях не действуют на организм, и структуры организма не приспособлены к их восприятию. Поэтому такие раздражители чаще всего вызывают нарушение функции организма.

Ткани и клетки организма, специально приспособленные к осуществлению быстрых ответных реакций на действие раздражителя, называютсявозбудимыми тканями. К ним относятся нервная, железистая и мышечная ткани.

Возбудимые ткани обладают рядом специфических свойств: возбудимостью и проводимостью.

Возбудимость -- способность возбудимой ткани отвечать изменением структуры и деятельности на действие раздражителя, т.е. отвечать особой биологической реакцией, называемой возбуждением.

Возбуждение -- ответная реакция возбудимой ткани на действие возбудителя, проявляющаяся в совокупности физических, физико-химических, химических, метаболических процессов и изменений деятельности. Возбуждение -- волнообразный процесс, который проявляется в разных возбудимых тканях специфический образом: в мышечной -- сокращением, в железистой -- образованием и выделением секрета, в нервной -- возникновением и проведением нервного импульса.

Развитие возбуждения сопровождается кратковременным исчезновением возбудимости. Затем она быстро восстанавливается.

Обязательным и общим признаком возбуждения возбудимых тканей является возникновение биологического тока действия, т.е. биоэлектрических явлений.

Проводимость -- это свойство возбудимой ткани активно проводить волну возбуждения. Например, двигательный нерв кошки проводит возбуждение со скоростью 1200 см/с.

нервная и гуморальная регуляция функций. Особенности, знвчение.

Гуморальная регуляция осуществляется через жидкие среды организма (кровь (гумор), лимфу, межклеточную, цереброспинальную жидкости) с помощью различных биологически активных веществ, которые выделяются специализированными клетками, тканями или органами. Этот вид регуляции может осуществляться на уровне структур органа - местная саморегуляция, или обеспечивать генерализованные эффекты через систему гормональной регуляции. В кровь поступают химические вещества, образующиеся в специализированных тканях и обладающих специфическими функциями. Среди этих веществ различают: метаболиты, медиаторы, гормоны. Они могут действовать местно или дистантно. Например, продукты гидролиза АТФ, концентрация которых возрастает при повышении функциональной активности клеток, вызывают расширение кровеносных сосудов и улучшают трофику этих клеток. Особенно важную роль играют гормоны- продукты секреции специальных, эндокринных органов. К железам внутренней секреции относят: гипофиз, щитовидную и околощитовидные железы, островковый аппарат поджелудочной железы, кору и мозговое вещество надпочечников, половые железы, плаценту и эпифиз. Гормоны влияют на обмен веществ, стимулируют морфообразовательные процессы, дифференцировку, рост, метаморфоз клеток, включают определенную деятельность исполнительных органов, изменяют интенсивность деятельности исполнительных органов и тканей. Гуморальный путь регуляции действует относительно медленно, скорость ответной реакции зависит от скорости образования и секреции гормона, его проникновения в лимфу и кровь, скорости кровотока. Локальное действие гормона определяется наличием к нему специфического рецептора. Длительность действия гормона зависит от скорости его разрушения в организме. В различных клетках организма, в том числе и мозге, образуются нейропептиды, которые действуют на поведение организма, целый ряд различных функций и регулируют секрецию гормонов.

Нервная регуляция осуществляется посредством нервной системы, базируется на переработке информации нейронами и передаче ее по нервам. Имеет следующие особенности:

Большую скорость развития действия;

Точность связи;

Высокую специфичность - в реакции участвует строго определенное количество компонентов, необходимых в данный момент.

Нервная регуляция осуществляется быстро, с направленностью сигнала к определенному адресату. Передача информации (потенциалов действия нейронов) осуществляется со скоростью до 80-120 м/с без снижения амплитуды и потери энергии. Нервной регуляции подлежат соматические и вегетативные функции организма. Основной принцип нервной регуляции - рефлекс. Нервный механизм регуляции филогенетически возник позднее местного и гуморального и обеспечивает высокую точность, скорость и надежность ответной реакции. Он является наиболее совершенным механизмом регуляции.


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-02-13

Первая древнейшая форма взаимодействия между клетками многоклеточных организмов - это химическое взаимодействие посредством продуктов обмена веществ, поступающих в жидкости организма. Такими продуктами , или метаболитами, служат продукты распада белков, углекислота и др. Это гуморальная передача влияний, гуморальный механизм корреляции или связи между органами.

Гуморальная связь характеризуется следующими особенностями. Во-первых, отсутствием точного адреса, по которому направляется химическое вещество, поступающее в или другие жидкости тела. Химическое вещество может, следовательно, действовать на все органы и . Его действие не локализовано, не ограничено определенным местом. Во-вторых, химическое вещество распространяется относительно медленно. И, наконец, в-третьих, оно действует в ничтожных количествах и обычно быстро разрушается или выводится из организма. Гуморальные связи являются общими и для мира животных и мира растений.

Нервная и гуморальная регуляция

На следующем этапе развития живых существ появляются специальные органы - железы, в которых вырабатываются гуморально действующие вещества - гормоны, образующиеся из поступающих в организм пищевых веществ. Так, например, гормон адреналин образуется в надпочечниках из аминокислоты - тирозина. Это гормональная регуляция.

Основная функция нервной системы заключается в регуляции взаимодействия организма как единого целого с окружающей его внешней средой и в регуляции деятельности отдельных органов и связи между органами.

Нервная система усиливает или тормозит деятельность всех органов не только волнами возбуждения или нервными импульсами, но и посредством поступления в кровь, лимфу, спинномозговую и тканевую жидкости медиаторов, гормонов и метаболитов, или продуктов обмена веществ. Эти химические вещества действуют на органы и на нервную систему. Таким образом, в естественных условиях не существует исключительно нервная регуляция деятельности органов, а нервно-гуморальная.

Возбуждение нервной системы имеет биохимическую природу. По ней волнообразно распространяется сдвиг обмена веществ, при котором ионы избирательно проходят через мембраны, в результате чего образуется разность потенциалов между участками, находящимися в состоянии относительного покоя и возбужденными, и возникают . Эти токи, называются биотоками , или биопотенциалами , распространяются по нервной системе и вызывают возбуждение в последующих ее участках.

Загрузка...