docgid.ru

Эффект вирилизации. Вирильный синдром (вирилизм). Какие факторы способствуют развитию патологии

(греч. monox один + лат. nucleos ядро: греч. рhagos пожирающий, поглощающий + гистол. суtus клетка; синоним: макрофагальная система, моноцитарно-макрофагальная система)
физиологическая защитная система клеток, обладающих способностью поглощать и переваривать чужеродный материал. Клетки, входящие в состав этой системы, имеют общее происхождение, характеризуются морфологическим и функциональным сходством и присутствуют во всех тканях организма.
Основой современного представления о С. м. ф. является фагоцитарная теория, разработанная И.И. Мечниковым в конце 19 в., и учение немецкого патолога Ашоффа (К. А.L. Aschoff) о ретикулоэндотелиальной системе (РЭС). Первоначально РЭС была выделена морфологически как система клеток организма, способных накапливать витальный краситель кармин. По этому признаку к РЭС были отнесены гистиоциты соединительной ткани, моноциты крови, клетки Купфера печени, а также ретикулярные клетки кроветворных органов, эндотелиальные клетки капилляров, синусов костного мозга и лимфатического узлов. По мере накопления новых знаний и совершенствования морфологических методов исследования стало ясно, что представления о ретикулоэндотелиальной системе расплывчаты, не конкретны, а в ряде положений просто ошибочны. Так, например, ретикулярным клеткам и эндотелию синусов костного мозга и лимфатических узлов длительное время приписывалась роль источника фагоцитирующих клеток, что оказалось неверным. В настоящее время установлено, что мононуклеарные фагоциты происходят из циркулирующих моноцитов крови. Моноциты созревают в костном мозге, затем поступают в кровяное русло, откуда мигрируют в ткани и серозные полости, становясь макрофагами. Ретикулярные клетки выполняют опорную функцию и создают так называемое микроокружение для кроветворных и лимфоидных клеток. Эндотелиальные клетки осуществляют транспорт веществ через стенки капилляров. Непосредственного отношения к защитной системе клеток ретикулярные клетки и эндотелий сосудов не имеют. В 1969 г. на конференции в Лейдене, посвященной проблеме РЭС, понятие «ретикулоэндотелиальная система» было признано устаревшим. Вместо него принято понятие «система мононуклеарных фагоцитов». К этой системе относят гистиоциты соединительной ткани, клетки Купфера печени (звездчатые ретикулоэндотелиоциты), альвеолярные макрофаги легких, макрофаги лимфатических узлов, селезенки, костного мозга, плевральные и перитонеальные макрофаги, остеокласты костной ткани, микроглию нервной ткани, синовиоциты синовиальных оболочек, клетки Лангергаиса кожи, беспигментные гранулярные дендроциты. Различают свободные, т.е. перемещающиеся по тканям, и фиксированные (резидентные) макрофаги, имеющие относительно постоянное место.
Макрофаги тканей и серозных полостей, по данным сканирующей электронной микроскопии, имеют форму, близкую к сферической, с неровной складчатой поверхностью, образованной плазматической мембраной (цитолеммой). В условиях культивирования макрофаги распластываются на поверхности субстрата и приобретают уплощенную форму, а при перемещении образуют множественные полиморфные псевдоподии. Характерным ультраструктурным признаком макрофага служит наличие в его цитоплазме многочисленных лизосом и фаголизосом, или пищеварительных вакуолей (рис. 1). Лизосомы содержат различные гидролитические ферменты, обеспечивающие переваривание поглощенного материала. Макрофаги - активные секреторные клетки, которые освобождают в окружающую среду ферменты, ингибиторы, компоненты комплемента. Основным секреторным продуктом макрофагов является лизоцим. Активированные макрофаги секретируют нейтральные протеиназы (эластазу, коллагеназу), активаторы плазминогена, факторы комплемента, такие как С2, С3, С4, С5, а также интерферон.
Клетки С. м. ф. обладают рядом функций, в основе которых лежит их способность к эндоцитозу, т.е. поглощению и перевариванию инородных частиц и коллоидных жидкостей. Благодаря этой способности они выполняют защитную функцию. Посредством хемотаксиса макрофаги мигрируют в очаги инфекции и воспаления, где осуществляют фагоцитоз микроорганизмов, их умерщвление и переваривание. В условиях хронического воспаления могут появляться особые формы фагоцитов - эпителиоидные клетки (например, в инфекционной гранулеме) и гигантские многоядерные клетки типа клеток Пирогова - Лангханса и типа клеток инородных тел. которые образуются путем слияния отдельных фагоцитов в поликарион - многоядерную клетку (рис. 2). В гранулемах макрофаги вырабатывают гликопротеид фибронектин, который привлекает фибробласгы и способствует развитию склероза.
Клетки С. м. ф. принимают участие в иммунных процессах. Так, непременным условием развития направленного иммунного ответа является первичное взаимодействие макрофага с антигеном. При этом антиген поглощается и перерабатывается макрофагом в иммуногенную форму. Иммунная стимуляция лимфоцитов происходит при непосредственном контакте их с макрофагом, несущим преобразованный антиген. Имунный ответ в целом осуществляется как сложное многоэтапное взаимодействие Г- и В-лимфоцитов с макрофагами.
Макрофаги обладают противоопухолевой активностью и проявляют цитотоксические свойства в отношении опухолевых клеток. Эта активность особенно выражена у так называемых иммунных макрофагов, осуществляющих лизис опухолевых клеток-мишеней при контакте с сенсибилизированными Т-лимфоцитами, несущими цитофильные антитела (лимфокины).
Клетки С. м. ф. принимают участие в регуляции миелоидного и лимфоидного кроветворения. Так, островки кроветворения в красном костном мозге, селезенке, печени и желточном мешке эмбрионе формируются вокруг особой клетки - центрального макрофага, организующего эритропоэз эритробластического островка. Клетки Купфера печени участвуют в регуляции кроветворения путем выработки эритропоэтина. Моноциты и макрофаги вырабатывают факторы, стимулирующие продукцию моноцитов, нейтрофилов и эозинофилов. В вилочковой железе (тимусе) и тимусзависимых зонах лимфоидных органов обнаружены так называемые интердигитирующие клетки - специфические стромальные элементы, также относящиеся к С. м. ф., ответственные за миграцию и дифференцировку Т лимфоцитов.
Обменная функция макрофагов заключается в их участии в обмене железа. В селезенке и костном мозге макрофаги осуществляют эритрофагоцитоз, при этом в них происходит накопление железа в форме гемосидерина и ферритина, которое питом может реутилизироваться эритробластами.
Библиогр.: Карр Ян. Макрофаги: обзор ультраструктуры и функции, пер. с англ., М., 1978; Персина И.С. Клетки Лангерганса - структура, функция, роль в патологии, Арх. патол., т. 47, вып. 2, с. 86, 1985.
Рис. 2. Электронограмма макрофага очага асептического воспаления: 1 - фрагменты бобовидного ядра; 2 - фагоцитированный материал в пищеварительной вакуоли; ×21000.
Рис. 1. Электронограмма участка гигантской многоядерной клетки инородных тел: 1 - ядра, входящие в состав одной клетки; 2 - лизосомы; 3 - фагосомы; ×15000.


Смотреть значение Систе́ма Мононуклеа́рных Фагоци́тов в других словарях

Блок-система — блок-системы, ж. (ж.-д.). Блокировка, блокировочная система. См. (блок).
Толковый словарь Ушакова

Система — ж. греч. план, порядок расположенья частей целого, предначертанное устройство, ход чего-либо, в последовательном, связном порядке. Солнечная система, солнечная вселенная.........
Толковый словарь Даля

Система Ж. — 1. Структура, представляющая собою единство закономерно расположенных и функционирующих частей. 2. Определенный порядок в расположении, связи и действии составляющих........
Толковый словарь Ефремовой

Административно-командная Система — - система управления экономикой страны, в которой главная роль принадлежит распределительным, командным методам и власть сосредоточена у центральных органов управления,........
Политический словарь

Антрепренерская Система — - система рекрутирования элит, обладающая открытостью, широким кругом селектората и высокой конкурентностью отбора.
Политический словарь

Гильдий Система — - система рекрутирования элит, отличающаяся закрытостью, высокой степенью отбора, небольшим кругом селектората.
Политический словарь

Избирательная Система — - упорядоченная совокупность норм, правил и приемов, определяющих пути, формы и методы образования представительных и иных (напр., президентов, судей, присяжных) выборных........
Политический словарь

Избирательная Система — - установленный в законодательном порядке процесс организации и проведения выборов в органы, институты государственной власти, состоящий из совокупности правил и........
Политический словарь

Информационная Система — – организационно упорядоченная совокупность документов (массивов документов) и информационных технологий, в том числе с использованием средств вычислительной техники........
Политический словарь

Командно-административная Система Управления — - жесткая система управления народным хозяйством, основанная на иерархическом распределении функций управления и не допускающая отклонений от заранее намеченных........
Политический словарь

Мажоритарная Избирательная Система — (фр. majoritaire от majorite - большинство) - процедура определения результатов голосования, при которой избранным считается тот кандидат, который набрал большинство голосов.........
Политический словарь

Мажоритарная Система — - (франц. majorite - большинство), в государственном праве система определения результатов голосования при выборах в представительные органы. При мажоритарной системе........
Политический словарь

Партийная Система — - совокупность связей и отношений между партиями, претендующими на обладание властью в стране.
Политический словарь

— - одна из подсистем общества (наряду с экономической, социальной, духовно-идеологической и др.), представляющая собой сложную, многообразную и в то же время упорядоченную,........
Политический словарь

Политическая Система — (POLITICAL SYSTEM) - устойчивая форма человеческих отношений, через посредство которой принимаются и проводятся в жизнь авторитетно-властные решения для данного общества.........
Политический словарь

Политическая Система Индустриально Развитых Стран (теория) — Политическая система представляет собой совокупность лиц, институтов, участвующих в политическом процессе, неформальных и неправительственных факторов, влияющих........
Политический словарь

Политическая Система Общества — - сложная совокупность институциональных структур государства и общества, форм взаимодействия между ними, направленных на осуществление политической власти, управления,........
Политический словарь

Правовая Система — разновидность социальной системы, котороя тесно связана с другими системами и включает в себя комплекс юридических явлений, с помощью которых воздействует на поведение человека.
Политический словарь

Прогнозирующая Система — Система методов прогнозирования и средств их реализации, функционирующая в соответствии с основными принципами прогнозирования. Примечания. 1. Средствами реализации........
Политический словарь

Пропорциональная Избирательная Система — - избирательная система, при которой мандаты распределяются пропорционально голосам, полученными партиями или избирательными блоками.
Политический словарь

Пропорциональная Система Представительства — - избирательная система, в основу которой положен принцип пропорциональности между поданными за партию голосами избирателей и числом полученных ею мандатов (кандидаты........
Политический словарь

Пропорциональная Система Представительтва — - одна из самых распространенных избирательных систем, при которой нет одного победителя, поскольку она основана на соответствии между количеством голосов, поданных........
Политический словарь

Репрессивная Система — - от слова "репрессии" (латинское "repressare", "подавлять"). Репрессии - меры по подавлению. Система подавления со стороны власти или государства нежелательных внутренних элементов........
Политический словарь

Система Двухпартийная — - система, при которой реальную борьбу на выборах за власть в государстве ведут только две партии, причем одна из партий обеспечивает себе большинство голосов избирателей,........
Политический словарь

Система Избирательная — - совокупность избирательных прав и процедур, на основе которых осуществляются выборы в представительные органы власти или высших должностных лиц. Определение результатов........
Политический словарь

Система Многопартийная — - система, в которой более двух партий имеют достаточно сильную организацию и влияние, чтобы воздействовать на функционирование правительственных институтов. В числе........
Политический словарь

Система Однопартийная — - тема, при которой происходит закрепление (фактическое или юридического правящего статуса за одной из решенных политических партий, характеристики партийной систем........
Политический словарь

Система Партийная — - механизм отношений, существующих между политическими партиями в данном государстве. Основными сторонами партийной системы являются особенности внутренней структуры........
Политический словарь

Система Политическая — - представляет собой сложную, разветвленную совокупность различных политических институтов, социально-политических общностей, форм взаимодействия и взаимоотношений........
Политический словарь

Система Сдержек И Противовесов — - такая система взаимоотношения органов власти и людей, приближенных к ним, в соответствии с которой каждый участник этих взаимоотношений не только уравновешивает,........
Политический словарь

Мононуклеарным фагоцитам (моноцитам и макрофагам) принадлежит важнейшая роль в иммунных реакциях, защите организма от инфекций, а также восстановлении и перестройке тканей. Не бывает человека, у которого отсутствовала бы эта линия клеток, поскольку макрофаги, по-видимому, необходимы для удаления примитивных тканей по мере их замещения новыми в процессе эмбрионального развития.

Моноциты и различные формы тканевых макрофагов составляют систему мононуклеарных фагоцитов. Это именно система, так как все мононуклеары имеют общее происхождение, сходное строение и одинаковые функции (фагоцитоз).

Основная локализация макрофагов в тканях :
Печень (купферовские клетки).
Легкие (интерстициальные и альвеолярные макрофаги).
Соединительная ткань.
Серозные полости (плевральные и перитонеальные макрофаги).
Кости (остеокласты).

Головной мозг (реактивные клетки микроглии).
Селезенка, лимфатические узлы, костный мозг.
Стенка кишечника.
Грудное молоко.
Плацента.
Гранулемы (многоядерные гигантские клетки).

Моноциты - циркулирующие в крови предшественники тканевых - развиваются в костном мозге быстрее и остаются в крови дольше нейтрофилов. Первый предшественник моноцита, монобласт, превращается в промоноцит, несколько более крупную клетку с цитоплазматическими гранулами и вдавленным ядром, состоящую из небольших глыбок хроматина, и, наконец, - в полностью развитый моноцит.

Зрелый моноцит по своим размерам больше нейтрофила, и его цитоплазма заполнена гранулами, содержащими гидролитические ферменты. Превращение монобласта в зрелый моноцит крови занимает около 6 сут. Моноциты сохраняют некоторую способность к делению и после попадания в ткани подвергаются дальнейшей дифференцировке; в тканях они могут оставаться в течение нескольких недель и месяцев.

В отсутствие воспаления моноциты , по-видимому, случайным образом попадают в ткани. Оказавшись там, они трансформируются в тканевые макрофаги, морфологические, а иногда и функциональные свойства которых зависят от конкретной ткани. Органоспецифические факторы влияют на дифференцировку моноцитов и определяют их метаболические и структурные особенности. В печени они превращаются в купферовские клетки, которые соединяют синусоиды, разделяющие соседние пластинки гепатоцитов.

В легких они представлены крупными эллипсоидными альвеолярными макрофагами , в костях - остеокластами. Все макрофаги обладают по крайней мере тремя основными функциями - антигенпредставляющей, фагоцитарной и иммуномодулирующей, связанной с секрецией многих цитокинов. В очагах воспаления моноциты и макрофаги могут сливаться друг с другом, образуя многоядерные гигантские клетки - последняя стадия развития мононуклеарных фагоцитов. Под действием некоторых цитокинов моноциты крови дифференцируются в дендритные клетки, которые особенно эффективно представляют антигены лимфоцитам.

Министерство здравоохранения социального развития РФ
Волгоградский государственный медицинский университет
Кафедра гистологии, эмбриологии, цитологии
Зав. каф. д.м.н. профессор М.Ю. Капитонова

Самостоятельная работа студента.
«Система мононуклеарных фагоцитов в организме человека»

                Выполнил:
                Студент I курса 4 группы
                Медико-биологического факультета
                Никулин Д.А.
                Проверил: Загребин В. Л.
Волгоград 2011
Содержание

Введение………………………………………………………… ……..…2
1. Фагоциты………………………………………………………… …….3
2. Моноциты………………………………………………………… ……5
3. Макрофаги……………………………………………………… ……...6
3.1 Макрофаги: общие сведения ……………………………………7
3.2 Макрофаги: роль в инициации клеточного иммунитета..11
3.3 Макрофаги: роль в иммунологическом процессе ……….13
4. Моноциты и фагоциты: патология……………………………..14
5.Клетки Купфера в печени………………………………………….16
6.Макрофаги селезёнки…………………………………………….... 18
7. Система мононуклеарных фагоцитов ……………................19
7.1 Распознавание и представление антигенов макрофагами………………………………………………… …………21
7.1.1 Нейтрофилы…………………………………………………… ..23
7.1.2 Базофилы………………………………………………………… 25
7.1.3 Эозинофилы…………………………………………………… ..27
Заключение…………………………………………………… ………..29
Литература…………………………………………………… …………31

Введение
Ретикулоэндотелиальная система, макрофагическая система, совокупность клеток мезенхимного происхождения, объединяемых на основе способности к фагоцитозу; свойственна позвоночным животным и человеку. К РЭС относят клетки ретикулярной ткани, эндотелия синусоидов (расширенных капилляров) кроветворных и др. органов, а также все виды макрофагов, объединяемых на основании общего происхождения из стволовой кроветворной клетки в систему мононуклеарных (одноядерных) фагоцитов. Выполняет защитную функцию, играет существ, роль во внутр. обмене веществ организма.
Система мононуклеарных фагоцитов (греч. monox один + лат. nucleos ядро: греч. рhagos пожирающий, поглощающий + гистол. суtus клетка; синоним: макрофагальная система, моноцитарно-макрофагальная система) - физиологическая защитная система клеток, обладающих способностью поглощать и переваривать чужеродный материал. Клетки, входящие в состав этой системы, имеют общее происхождение, характеризуются морфологическим и функциональным сходством и присутствуют во всех тканях организма.

          1. Фагоциты
Фагоци?ты - клетки иммунной системы, которые защищают организм путём поглощения (фагоцитоза) вредных чужеродных частиц, бактерий, а также мёртвых или погибающих клеток . Их название произошло от греческого phagein , «есть» или «поедать», и «-cyte», суффикс, в биологии означающий «клетка». Они важны для борьбы с инфекцией и постинфекционного иммунитета. Фагоцитоз важен для всего животного мира и высоко развит у позвоночных . Фагоциты и фагоцитоз как способ пищеварения у животных были открыты И.И. Мечниковым при изучении губок и плоских червей. Роль фагоцитов в защите от бактерий была впервые открыта И. И. Мечниковым в 1882 году, когда он изучал личинок морских звёзд. Мечников был удостоен в 1908 году Нобелевской премии по физиологии за создание клеточной теории иммунитета. Фагоциты присутствуют в организмах многих видов; некоторые амёбы по многим деталям поведения похожи на макрофаги, что указывает на то, что фагоциты появились на ранних этапах эволюции.
Фагоциты человека и других животных называют «профессиональными» или «непрофессиональными» в зависимости от того, насколько эффективно они фагоцитируют. К профессиональным фагоцитам относятся нейтрофилы, моноциты, макрофаги, дендритные клетки и тучные клетки. Основное отличие профессиональных фагоцитов от непрофессиональных в том, что профессиональные имеют молекулы, называемые рецепторы, на своей поверхности, которые обнаруживают чужеродные объекты, например бактерии. Один литр крови взрослого человека в норме содержит около 2,5-7,5 млрд нейтрофилов, 200-900 млн моноцитов.
При инфекции химические сигналы привлекают фагоциты к месту, где патоген проник в организм. Эти сигналы могут исходить от бактерий или от других фагоцитов, уже присутствующих там. Фагоциты перемещаются путём хемотаксиса. Когда фагоциты контактируют с бактериями, рецепторы на их поверхности связываются с ними. Эта связь приводит к поглощению бактерий фагоцитами. Некоторые фагоциты убивают проникших патогенов с помощью оксидантов и оксида азота. После фагоцитоза, макрофаги и дендритные клетки могут также участвовать в презентации антигена - процессе, при котором фагоциты перемещают патогенный материал обратно на свою поверхность. Этот материал затем отображается (презентируется) для других клеток иммунной системы. Некоторые фагоциты поступают в лимфатические узлы и презентируют материал лимфоцитам. Этот процесс важен в формировании иммунитета. Тем не менее, многие болезнетворные микроорганизмы устойчивы к атакам фагоцитов.


2. Моноциты
Моноциты - это лейкоциты , не содержащие гранул. Их диаметр в сухом мазке составляет 12 - 20 мкм. На долю моноцитов приходится 4 - 8% всех лейкоцитов крови (примерно 450 клеток в 1 мкл). Моноциты образуются в костном мозге , а не в ретикулоэндотелиальной системе , как считалось ранее. В кровь выходят не окончательно созревшие клетки, которые обладают самой высокой способностью к фагоцитозу . Моноциты, выходя из кровяного русла, становятся макрофагами , которые наряду с нейтрофилами являются главными "профессиональными фагоцитами". Макрофаги, однако, значительно больше по размерам и дольше живут, чем нейтрофилы. Клетки-предшественицы макрофагов - моноциты, выйдя из костного мозга , в течение нескольких суток циркулируют в крови, а затем мигрируют в ткани и растут там. В это время в них увеличивается содержание лизосом и митохондрий . Достигнув зрелости, моноциты превращаются в неподвижные клетки - гистоциты , или тканевые макрофаги. Вблизи воспалительного очага они могут размножаться делением. Они образуют отграничивающий вал вокруг инородных тел, которые не могут быть разрушены. Эти клетки всегда присутствуют в больших количествах в лимфатических узлах , стенках альвеол и синусах печени , селезенки и костного мозга . Моноциты также являются предшественниками клеток Лангерганса , клеток микроглии и других клеток, способных к переработке и представлению антигена . В отличие от В - и Т-лимфоцитов, макрофаги и моноциты не способны к специфическому распознаванию антигена.

3. Макрофаги
Макрофаги - клетки системы мононуклеарных фагоцитов (до 15-80 мкм). Образуются из моноцитов крови. Обладают фагоцитарной, секреторной и регуляторной активностью. Способны перерабатывать и презентировать чужеродный антиген.
Мигрируют в различные ткани. Локальные факторы существенно влияют на их морфологию и функциональную специализацию. Различают альвеолярные, перитонеальные, соединительнотканные, Купферовские клетки печени, остеокласты костной ткани, микроглиальные клетки ЦНС, многоядерные гигантские клетки гранулемы (клетки Микулича).
Макрофаги - долгоживущие клетки, играющие важную роль в формировании естественного и приобретенного иммунитета. Они синтезируют цитокины (ИЛ-1, ФИО, ИЛ-12) и белки комплемента. На их мембране локализуются диференцировочные поверхностные маркеры: молекула CD 14 - рецептор для ЛПС; молекула CD35 - рецептор для C3b фрагмента комплемента; CD11b/CD18 (LFA-1) - адгезивные молекулы; CD64 (FcR1) - рецептор Fc-фрагмента иммуноглобулинов; CD4 антиген - корецептор; HLA-DR молекулы распознавания II класса.

Табл. Основные функции макрофагов

T-лимфоциты распознают инфицированный макрофаг по экспонированию на его поверхности микробного антигена, находящегося в комплексе с гликопротеином MHC класса II, который в данном случае служит сигналом макрофага. В результате распознавания T-клетки выделяютлимфокины, стимулирующие внутриклеточное уничтожение возбудителя макрофагом.
В отличие от лимфоцитов, макрофаги не обладают способностью специфичного узнавания. Кроме того, макрофаги, по-видимому, отвечают за индукцию толерантности.
При аутоиммунных заболеваниях макрофаги удаляют из крови иммунные комплексы и другие иммунологически активные вещества.
Макрофаги участвуют в заживлении ран, удалении отживших клеток и образовании атеросклеротических бляшек.


3.2 Макрофаги: роль в инициации клеточного иммунитета
Макрофаги помимо участия в реакциях неспецифического иммунитета проявляют себя и в реакциях специфической иммунной защиты от инфекции в качестве антигенпрезентирующих клеток.
В процессе активации T-лимфоцитов, клетки, представляющие антиген в иммуногенной форме на своей поверхности (антигенпрезентирующие клетки), должны обладать, по крайней мере, двумя основными свойствами:
- способностью образовывать комплекс антигенного пептида с молекулами I или II классов МНС, что является первым сигналом к пролиферации и дифференцировке наивных T-клеток, и
- экспрессировать костимуляторы, обеспечивающие прохождение второго сигнала активации Т-клеток.
Макрофаги в состоянии покоя обладают очень незначительным количеством молекул MHC II класса и полностью лишены костимулятора В7 на своей поверхности. Выраженное представительство этих молекул на мембране макрофага начинается после захвата и внутриклеточного переваривания микроорганизмов.
Один из способов поглощения бактерий связан с рецепторами к маннозе, которые способны взаимодействовать с углеводами бактериальной стенки. Захваченные микроорганизмы деградируют в фаголизосомах, образуя отдельные пептиды, которые выносятся на клеточную поверхность в комплексе с молекулами MHC.
Именно в процессе внутриклеточного переваривания корпускулярого антигена происходит индукция синтеза и экспрессии на клеточной поверхности молекул MHC класса II и костимулятора В7. Факторами индукции, возможно, являются рецепторы клеточной поверхности, взаимодействующие с микроорганизмами, поскольку синтез В7 можно индуцировать простой инкубацией макрофагов с отдельными компонентами (углеводами, липополисахаридами) бактериальной стенки.
Индукция костимулирующей активности к общим микробным компонентам позволяет иммунной системе отличать бактериальные антигены от собственных антигенов организма или безвредных, хотя и чужеродных белков. Из практической работы известно, что получение иммунного ответа к некоторым белкам возможно только с использованием адъювантов, включающих убитые микроорганизмы или продукты их бактериальной стенки. Схема возможных отношений в данном случае выглядит следующим образом.
Если белковые антигены захватываются и презентируются макрофагами в отсутствие бактериальных компонентов, которые инициируют синтез В7, то Т-клетка специфически распознает антиген, однако остается рефрактерной, так как отсутствует действие второго сигнала для запуска пролиферации и дифференцировки. Внесение в систему бактериальных компонентов - индукторов костимулятора В7 - обеспечивает полноценное включение в иммунный ответ Т-клеток. В условиях эксперимента аутоиммунное заболевание легко индуцируется смесью собственных тканевых антигенов с компонентами бактериальной стенки, иллюстрируя тем самым значение костимуляции в процессе разграничения "своего" от "чужого".
Понимание того факта, что запуск Т-клеточного ответа связан с двухсигнальной системой активации, внесло ясность в работу макрофагов в качестве "мусорщиков". Купферовские клетки печени и макрофаги селезенки постоянно захватывают и разрушают отжившие клетки этих органов. При этом в отсутствие бактериальных стимуляторов экспрессируемые на поверхности фагоцитирующих клеток собственные антигены как результат деградации захваченных отживших клеток не в состоянии развить аутоиммунный ответ.
В представленных примерах иммуногенность связана не со структурными особенностями антигена, а с реактивностью организма, с потенциальными возможностями его иммунокомпетентных клеток.

3.3 Макрофаги: роль в иммунологическом надзоре
В опытах in vitro установлено, что макрофаги, активированные цитокинами Т-клеток, оказывают определенное противоопухолевое действие. Оно может быть связано как с явлением прямого фагоцитоза опухолевых клеток, так и с процессом, опосредованным ФНО-альфа, секретируемым фагоцитирующими мононуклеарами.
Какого-либо бесспорного доказательства противоопухолевой активности макрофагов in vivo пока не получено.


5. Клетки Купфера в печени
Наибольшее количество тканевых макрофагов находится в печени. Купферовские клетки печени являются типичными фагоцитами и имеют решающее значение для реализации фагоцитарной функции организма в целом. По литературным данным, от 85 до 95% внутрисосудистого фагоцитарного клиренса является функцией макрофагов печени (Зубовский Г.А. 1978; Маянский Д.Н. 1992). Фагоцитарная функция Купферовских клеток печени в значительной степени зависит от параметров печеночного кровотока. Развитие портокавальных анастомозов приводит к транзиту крови из воротной вены в нижнюю полую вену, минуя печень и снижая, таким образом, количество фагоцитированных частиц. Без учета изменений параметром печеночного кровотока невозможно достоверно оценить функцию печеночных макрофагов.
Известные методики определения печеночного кровотока с помощью меченых соединений основаны на принципах разведения недиффундирующего индикатора, проходящего через печень (Джилмукашев У.К. 1983, 2000; Георгиеску Б. и Брасле Б. 1967). Недостатком этих методик является, во-первых: неполная оценка величины портокавальных анастомозов, т.к. авторами не разделяются селезеночная и кишечная составляющие портального кровотока, во-вторых, невозможность оценить нарушения функции ретикулоэндотелиальной системы печени.
Методики определения функции ретикулоэндотелиальных клеток печени основаны на способностикупферовских клеток фагоцитировать коллоидные частицы, приходящие через орган. Получаемые при этом результаты отмечают не истинное поражения ретикулоэндотелия, а некий усредненный параметр, состоящий, как минимум, из трех составляющих: нарушения портального кровотока и развитие портокавальныханастомозов; нарушение структуры печеночного ацинуса и, как следствие, снижение кровотока в синусах; и собственно поражение или уменьшение количества купферовских клеток. Причем доля первой из вышеперечисленных составляющих значительно превышает остальные. Решающее значение при этом имеет не истинное поражение печеночного ретикулоэндотелия, а изменение печеночного и портальногокровотоков.
При исследовании макрофагальной активности органов и тканей необходимо учитывать влияние изменениягемодинамики и функции ретикулоэндотелиальной системы печени, что обусловлено тесной взаимосвязью процессов нарушения кровотока, изменения архитектоники и поражения печеночных клеток.
Радионуклидная диагностика гемодинамики печени и активности системы мононуклеарных фагоцитов позволяет определить наличие и величину портокавальных анастомозов и исключить влияние изменения печеночного и портального кровотоков при проведении исследования функции СМФ.


6. Макрофаги селезёнки
Селезенка - вторичный паренхиматозный орган иммунной системы, локализующийся в левой верхней области брюшной полости. Является главным местом развития адаптивного иммунитета на действие экзогенных антигенов, поступающих в организм через кровь. Поддерживает процесс репродуцирования иммунокомпетентных клеток (Т- и В-лимфоцитов) в строго определенных участках, так называемых Т- и В-зависимых зонах.
Т-лимфоциты в виде скоплений располагаются вокруг артериол и образуют периваскулярные муфты. Последние на 75 % состоят из CD4+ Т-лимфоцитов и на 25% - из CD8+ Т-лимфоцитов. В-лимфоциты формируют фолликулы с зародышевыми центрами - В-зависимую зону. Этот слой селезенки получил название белой пульпы. Артериолы заканчиваются сосудистыми синусами, содержащими большое количество макрофагов и ДК (красная пульпа).
Местом развития специфического ГИО на действие чужеродных антигенов, поступающих с кровью, является белая пульпа. Красная пульпа выполняет функцию фильтра крови, улавливающего чужеродные организму частицы и молекулы, эритроциты, иммунные комплексы. Многие микроорганизмы распознаются непосредственно фагоцитами в красной пульпе. Некоторые транспортируются в белую пульпу, где в результате стимуляции В-лимфоцитов образуются зародышевые центры (ЗЦ). Последние являются местом накопления плазматических клеток и синтеза антител. Строма красной и белой пульпы состоит из фагоцитирующих и перерабатывающих антиген клеток.
Ежедневно примерно половина общего объема крови проходит через селезенку. Макрофаги селезенки выполняют важную функцию по распознаванию и элиминации поврежденных и неполноценных клеток крови.


7. Система мононуклеарных фагоцитов

В систему мононуклеарных фагоцитов входят моноциты крови и различные макрофаги (купферовские клетки печени, альвеолярные макрофаги, макрофаги соединительной ткани, клетки Лангерганса, астроциты глии, остеокласты). Все они возникают из гемопоэтической стволовой клетки и проходят ряд стадий: монобласт-промоноцит-моноцит- макрофаг.
Созревают под влиянием четырех гранулоцитарно-макрофагальных колониестимулирующих факторов (ГМ-КСФ), выделяемых Т-лимфоцитами, фибробластами и макрофагами. В зависимости от последующей локализации макрофаги приобретают специфические структурные и морфологические черты. Они несут на поверхности маркеры: CD14, Fc-рецепторы для иммуноглобулинов, рецепторы для СЗ-компонента комплемента и HLA-DR антигены. CD14 молекулы связывают липополисахариды бактерий вместе с белком сыворотки крови, при активации макрофагов они сбрасываются с клетки.
Фагоциты обладают развитым лизосомальным аппаратом, где содержится большое количество ферментов.
Функции макрофагов:
фагоцитоз,
распознавание и представление (презентация) антигенов,
секреция медиаторов системы иммунитета (монокинов).
и т.д.................

От способности мононуклеарных фагоцитов удалять стимулы воспаления зависит исход воспалительной реакции: либо ее разрешение, либо прогрессирование с более выраженным проявлением заболевания. В области воспаления мононуклеарные фагоциты имеют три различающиеся, но взаимосвязанные функции.

Распознавание и удаление воспалительных стимулов

Мононуклеарные фагоциты обладают рядом специальных механизмов распознавания, удаления и разрушения различных стимулов, которые способны нарушать гомеостаз организма. Против инфекционных агентов фагоциты используют цитотоксические механизмы. К ним относится образование веществ, содержащих реактивный кислород (гидроксильные ионы, супероксидные радикалы и перекись водорода). Показано, что их продукция тесно связана со способностью мононуклеарных фагоцитов экспрессировать внеклеточные цитотоксические и цитоцидные свойства. Затем патогены фагоцитируются лизосомной системой клеток; комбинированное действие различных гидролизирующих ферментов этой системы приводит к эффективному разрушению поглощенного материала.

Ряд специализированных рецепторных систем мононуклеарных макрофагов облегчает

распознавание и фагоцитарное удаление стимулов воспаления. В этом процессе особо важную роль играют продукты Т- и В-лимфоцитов (рис. 31). Антитела, синтезируемые В-лимфо- цитами, связывают антигены с образованием иммунных комплексов. У мононуклеарных фагоцитов выявлено несколько (по крайней мере три) различных типов высокоаффинных рецепторов для комплекса антиген-антитело, которые обеспечивают их распознавание и удаление с помощью фагоцитоза. Поскольку они распознают Fc-фрагменты иммуноглобулинов иммунных комплексов и в некоторых случаях Fc-фрагменты свободных антител, их называют Fc-рецепторами. Другим лигандом для стимуляции фагоцитоза являются иммунные комплексы, активированные комплементом, которые связывают рецепторы для СЗЬ.

Связывание воспалительных стимулов специфическими рецепторами мононуклеарных фагоцитов инициирует процесс фагоцитоза. Фагоцитоз характеризуется инвагинацией той части плазматической мембраны, к которой присоединяется воспалительный стимул. Этот процесс опосредуется координированной деятельностью группы сократительных белков,


лейкоциты

Лимфоциты

Рис. 31. Реакции мононуклеарных фагоцитов на продукты иммунных ответов в области воспаления.

Лимфоциты, отвечающие на иммуногенные воспалительные стимулы, продуцируют лимфокины и антитела, которые формируют иммунные комплексы. Иммунные комплексы генерируют хемотаксические стимулы, привлекающие ПМН и мононуклеарные фагоциты в область воспаления. Фагоцитирующие клетки поглощают иммунные комплексы, которые затем деградируют. Чрезмерная стимуляция фагоцитирующих клеток лимфокинами или иммунными комплексами ведет к выделению ряда медиаторов воспаления, в том числе протеиназ, вызывающих разрушение тканей. Кроме того, мононуклеарные фагоциты выделяют факторы, стимулирующие активность лимфоцитов, а также пролиферацию соединительной ткани в фиброз.

І

весьма напоминающих аналогичные белки гладких мышц. В фагоцитирующих клетках, особенно на периферии цитоплазмы, содержится большое количество актина и миозина. Эти белки, как и некоторые регуляторные белки, были выделены в чистом виде из альвеолярных макрофагов. Установлено, что образование псевдоподий, формирующихся вокруг воспалительных стимулов, связано с мобилизацией ионов кальция, которые стимулируют энергозависимую сборку и функционирование сократительных белков. Окруженный псевдоподиями стимулятор фагоцитоза оказывается в вакуоли, называемой фагосомой, которая направляется к лизосомам. Все эти процессы возможны лишь при наличии интактных микротрубочек. Лизосомы макрофагов содержат большое количество разнообразных протеиназ, гликозидаз и липаз с высокой специфической активностью. Эти ферменты необходимы для быстрого внутриклеточного разрушения поглощенных веществ. Кроме фагоцитоза, моно- нуклеарные фагоциты способны к эндоцитозу жидкости (пиноцитозу), осуществляемому специфическими и неспецифическими механизмами. Установлено, что макрофаги перитонеальной полости мышей интернализируют площадь плазматических мембран (эквивалента их общей площади) каждые 35 мин; скорость значительно возрастает при стимуляции моно-нуклеарных фагоцитов воспалительными стимулами.

У мононуклеарных фагоцитов определены разнообразные эндоцитарные функции, независимые от продуктов активированных лимфоцитов. В легких альвеолярные макрофаги посредством фагоцитоза удаляют ряд токсических и инертных частиц. Длительный контакт с некоторыми веществами, такими как кремний или асбест, может привести к хроническим легочным воспалительным заболеваниям, частично опосредуемым веществами, выделяемыми макрофагами. Мононуклеарные фагоциты могут также участвовать в развитии атеросклероза. Накопление измененных липопротеинов низкой плотности в мононуклеарных фагоцитах происходит с участием специфических рецепторов и приводит к образованию пенистых клеток, нагруженных эфиром холестерина. Наличие таких клеток является характерным признаком атеросклеротических бляшек.

Непереваренные вещества остаются во вторичных лизосомах мононуклеарных фагоцитов в месте их первоначального взаимодействия
(татуировка - типичный пример); альтернативный этому вариант- миграция клеток из организма через дыхательную систему или пищеварительный тракт. Кроме того, некоторые популяции мононуклеарных фагоцитов обладают специализированными функциями, представляя воспалительный стимул в виде иммуногена клеткам лимфоидной системы. Лимфоциты отвечают на иммуноген образованием специфических веществ, а именно лимфокинов и антител, которые облегчают функцию мононуклеарных фагоцитов при последующих встречах с иммуногеном.

Презентация антигенов Т-лимфоцитам: запуск афферентного звена иммунной системы

В последние годы было установлено, что мононуклеарные фагоциты играют решающую роль в представлении иммуногена лимфоцитам. И хотя точные механизмы, лежащие в основе презентации, остаются неясными, известно, что в физиологических условиях им-муноген связан с мононуклеарными фагоцитами и что между клеткой, несущей иммуно-ген, и лимфоцитом возникает прямой физический контакт.

На рис. 32 показана последовательность представления антигена мононуклеарными фагоцитами лимфоцитам, а также последующие события в иммунной системе. Представление антигена возможно при сингенности мононуклеарных фагоцитов и лимфоцитов. Кроме того, для представления необходима прямая или непрямая связь между иммуногеном и антигенами 1а. Показано, что антитела к антигенам 1а подавляют распознавание Т-лимфоцитами иммуногена, связанного с мононуклеарными фагоцитами.

Не все мононуклеарные фагоциты имеют на своей поверхности la-антигены; их количество зависит не только от ткани, в которой они находятся, но и от локального микроокружения в данный момент времени. Вполне вероятно, что лимфоциты, отвечающие на

представленный им антиген, могут в свою очередь увеличивать количество мононуклеарных фагоцитов, несущих la-антиген. Мононуклеарные фагоциты осуществляют также генетический контроль за развитием иммунного ответа. Этот контроль зависит от возможности мононуклеарных фагоцитов экспресси-ровать соответствующие la-антигены, что спо-

Лимфоиты

Комплексы Растворимые антиген - антитело г радулы

Дифференциация

Антителообразующая клети

Рис. 32. Представление мононуклеарными фагоцитами иммуногенов лимфоцитам.

собствует клональной экспансии Т- и В-лим- фоцитов для обеспечения синтеза лимфокинов и антител.

Секреторная активность мононуклеарных фагоцитов

Многогранное участие мононуклеарных фагоцитов в защите организма и в хроническом воспалении требует от них величайшей функциональной подвижности при взаимодействии с другими типами клеток, компонентами соединительной ткани и воспалительными стимулами во внеклеточной среде. В связи с этим мононуклеарные фагоциты синтезируют и сек- ретируют большое количество биологически активных медиаторов (табл. 4). Выделение таких медиаторов происходит не одновременно: они секретируются по мере выполнения тех
функций, которые необходимы мононуклеар- ным фагоцитам на данной стадии воспалительного процесса. Совершенно очевидно, что продукты секреции имеют важное значение для облегчения удаления патогенных организмов и других стимулов воспаления, а также для усиления процессов репарации и устранения возникших повреждений. Возможно, что некоторые аспекты хронических воспалительных процессов должны учитываться в связи с аберрантной секрецией различных продуктов мононуклеарных фагоцитов. Некоторые продукты секретируются мононуклеарными фагоцитами постоянно, в том числе ферменты лизо-цим и липопротеинлипаза, тогда как другие выделяются лишь при воздействии на мононуклеарные фагоциты воспалительными стимулами или продуктами иммунных реакций (рис. 33).

Таблица 4. Секреторные продукты мононуклеарных фагоцитов

Гидролитические ферменты ЛИзоцим

Нейтральные протеазы Лизосомные гидролазы Липопротеиновая липаза

Ингибиторы протеолитических ферментов а2-Макроглобулин агПротеазный ингибитор

Факторы, изменяющие клеточную пролиферацию Колониестимулирующий фактор Фактор созревания тимуса Ангиогенный фактор Стимулятор пролиферации фибробластов Интерлейкин-1 Фактор-антагонист глюкокортикоидов Фибронектин Ростовой фактор, происходящий из тромбоцитов Эритропоэтин

Факторы, нарушающие жизнеспособность инфекционных

агентов и эукариотических клеток

Перекись водорода

Гидроксильные радикалы

Интерферон

Листерицидный фактор

Белок, связывающий витамин В12

Фактор некроза опухоли

Факторы, имеющие отношение к гуморальным медиаторам воспаления

Все компоненты альтернативного пути и ранние компоненты классического пути комплемента Прокоагулянтный фактор Свертывающий фактор

Интерлейкин-1

Первоначально интерлейкин-1 был охарактеризован как секреторный продукт мононуклеарных фагоцитов с молекулярной массой 18 000 дальтон, который опосредует ряд важных биологических эффектов этих клеток (см. главу 15). Как показывают исследования in vitro, эти эффекты включают следующее: стимуляцию пролиферации тимоцитов; образование интерлейкина-2 лимфоцитами; пролиферацию фибробластов; синтез хондроцитами и синовиоцитами нейтральной протеиназы, а также простагландинов и протеиназы; синтез гепатоцитами белка острой фазы; хемотаксис лейкоцитов; резорбцию костей. In vivo интерлейкин-1 вызывает лихорадку, изменение уровней ионов металлов и повышение уровня белка острой фазы. Недавно были получены в чистом виде по крайней мере две формы человеческого интерлейкина-1 и идентифицированы два гена человека, которые кодируют молекулы, обладающие активностью интерлейкина-1.

Гидролитические ферменты


Гидролитические ферменты, секретируемые мононуклеарными фагоцитами в ответ на воспалительные стимулы (иммунные комплексы, лимфокины), возможно, играют важную роль в развитии повреждений при хроническом вос-

палении. Эти ферменты, включающие активатор плазминогена, эластазу и коллагеназу, вероятно, обусловливают деградацию и повреждение тканей, а также ускорение обмена соединительной ткани, что сопровождается удалением продуктов распада и заживлением зон воспаления.

Факторы клеточной пролиферации и дифференциации

Характерной чертой многих хронических воспалений является местная пролиферация тканей, связанная с очагами активированных лимфоидных клеток. Ярким примером такого процесса может служить пролиферирующий синовиальный паннус сустава при ревматоидном артрите. В подобных условиях растворимые факторы, включая интерлейкин-1 и ростовой фактор тромбоцитов, которые секрети- руются мононуклеарными фагоцитами, могут стимулировать пролиферацию как лимфоцитов (с последующим синтезом антител и лим- фокинов), так и фибробластов, впоследствии синтезирующих коллагеназу и компоненты соединительной ткани. Этому предположению соответствует наблюдение отмены гиперсенси- тивности замедленного типа веществами, избирательно токсичными для мононуклеарных фагоцитов, а также нарушения заживления ран у экспериментальных животных после введения антимакрофагальной сыворотки.

Прокоагулянты

При реакциях повышенной чувствительности замедленного типа и отторжении аллогенной ткани, а также при экспериментальном аллергическом энцефаломиелите и реакции Шварцмана часто наблюдается отложение фибрина. В недавних исследованиях показано, что образование фибрина в зонах поражения может инициироваться прокоагулянтной активностью, исходящей из мононуклеарных фагоцитов. Выделение такого прокоагулянтного фактора, по-видимому, зависит от сигнала Т-лимфоцй- тов. Мононуклеарные фагоциты могут также инициировать удаление фибрина, секретируя активатор плазминогена. Важное значение имеет тот факт, что прокоагулянтная активность является продуктом моноцитов, вновь прибывших к месту воспаления, тогда как активатор плазминогена синтезируется более дифференцированными макрофагами, которые вызревают под действием лимфокинов или других стимулов, присутствующих в очаге воспаления.

Продукты окисления арахидоновои кислоты

В фосфолипидах мононуклеарных фагоцитов содержится необычно большое количество арахидоновои кислоты, и, как выяснилось в последние годы, эти клетки обладают значительным потенциалом синтеза простагланди-нов и лейкотриенов. Их синтез усиливается при экспозиции макрофагов с воспалительными стимулами, включая иммунные комплексы. На основании этого открытия и уже известных эффектов экзогенных простагландинов (особенно серии Е), подавляющих различные эф- фекторные функции лимфоцитов, было выдвинуто предположение относительно способности простагландинов мононуклеарных фагоцитов действовать в качестве ингибиторных модуляторов функции лимфоцитов in vivo. Это предположение подтвердили клинические исследования, где было показано повышение иммунного ответа при использовании ингибиторов синтеза простагландинов (индомета- цин). Предполагается, что мононуклеарные фагоциты вносят свой вклад в опосредование повышенной чувствительности немедленного типа, поскольку они синтезируют лейкотриены В4 и С4. Известно, что лейкотриены входят в состав медленно реагирующей субстанции анафилаксии (см. главу 10).

Метаболиты кислорода

Во время метаболического взрыва, сопровождающего взаимодействие макрофагов с фагоцитируемыми и другими стимулами, образуется ряд потенциально токсичных метаболитов кислорода. Обладая исключительно короткой жизнью, они могут опосредовать некоторые важные функции, в том числе клеточно-зависимую цитотоксичность по отношению к опухолевым клеткам и инфекционным агентам, инактивацию некоторых белков (ингибитор а-1- протеиназы) и образование хемотаксических стимулов при перекисном окислении ненасыщенных жирных кислот, в частности арахидоновои кислоты.

Комплемент

Белки системы комплемента содержат более 20 молекул (см. главу 12), которые активируются по принципу каскада после взаимодействия с иммунными комплексами или же непосредственно воспалительными стимулами. Продукты активации комплемента усиливают

функцию фагоцитов, стимулируя хемотаксис и фагоцитоз, а также выделение из них медиаторов. Большое функциональное значение имеет секреция многих компонентов комплемента моноцитами периферической крови человека.

Обнаруживают

Летки-предщ gкрасном костном мозге
[ ромоноциты То же

оноциты. В периферической крови г,

акрофаги (обладающие большой фаго-

(тарнои активностью): , ;

клетки Купфера В печени

альвеолярные макрофаги В легких

свободные и фиксированные макрофаги В лимфатических узлах, селезенке

плевральные и перитонеальные макрофаги В серозных полостях

остеокласты В костной ткани

клетки Микроглии В нервной ткани

В иммунной системе различают центральные и периферические органы, эти же органы выполняют кроветворную функцию. У мле­копитающих к центральным органам относят красный костный мозг, тимус, у птиц - фабрициеву сумку; к периферическим - лим­фатические узлы, селезенку, лимфоидные образования пищевари­тельного тракта и органов дыхания, кровь, лимфу, микрофагальную систему и систему мононуклеарных фагоцитов (макрофаги).

Красный костный мозг. В красном костном мозге непрерывно созревают эритроциты, лейкоциты, а также кровяные пластинки. Костный мозг появляется в мезенхиме на третьем месяце эмбрио­нального развития и начинает функционировать уже в самом ран­нем возрасте.

В составе красного костного мозга различают основную миело-идную ткань, остов, жировую ткань, кровеносные сосуды, нервы. Кроветворная ткань заполняет ячейки губчатого вещества костей, их костномозговые участки и крупные гаверсовы каналы. С возра­стом красный костный мозг перерождается и замещается желтым костным мозгом, который заполняет костномозговые участки трубчатых костей и часть ячеек губчатого костного вещества. До конца жизни в желтом костном мозге в трубчатых костях остаются островки кроветворных клеток. Красный костный мозг как актив­ный кроветворный орган сохраняется в плоских и коротких кос­тях туловища (грудина, позвонки, черепные кости) и лишь отчас­ти в эпифизах трубчатых костей. По мере старения появляется слизистый (желатинозный) костный мозг вследствие перерожде­ния и атрофии жировой ткани костного мозга. Объем костного мозга приблизительно равен объему печени.

Тимус. Центральный орган иммунной системы (зобная, или ви-лочковая, железа). Хорошо развит у зародышей и молодняка в первые годы жизни, с возрастом редуцируется, но не полностью, начиная с шейной части, а грудные доли остаются. В развитом со­стоянии различают непарную грудную долю, лежащую впереди сердца, и парную шейную долю, которая находится по бокам тра­хеи и может достигать гортани. Тимус - железа внутренней секре­ции, так как ее гормон тимозин влияет на дифференциацию лим­фоцитов.

Селезенка. Орган с многообразной функцией. До рождения животного в ней образуются эритроциты и лейкоциты, через селе­зеночную вену они поступают в воротную вену и далее в каудаль-ную полую вену.



Селезенка располагается слева от желудка. Форма ее разнооб­разная, чаще удлиненная (рис. 83). С поверхности орган покрыт серозной оболочкой, срастающейся с капсулой и переходящей на большую кривизну желудка, где формирует желудочно-селезеноч-ную связку. На висцеральной поверхности органа в области при­крепления связки имеются ворота селезенки. От капсулы отходят трабекулы (перекладины), образующие остов селезенки в виде

Рис. 83. Селезенка:

крупного рогатого скота; б ди; в - свиньи

губки, заполненной паренхи­мой - белой и красной селезе­ночной пульпой (рис. 84).

Белая пульпа построена из лимфоидной ткани, собранной вокруг артерий в виде шаров, называемых лимфатическими фолликулами селезенки или селезеночными тельцами. Ко­личество фолликулов у разных животных различное: у крупного рогатого скота их много и отчет­ливо отграничены от красной пульпы; у свиней и лошадей фол­ликулов меньше.

В фолликулах различают нечетко разграниченные четыре зоны: периартериальную; центр размножения (светлый центр); мантий­ную и краевую, или маргинальную. Периартериальная зона зани­мает небольшой участок фолликула около артерии и образована главным образом из Т-лимфоцитов, попадающих сюда через ка­пилляры от артерий лимфатического узла, и интердигитирующих клеток. Полагают, что эти клетки адсорбируют антигены, посту­пающие сюда с кровью, и передают Т-лимфоцитам информацию о состоянии микроокружения; в дальнейшем они мигрируют в си­нусы краевой зоны через капилляры. Периартериальная зона яв­ляется аналогом тимусзависимой зоны лимфатических узлов.

Центр размножения, или светлый центр, отражает функцио­нальное состояние фолликула и может значительно изменяться при инфекциях и интоксикациях. По строению и функциональ­ному назначению соответствует фолликулам лимфатического узла и является тимуснезависимым участком. Состоит из ретикуляр­ных клеток и скопления фагоцитов. На границе с мантийной зо­ной обнаруживаются плазмоциты.

содержит плазмоциты и макрофаги. Прилегая плотно друг к другу, клетки образуют как бы корону, расслоенную циркулярно направ­ленными ретикулярными волокнами.

Краевая, или маргинальная, зона представляет собой переход­ную область между белой и красной пульпой, состоит преимуще­ственно из Т- и В-лимфоцитов и единичных макрофагов, окруже­на краевыми, или маргинальными, синусоидными сосудами с ще-левидными порами в стенке.

Красная пульпа селезенки состоит из ретикулярной ткани с расположенными в ней клеточными элементами крови, придаю­щими ей красный цвет, и многочисленными кровеносными сосу­дами главным образом синусоидного типа. Количество венозных синусов в селезенке животных разных видов неодинаково. Их много у кроликов, собак, морских свинок, меньше у кошек, круп­ного и мелкого рогатого скота. Часть красной пульпы, располо­женная между синусами, называется селезеночными, или пуль-парными, тяжами.

В красной пульпе имеются макрофаги - спленоциты, которые осуществляют фагоцитоз поврежденных эритроцитов. В результа­те расщепления гемоглобина поглощенных макрофагами эритро­цитов образуются и выделяются в кровь билирубин и содержащий железо трансферрин. Билирубин переносится в печень, где войдет в состав желчи. Трансферрин из кровяного русла захватывается макрофагами костного мозга, которые снабжают железом вновь развивающиеся эритроциты. В селезенке депонируется кровь (до 16 %) и скапливаются тромбоциты.

Особенностикровообращения селезенки: че­рез ворота селезенки входит селезеночная артерия, которая раз­ветвляется на трабекулярные артерии, переходящие в пульпарные артерии, которые разветвляются в красной пульпе. Артерия, про­ходящая через белую пульпу, называется центральной. Она отдает несколько капилляров и, выйдя в красную пульпу, разветвляется в виде кисточки на кисточковые артериолы, на конце которых име­ется утолщение - артериальная гильза, четко выраженная у сви­ней. Гильзы выполняют функцию сфинктеров, перекрывающих поток крови, так ка*в эндотелии эллипсоидных, или гильзовых, артериол обнаружены сократительные филаменты. Далее следуют короткие артериальные капилляры, большая часть которых впада­ет в венозные синусы (закрытое кровообращение), однако некото­рые могут непосредственно открываться в ретикулярную ткань красной пульпы (открытое кровообращение), а затем в венозные капилляры. Из них кровь доставляется в трабекулярные вены, а потом в селезеночную вену.

Синусы являются началом венозной системы селезенки. Их диаметр колеблется от 12 до 40 мкм в зависимости от кровообра­щения. В стенке синусов в месте их перехода в вены имеются по­добия мышечных сфинктеров. При открытых артериальных и ве-

нозных сфинктерах кровь свободно проходит по синусам в вены. Сокращение венозного сфинктера приводит к накоплению крови в синусе. Плазма крови проникает сквозь стенку синуса, что спо­собствует концентрации в нем клеточных элементов. В случае за­крытия венозного и артериального сфинктеров кровь депонирует­ся в селезенке. При растяжении синусов между эндотелиальными клетками образуются щели, через которые кровь может проходить в ретикулярную ткань. Расслабление артериального и венозного сфинктеров, а также сокращение гладких мышечных клеток кап­сулы и трабекул ведут к опорожнению синусов и выходу крови в венозное русло. Отток венозной крови из пульпы селезенки со­вершается по системе вен. Селезеночная вена выходит через воро­та селезенки и впадает в воротную вену.

Лимфатические узлы (нёбные, язычные, глоточные, тубарные, околонадгортанные у свиней), миндалины, пейеровы бляшки сли­зистой оболочки тонкого кишечника и одиночные солитарные фолликулы толстого отдела кишечника производят лимфоциты и макрофаги, выполняют защитную и иммунологическую функцию.

Печень выполняет кроветворную функцию в эмбриональный период до тех пор, пока не развился красный костный мозг (в связи с формированием костного скелета), что происходит неза­долго до рождения животного.

Контрольные вопросы и задания ,

" 1. Какие органы относятся к системе кровообращения? ■}

2. Расскажите о строении и цикле работы сердца. f

3.Каким образом кровь движется по большому кругу кровообращения?

4.Как устроен малый круг кровообращения? ,.".

5.Какие форменные элементы крови вы знаете? Что такое плазма? »

6.Охарактеризуйте схему процесса свертывания крови.

7.Как используют кровь в промышленности? i

8.Дайте характеристику артериям, капиллярам и венам.

9.В чем заключаются общие закономерности хода и ветвления кровеносных сосудов?

10.Какие артериальные магистрали имеются на голове, туловище, грудной и тазовой конечностях, каковы их основные ветви?

11.Как формируется лимфатическая система, что такое лимфа?

12.Какое строение имеют лимфатические сосуды и лимфатические узлы?

13.Какие основные лимфатические узлы и лимфатические протоки имеются у животных?

14.Какие органы относят к органам кроветворения, где они расположены, как устроены и в чем состоят их функции?

15.Какие органы сосудистой системы выполняют защитную иммунологичес­кую функцию?

Загрузка...