docgid.ru

Фабрика жизни: Стволовые клетки. Выращивание органов

Прежде чем мы перейдем к непосредственному рассказу о выращивание органов, я хотел бы посвятить вас, что такое стволовые клетки.

Что такое стволовые клетки?

Стволовые клетки - прародительницы всех без исключения типов клеток в организме. Они способны к самообновлению и, что самое главное, в процессе деления образуют специализированные клетки различных тканей. Стволовые клетки обновляют и замещают клетки, утраченные в результате каких-либо повреждений во всех органах и тканях. Они призваны восстанавливать организм человека с момента его рождения.

С возрастом количество стволовых клеток в организме катастрофически снижается. У новорожденного 1 стволовая клетка встречается на 10 тысяч, к 20-25 годам – 1 на 100 тысяч, к 30 – 1 на 300 тысяч. К 50-летнему возрасту в организме уже остается всего 1 стволовая клетка на 500 тысяч. Истощение запаса стволовых клеток вследствие старения или тяжёлых заболеваний лишает организм возможностей самовосстановления. Из-за этого жизнедеятельность тех или иных органов становится менее эффективной.

Какие органы и ткани ученые смогли вырастить с помощью стволовых клеток?

Привожу только самые известные примеры научных достижений.

в 2004 году японские ученые впервые в мире вырастили структурно полноценные капиллярные кровеносные сосуды из стволовых клеток

Японские ученые первыми в мире вырастили структурно полноценные капиллярные кровеносные сосуды из стволовых клеток человеческого эмбриона. Об этом 26 марта 2004 года сообщила японская газета Yomiuri.

Как отмечает издание, группа исследователей из медицинской школы Киотского университета под руководством профессора Кадзува Накао использовала капиллярные клетки, генерированные из стволовых клеток, импортированных в 2002 году из Австралии. До сих пор исследователям удавалось регенерировать лишь нервные клетки и мышечную ткань, что недостаточно для "производства" цельного органа. Информация с сайта NewsRu.com

В 2005 году американские ученые впервые вырастили полноценные клетки головного мозга

Ученые из Флоридского университета (США) первыми в мире вырастили полностью сформированные и приживающиеся клетки головного мозга. Как сообщил руководитель проекта Бьорн Шеффлер, вырастить клетки удалось путем «копирования» процесса регенерации клеток головного мозга. Теперь ученые надеются выращивать клетки для трансплантации, что может помочь в лечении болезней Альцгеймера и Паркинсона.Шеффлер отметил, что ранее ученым удавалось выращивать нейроны из стволовых клеток, однако именно во Флоридском университете удалось получить полноценные клетки и изучить процесс их роста от начала до конца. Информация с сайта Газета.ру по материалам Independent.

В 2005 году ученым удалось воспроизвести нервную стволовую клетку

Итальянско-британская группа ученых из эдинбургского и миланского университетов на основе неспециализированных эмбриональных стволовых нервных клеток научилась создавать in vitro различные типы клеток нервной системы.

Ученые применили уже разработанные методы управления эмбриональными стволовыми клетками к полученным ими более специализированным нервным стволовым клеткам. Результаты, которые были достигнуты на клетках мышей, были воспроизведены и на человеческих стволовых клетках. В интервью, данном агентству BBC, Стивен Поллард из Эдинбургского университета пояснил, что разработка его коллег поможет воссоздать болезнь Паркинсона или болезнь Альцгеймера «в пробирке». Это позволит лучше понять механизм их возникновения и развития, а также обеспечит фармакологов мини-полигоном для поиска подходящих средств лечения. Соответствующие переговоры с фармакологическими компаниями уже ведутся.

В 2006 году швейцарсцкие ученые вырастили из стволовых клеток клапаны человеческого сердца

Осенью 2006 года доктор Саймон Хоерстрап и его коллеги из университета Цюриха впервые вырастили человеческие сердечные клапаны, воспользовавшись стволовыми клетками, взятыми из околоплодной жидкости.

Это достижение может сделать реальным выращивание клапанов сердца специально для ещё не родившегося ребёнка, если у него, ещё в утробе матери, обнаружатся дефекты сердца. А вскоре после рождения младенцу можно будет пересадить новые клапаны.

Вслед за выращиванием в лаборатории из клеток человека мочевого пузыря и кровеносных сосудов - это следующий шаг на пути создания «собственных» органов для конкретного пациента, способных устранить потребность в донорских органах или искусственных механизмах.

В 2006 году британские ученые вырастили из стволовых клеток ткани печени

Осенью 2006 года британские ученые из университета Ньюкасла объявили о том, что первыми в мире вырастили в лабораторных условиях искусственную печень из стволовых клеток, взятых из пуповинной крови. Техника, которая использовалась при создании «минипечени», размером в 2 см, будет разрабатываться дальше, чтобы создать нормально функционирующую печень стандартного размера.

В 2006 году в США впервые выращен сложный человеческий орган - мочевой пузырь

Американские ученые смогли вырастить в лабораторных условиях полноценный мочевой пузырь. В качестве материала были использованы клетки самих пациентов, нуждающихся в пересадке.

"Путем биопсии можно взять кусочек ткани, а спустя два месяца ее количество умножится в несколько раз, - объясняет директор института регенеративной медицины Энтони Атала. - Исходный материал и особые вещества мы кладем в специальную форму, оставляем в специальном лабораторном инкубаторе и через несколько недель получаем готовый орган, который уже можно пересаживать". Первую трансплантацию провели еще в конце 90-х. Операцию по пересадке мочевого пузыря сделали семи пациентам. Результаты оправдали ожидания ученых, и сейчас специалисты разрабатывают методы создания еще 20-ти органов - среди них сердце, печень, кровеносные сосуды и поджелудочная железа.

В 2007 году стволовые клетки помогли британским ученым создать часть сердца человека

Весной 2007 года группе британских ученых, состоящая из физиков, биологов, инженеров, фармакологов, цитологов и опытных клиницистов, под руководством профессора кардиохирургии Магди Якуба впервые в истории удалось воссоздать одну из разновидностей тканей человеческого сердца при помощи стволовых клеток костного мозга. Эта ткань выполняет роль сердечных клапанов. Если дальнейшие испытания пройдут успешно, разработанную методику можно будет применять для выращивания из стволовых клеток полноценного сердца для трансплантации больным.

В 2007 году японские ученые вырастили из стволовых клеток роговицу глаза

Весной 2007 года на симпозиуме по вопросам репродуктивной медицины в городе Иокогама были обнародованы результаты уникального эксперимента специалистов Токийского университета. Исследователи использовали стволовую клетку, взятую из края роговицы. Такие клетки способны развиваться в различные ткани, выполняя в организме восстановительные функции. Выделенная клетка была помещена в питательную среду. Спустя неделю она развилась в группу клеток, а на четвертой неделе преобразовалась в роговицу диаметром 2 см. Таким же образом был получен тонкий защитный слой (конъюнктива), покрывающий роговицу снаружи.

Ученые подчеркивают, что впервые полноценная ткань человеческого организма выращена из единственной клетки. Пересадка органов, полученных новым способом, исключает риск переноса инфекций. Японские ученые намерены приступить к клиническим испытаниям сразу после того, как удостоверяться в безопасности новой технологии.

В 2007 году японские ученые вырастили зуб из стволовых клеток

Японским ученым удалось вырастить зуб из одной клетки. Его вырастили в лабораторных условиях и пересадили мыши. Инъекция клеточного материала была произведена в коллагеновый каркас. После выращивания оказалось, что зуб принял зрелую форму, которая состояла из полноценных частей, таких как дентин, пульпа, сосуды, периодонтальные ткани, и эмаль. По словам исследователей, зуб был идентичен естественному. После трансплантации зуба лабораторной мыши он прижился и функционировал полностью нормально. Данный метод позволит выращивать целые органы из одной-двух клеток, говорят исследователи.

В 2008 году американские ученые смогли вырастить новое сердце на каркасе от старого

Дорис Тейлор (Doris Taylor) и её коллеги из университета Миннесоты (University of Minnesota) создали живое сердце крысы, используя необычную технику. Ученые взяли взрослое сердце крысы и поместили его в специальный раствор, который удалил из сердца все клетки мышечной сердечной ткани, оставив другие ткани нетронутыми. Этот очищенный каркас был засеян клетками сердечной мышцы, взятыми у новорождённой крысы, и помещён в среду, имитирующую условия в организме.

Всего через четыре дня клетки размножились настолько, что начались сокращения новой ткани, а через восемь дней реконструированное сердце уже могло качать кровь, хотя и всего на 2-процентном уровне мощности (считая от здорового взрослого сердца). Таким образом, учёные получили работоспособный орган из клеток второго животного. Этим путём в будущем можно было бы обрабатывать сердца, взятые для пересадки, для исключения отторжения органа. "Так вы можете сделать любой орган: почку, печень, лёгкое, поджелудочную железу", - говорит Тейлор. Донорский каркас, определяющий форму и структуру органа, будет наполняться родными для больного специализированными клетками, сделанными из стволовых.

Любопытно, что в случае с сердцем в качестве основы можно попробовать взять сердце свиньи, анатомически близкое к человеческому. Удалив только мышечную ткань, прочие ткани такого органа можно будет уже дополнить культивированными человеческими клетками сердечной мышцы, получив гибридный орган, который, по идее, должен хорошо прижиться. А новые клетки будут сразу хорошо снабжаться кислородом - благодаря старым сосудам и капиллярам, оставшимся от сердца донора.

Я привел наиболее интересные факты, если вас заинтересовала эта информация то вы можете углубиться в нее подробней, информация была взята с сайта

В мировой науке супер-сенсация: революционный прорыв совершил японский профессор Есинори Кувабара — он создал искусственную матку и сумел вырастить в ней козленка. Теперь уже нет сомнений: дело за гомункулом, которым ученые бредили с XIII века.

Мир неумолимо приближается к рубежу, за которым само воспроизводство человека в искусственных условиях станет просто технологией и бизнесом. Какие еще горизонты открывает конвейер жизни?




У этой козы еще нет имени, более того, формально этого животного даже еще не существует, но тем не менее она уже стала самой настоящей научной сенсацией, а фотографии этой красавицы на прошлой неделе обошли весь мир. Снимки фантастические: профессор Есинори Кувабара из университета Juntendo в Токио склонился над полупрозрачным белым мешком, в котором и покоится коза, опутанная с головы и до копыт гибкими трубочками и проводами. Это первая в мире искусственная матка, в которой, как утверждают японцы, была выращена первая в мире искусственная коза, которая должна вот-вот родиться на свет.

Известие вызвало настоящую бурю в научном мире. Еще бы! 30 лет назад, когда ученые изобрели процедуру экстракорпорального оплодотворения (ЭКО) и провели первые опыты по зачатию "детей из пробирки", мир вдруг с ужасом узнал, что мужчины больше не нужны для продолжения рода. Именно тогда появились фантастические фильмы в стиле "Новых амазонок", предрекавшие скорую и безжалостную победу феминизма во всем мире. Но прогресс не стоит на месте. И теперь выясняется, что для продолжения человеческого рода не нужны и женщины. Строго говоря, для воспроизводства homo sapiens скоро уже будет не нужен сам человек.

Борьба за дни и граммы

Об изобретении искусственной матки ученые серьезно задумались еще полвека назад, когда перед медициной встала задача поддержания жизни недоношенных детей. Вообще, кувезы для недоношенных, появившиеся в роддомах в конце 70-х годов прошлого века, и есть первые модели искусственных маток — эти пластиковые контейнеры, снабженные водяными матрасами, были призваны имитировать условия пребывания плода в амниотической жидкости в теле матери. Для этого в кувезах поддерживается постоянная температура и влажность воздуха (около 60 процентов), также кувезы снабжены системой искусственной вентиляции легких и аппаратами искусственного питания как через кровь, так и через назогастральный зонд.

В 1979 году врачи сделали открытие, что искусственная вентиляция легких далеко не всегда может спасти жизнь новорожденного. Дело в том, что легкие из всех органов развиваются последними, и только на 22-24-й неделе беременности в организме младенцев появляется сурфактант — специальное вещество, противодействующее спадению альвеол в легких (при помощи этих крошечных пузырьков и совершается газообмен, когда кислород воздуха переходит в кровь, а углекислый газ — из крови в воздух). И если нет сурфактанта, то проводить вентиляцию легких не только бессмысленно, но и смертельно опасно.

Поэтому для спасения малышей нужно создавать не только специальную газовую среду, но и синтезировать многие вещества, которые плод получает от матери. Так медики научились моделировать в лабораторных условиях многие процессы, происходящие внутри человека, а "порог выживаемости" младенцев был сдвинут с 24 до 20 недель, то есть медики научились выхаживать 500-граммовый плод, по каким-то причинам отторгнутый материнским организмом. И каждый раз, когда этот "порог" удается сдвинуть хотя бы на несколько граммов, это событие равноценно взятию новой горной вершины — такова цена борьбы за жизнь. Кстати, не так давно в Научном центре акушерства, гинекологии и перинатологии имени академика В.И. Кулакова был поставлен новый мировой рекорд: врачи сумели сохранить жизнь недоношенной девочке весом всего в 450 граммов! То есть, чтобы сдвинуть "порог выживаемости" еще на 50 граммов, понадобилось свыше трех десятилетий напряженных научных исследований.

В конце 70-х произошло еще одно знаковое событие: в Лондоне родилась Луиза Джой Браун, прозванная журналистами Super-Baby — это был первый ребенок, зачатый методом ЭКО. Ученые получили возможность моделировать in vitro процессы внутриутробного развития плода как с самого начала возникновения жизни на клеточном уровне, так и в финальных стадиях. Возникла логичная мысль объединить эти два процесса в единое целое и создать некий аппарат для выращивания людей. Правда, тогда это казалось чистой воды фантастикой — в мире не было вещества, способного заменить плаценту. В итоге медики, занявшиеся изучением свойств этой чудо-ткани, открыли стволовые клетки и основали новую науку — стволовую медицину, благодаря которой и стал возможен новый научный прорыв.

Гонка за маткой

Профессор Есинори Кувабара, заведующий кафедрой акушерства и гинекологии университета Juntendo, занялся проблемой создания искусственной матки еще в 1995 году. Тогда он изобрел "мультиматку" — крохотное устройство, всего 2 мм в диаметре, в которое могут поместиться до 20 яйцеклеток подопытных мышей. Все их можно одновременно оплодотворить, и они будут развиваться до того момента, пока не придет черед провести имплантацию зародыша в матку суррогатной матери. Правда, в те годы из-за нарушений температурного режима и кислотности окружающей среды эмбрионы часто гибли, и тогда профессор Кувабара задумался, что неиспользованные яйцеклетки можно не замораживать, а дать возможность им развиваться. Вскоре он разработал новую технологию поддержания жизни зародышей. Профессор Кувабара извлекал матки у коз и помещал их в стерильные пластиковые емкости, заполненные искусственной амниотической жидкостью (околоплодными водами), в которых постоянно поддерживалась температура тела. В эти матки он помещал зародыши животных, подавая в емкости питательный "бульон".

"Мы обеспечиваем зародышам комфортные условия, имитируя естественную среду, в которой они существуют в организме животного,— цитировал слова Есинори Кувабары авторитетный журнал New Scientist.— Все эксперименты с искусственной маткой, проведенные на козах, показали, что аппарат работает более эффективно, чем обычное искусственное оплодотворение ЭКО, и больше половины эмбрионов в нем вырастают здоровыми".

Правда, довести эксперименты до логического завершения — рождения здорового животного — ученым так и не удалось: все зародыши гибли на самых различных стадиях. Тем не менее за годы бесчисленных экспериментов японцы смогли до совершенства отточить приемы поддержания жизни в искусственных матках. Также были изобретены и полимеры, способные заменить натуральные ткани, но пока об этих искусственных материалах японцы предпочитают не распространяться, справедливо опасаясь, что любое неосторожное слово будет тут же услышано конкурентами.

Действительно, сегодня в мире среди биотехнологических лабораторий развернулась настоящая гонка за право создания действующей технологии искусственного выращивания людей. Свои проекты искусственной матки есть и у американцев, и у корейцев, и у европейцев. Самый интересный проект разработали ученые из Центра репродуктивной медицины и искусственного осеменения Корнельского университета, которым удалось вырастить из стволовых клеток, взятых у женщин, некое подобие женского лона. Были проведены и эксперименты по искусственному оплодотворению, и, как заверила журналистов руководитель исследовательской группы доктор Хан-Чин Лиу, эмбрионы успешно прижились к стенкам лабораторных маток. Но вскоре эксперименты были прекращены — по ряду морально-этических соображений. Но факт остается фактом: даже если эксперимент Есинори Кувабары по рождению искусственной козы и завершится неудачей (а такую возможность осторожный профессор Кувабара, как он объяснил на сайте университета, никогда не исключает), то объединенными усилиями ученых мира искусственная матка так или иначе появится, причем в течение ближайших двух-трех лет.

Обидно, правда, что России даже и близко нет в списках участников этой новой биотехнологической революции. Обидно вдвойне — ведь в свое время советские ученые из Института акушерства и гинекологии АМН СССР сделали немало фундаментальных открытий в области антенатальной терапии (то есть лечения плода до его рождения). Можно еще вспомнить и о работах "чудика" Олега Белокурова из Ленинградского института акушерства и гинекологии им. Д.О. Отта, который еще в 1970-е годы пытался запатентовать свою "искусственную женщину" — так назывался прибор, который, как и кувезы в роддомах, при помощи света и нагрева воды имитировал внутриутробную среду, только не для новорожденного, а для некоего питательного "бульона" и оплодотворенной яйцеклетки. Изобретатель в итоге был подвергнут настоящей обструкции.

Конечно, у академиков были веские причины — вряд ли эта "женщина" могла бы принести полноценное потомство, но сам факт ее появления был свидетельством бурления исследовательской работы в научных лабораториях страны. Сегодняшняя же российская наука низведена до того состояния, что мы можем только осваивать чужие разработки, да и то не самые передовые. Тем не менее новая биотехнологическая революция неизбежно затронет и Россию, как бы ни хотелось обратного всем поклонникам патриархального уклада, традиционных консервативных "ценностей" и духовных "скреп", которые шельмуют даже идею о возможности суррогатного материнства. Раздаются даже призывы отказывать суррогатным детям в возможности посещать христианские храмы. Но что будет с нашими консерваторами, когда в мире появятся настоящие репликанты — люди, вообще не имеющие биологических матерей?

Готова ли Россия к таким переменам?

Фотография из лаборатории профессора Кувабары: так выглядит плод искусственной козы в искусственной матке


Недетские вопросы

Безусловно, заверили корреспондента "Огонька" в Научном центре акушерства, гинекологии и перинатологии имени академика В.И. Кулакова, менее всего медики, работающие в области биотехнологий, задумываются о создании нового — "искусственного" — человечества. Пока что на повестке дня стоят более приземленные задачи. Например, новые технологии позволят иметь собственных детей всем женщинам, страдающим дефектом матки или ее недоразвитием.

— Новые технологии позволят решить репродуктивные проблемы у многих молодых пар,— говорит профессор Владимир Бахарев.— Частота врожденных наследственных патологий у нас настолько высокая, что именно генетические факторы сегодня занимают второе место среди всех факторов младенческой смертности. Сегодня до 5 процентов новорожденных страдают различными наследственными патологиями, и поэтому мы настаиваем на том, чтобы молодые пары перед зачатием ребенка проходили бы генетическую экспертизу.

Технология выращивания плода в искусственной матке поможет решить все эти проблемы. При этом никто из молодых родителей даже не задумывается о технологиях генетического усовершенствования своих отпрысков — были бы здоровы, и слава богу. Впрочем, даже стопроцентно здоровые гены не гарантируют полного здоровья малышу. Бывает и так, что один из двух братьев-близнецов начинает буквально поглощать другого, забирая у него все жизненные силы, что в дальнейшем чревато проблемами уже для обоих. Спасти близнецов от столь сильной братской "любви" и поможет искусственная матка.

Другая область применения новых биотехнологий — фетальная хирургия. Это операции на зародышах человека, которые хирурги — ради дородового излечения младенца от пороков сердца — проводят прямо в материнской утробе. Зачастую эти операции очень опасны для жизни не только младенца, но и матери. Теперь же риск можно значительно снизить, поместив малыша в искусственную утробу.

Мамонты и папонты

Конечно, новая биотехнологическая революция открывает перспективы не только перед медициной. Помнится, несколько лет назад директор Музея мамонта СВФУ Семен Григорьев из Якутии делился своими планами о возрождении этих доисторических животных. Требовалось всего ничего — найти живые клетки с ДНК мамонта, причем генокод мамонта был уже вычислен по останкам шерсти. И найти слониху подходящих размеров для вынашивания мамонтенка — все-таки древние мамонты были крупнее нынешних слонов. Правда, сетовал ученый, в этом случае это будет уже не чистокровный мамонт, а полукровка, "слономамонт". Но вот благодаря искусственной матке можно вырастить хоть мамонта, хоть древнего гигантского мастодонта.

Между прочим, возрождение мамонтоводства давно уже стало национальной идефикс якутских ученых. Только представьте себе, какие перспективы открываются перед сельским хозяйством России в случае успешного окончания эксперимента по возрождению мамонтов! Представьте себе стада этих гигантских животных, прекрасно адаптированных для жизни в суровой тундре, которые дают тонны сверхполезного продукта — сотни тысяч лет эволюции и нашего совместного бок о бок проживания с мамонтами привели к тому, что именно мясо мамонтов человеческий желудок усваивает лучше всего. Во всяком случае, так утверждают ученые, исследовавшие влияние мамонтятины на человеческий организм.

— Кроме того,— доказывали якутские ученые,— это наш с вами неоплатный человеческий долг! Ведь именно антропогенный фактор привел к полному истреблению мамонтов — проще говоря, первобытные охотники истребили всех этих животных. И теперь, когда мы вышли на новую ступень эволюции, мы должны вернуть к жизни этих удивительных животных.

Статья на конкурс «био/мол/текст»: Петр I мечтал «прорубить окно в Европу», а ученые нашего времени - окно в современную медицину. Сочетание «медицина + биотехнология» нашло свое отражение в тканевой инженерии - технологии, открывающей возможность восстановления утраченных органов без трансплантации. Методы и результаты тканевой инженерии поражают: это получение живых (а не искусственных!) органов и тканей; регенерация тканей; печать кровеносных сосудов на 3D-принтере; использование «тающих» в организме хирургических шовных нитей и многое другое.

В последние десятилетия стали отчетливо проявляться тревожные тенденции старения населения, роста количества заболеваний и инвалидизации людей трудоспособного возраста, что настоятельно требует освоения и внедрения в клиническую практику новых, более эффективных и доступных методов восстановительного лечения больных. На рисунке 1 показано, как изменяется структура заболеваний в настоящее время.

На сегодняшний день наука и техника предлагает несколько альтернативных путей восстановления или замены поврежденных или пораженных патологией тканей и органов:

  • трансплантацию;
  • имплантацию;
  • тканевую инженерию.

В рамках данной статьи мы подробнее остановимся на возможностях и перспективах тканевой инженерии.

Тканевая инженерия - современная инновационная технология

Принципиально новый подход - клеточная и тканевая инженерия - является последним достижением в области молекулярной и клеточной биологии. Этот подход открыл широкие перспективы для создания эффективных биомедицинских технологий, с помощью которых становится возможным восстановление поврежденных тканей и органов и лечение ряда тяжелых метаболических заболеваний человека.

Цель тканевой инженерии - конструирование и выращивание вне организма человека живых, функциональных тканей или органов для последующей трансплантации пациенту с целью замены или стимуляции регенерации поврежденных органа или ткани. Иными словами, на месте дефекта должна быть восстановлена трехмерная структура ткани.

Важно отметить, что обычные имплантаты из инертных материалов могут устранить только физические и механические недостатки поврежденных тканей, - в отличие от тканей, полученных методом инженерии, которые восстанавливают, в том числе, и биологические (метаболические) функции. То есть, происходит регенерация ткани, а не простое замещение ее синтетическим материалом.

Однако для развития и совершенствования методов реконструктивной медицины на базе тканевой инженерии необходимо освоение новых высокофункциональных материалов. Эти материалы, применяемые для создания биоимплантатов, должны придавать тканеинженерным конструкциям характеристики, присущие живым тканям:

  • способность к самовосстановлению;
  • способность поддерживать кровоснабжение;
  • способность изменять строение и свойства в ответ на факторы окружающей среды, включая механическую нагрузку.

Клетки и матриксы - основа основ для тканевой инженерии

Наиболее важным элементом успеха является наличие необходимого количества функционально активных клеток, способных дифференцироваться, поддерживать соответствующий фенотип и выполнять конкретные биологические функции. Источником клеток могут быть ткани организма и внутренние органы. Возможно использование соответствующих клеток от пациента, нуждающегося в реконструктивной терапии, или от близкого родственника (аутогенных клеток). Могут быть использованы клетки различного происхождения, в том числе первичные (рис. 2) и стволовые клетки (рис. 3).

Рисунок 2. Первичная клетка человека.

библиотека Федерации Киокушинкай г. Южноуральска

Первичные клетки - это зрелые клетки определенной ткани, которые могут быть взяты непосредственно от организма-донора (ex vivo ) хирургическим путем. Если первичные клетки взяты у определенного организма-донора, и впоследствии необходимо имплантировать эти клетки ему же в качестве реципиента, то вероятность отторжения имплантированной ткани исключается, поскольку присутствует максимально возможная иммунологическая совместимость первичных клеток и реципиента. Однако первичные клетки, как правило, не способны делиться - их потенциал к размножению и росту низок. При культивировании таких клеток in vitro (посредством тканевой инженерии) для некоторых типов клеток возможна дедифференцировка, то есть потеря специфических, индивидуальных свойств. Так, например, хондроциты, вводимые в культуру вне организма, часто продуцируют фиброзный, а не прозрачный хрящ.

Поскольку первичные клетки не способны делиться и могут потерять свои специфичные свойства, возникла необходимость альтернативных источников клеток для развития технологий клеточной инженерии. Таковой альтернативой стали стволовые клетки.

Для направления организации, поддержания роста и дифференцировки клеток в процессе реконструкции поврежденной ткани необходим специальный носитель клеток - матрикс , представляющий из себя трехмерную сеть, похожую на губку или пемзу (рис. 4). Для их создания применяют биологически инертные синтетические материалы, материалы на основе природных полимеров (хитозан, альгинат, коллаген) и биокомпозиты. Так, например, эквиваленты костной ткани получают путем направленной дифференцировки стволовых клеток костного мозга, пуповинной крови или жировой ткани в остеобласты, которые затем наносят на различные материалы, поддерживающие их деление (например, донорскую кость, коллагеновые матрицы и др.).

«Фирменная» стратегия тканевой инженерии

На сегодняшний день одна из стратегий тканевой инженерии такова:

  1. Отбор и культивирование собственных или донорских стволовых клеток.
  2. Разработка специального носителя для клеток (матрицы) на основе биосовместимых материалов.
  3. Нанесение культуры клеток на матрицу и размножение клеток в биореакторе со специальными условиями культивирования.
  4. Непосредственное внедрение тканеинженерной конструкции в область пораженного органа или предварительное размещение в области, хорошо снабжаемой кровью, для дозревания и формирования микроциркуляции внутри конструкции (префабрикация).

Матриксы через некоторое время после имплантации в организм хозяина полностью исчезают (в зависимости от скорости роста ткани), а в месте дефекта останется только новая ткань. Также возможно внедрение матрикса с уже частично сформированной новой тканью («биокомпозит»). Безусловно, после имплантации тканеинженерная конструкция должна сохранить свои структуру и функции в течение периода времени, достаточного для восстановления нормально функционирующей ткани в месте дефекта, и интегрироваться с окружающими тканями. Но, к сожалению, идеальные матриксы, удовлетворяющие всем необходимым условиям, пока не созданы.

Кровеносные сосуды из принтера

Перспективные тканеинженерные технологии открыли возможность лабораторного создания живых тканей и органов, но перед созданием сложных органов наука пока бессильна. Однако сравнительно недавно ученые под руководством доктора Гунтера Товара (Gunter Tovar ) из Общества Фраунгофера в Германии сделали огромнейший прорыв в сфере тканевой инженерии - они разработали технологию создания кровеносных сосудов. А ведь казалось, что капиллярные структуры создать искусственно невозможно, поскольку они должны быть гибкими, эластичными, малой формы и при этом взаимодействовать с естественными тканями. Как ни странно, но на помощь пришли производственные технологии - метод быстрого прототипирования (другими словами, 3D-печать). Подразумевается, что сложная трехмерная модель (в нашем случае кровеносный сосуд) печатается на трехмерном струйном принтере с использованием специальных «чернил» (рис. 5).

Принтер наносит материал послойно, и в определенных местах слои соединяются химически. Однако заметим, что для мельчайших капилляров трехмерные принтеры пока недостаточно точны. В связи с этим был применен метод многофотонной полимеризации, используемый в полимерной промышленности. Короткие интенсивные лазерные импульсы, обрабатывающие материал, так сильно возбуждают молекулы, что они взаимодействуют друг с другом, соединяясь в длинные цепочки. Таким образом, материал полимеризуется и становится твердым, но эластичным, как естественные материалы. Эти реакции настолько управляемы, что с их помощью можно создавать мельчайшие структуры по трехмерному «чертежу».

А для того, чтобы созданные кровеносные сосуды могли состыковаться с клетками организма, при изготовлении сосудов в них интегрируют модифицированные биологические структуры (например, гепарин) и «якорные» белки. На следующем этапе в системе созданных «трубочек» закрепляются клетки эндотелия (однослойный пласт плоских клеток, выстилающий внутреннюю поверхность кровеносных сосудов) - для того, чтобы компоненты крови не приклеивались к стенкам сосудистой системы, а свободно транспортировались по ней.

Однако прежде чем действительно можно будет имплантировать выращенные в лаборатории органы с собственными кровеносными сосудами, пройдет еще какое-то время.

Давай, Россия, давай вперед!

Без ложной скромности скажем, что и в России создана научная основа для практического применения биомедицинских материалов нового поколения. Интересную разработку предложила молодой учёный из Красноярска Екатерина Игоревна Шишацкая (рис. 6) - растворимый биосовместимый полимер биопластотан . Суть своей разработки она объясняет просто: «в настоящее время практические медики испытывают большой дефицит материалов, способных заменить сегменты человеческого организма. Нам удалось синтезировать уникальный материал, который в состоянии заменить элементы органов и тканей человека» . Разработка Екатерины Игоревны найдет применение, прежде всего, в хирургии. «Самое простое - это, например, шовные нити, сделанные из нашего полимера, которые растворяются после того, как зарастает рана , - говорит Шишацкая. - Также можно делать специальные вставки в сосуды - стенты. Это маленькие полые трубки, которые используют, чтобы расширить сосуд. Через некоторое время после операции сосуд восстанавливается, а полимерный заменитель растворяется» .

Первый опыт трансплантации тканеинженерной конструкции в клинике

Рисунок 7. Паоло Маккиарини , мастер-класс которого «Клеточные технологии для тканевой инженерии и выращивания органов» прошел в Москве в 2010 году.

Осенью 2008 года руководитель клиники Университета Барселоны (Испания) и Медицинской школы Ганновера (Германия) профессор Паоло Маккиарини (Paolo Macchiarini ; рис. 7) провел первую успешную операцию по трансплантации биоинженерного эквивалента трахеи пациентке со стенозом главного левого бронха на протяжении 3 см (рис. 8) .

В качестве матрикса будущего трансплантата был взят сегмент трупной трахеи длиной 7 см. Чтобы получить природную матрицу, по свойствам превосходящую все то, что можно сделать из полимерных трубок, трахею очистили от окружающей соединительной ткани, клеток донора и антигенов гистосовместимости. Очищение заключалось в 25 циклах девитализации с применением 4%-деоксихолата натрия и дезоксирибонуклеазы I (процесс занял 6 недель). После каждого цикла девитализации проводили гистологическое исследование ткани для выявления количества оставшихся ядросодержащих клеток, а также иммуногистохимическое исследование на наличие в ткани антигенов гистосовместимости HLA-ABC, HLA-DR, HLA-DP и HLA-DQ. Благодаря биореактору собственной разработки (рис. 9) ученые на поверхность медленно вращающегося отрезка трахеи равномерно нанесли шприцем суспензию клеток. Затем трансплантат, наполовину погруженный в среду для культивирования, вращался вокруг своей оси с целью попеременного контакта клеток со средой и воздухом.

Рисунок 9. Биореактор для создания тканеинженерного эквивалента трахеи. А - схема биореактора, вид с боку. Б - герметизация биореактора. В - биореактор с тканеинженерным эквивалентом трахеи in situ . Г - биореактор после удаления эквивалента трахеи. Д - вид эквивалента трахеи непосредственно перед операцией.

Эквивалент трахеи находился в биореакторе 96 часов; затем его трансплантировали пациентке. При операции был полностью удален главный левый бронх и участок трахеи, к которому он примыкал. В образовавшийся промежуток вшили трансплантат, а некоторое несоответствие диаметров просветов тканеинженерного эквивалента и бронха реципиента было преодолено благодаря эластичности донорской ткани.

По истечении десяти суток после операции пациентка была выписана из клиники без признаков дыхательной недостаточности и иммунной реакции отторжения трансплантата. По данным компьютерной томографии, с помощью которых была сделана виртуальная 3D реконструкция дыхательных путей, тканеинженерный эквивалент был практически неотличим от собственных бронхов пациентки (рис. 10).

;. DailyMail ;
  • «Первая успешная трансплантация тканеинженерной трахеи в клинике ». (2008). «Гены и клетки ».

  • В В Е Д Е Н И Е

    Выращивание органов и его альтернативы

    Многие болезни, в том числе, угрожающие жизни человека, связаны с нарушениями в деятельности конкретного органа (например, почечная недостаточность, сердечная недостаточность, сахарный диабет и др.). Далеко не во всех случаях эти нарушения можно исправить с помощью традиционных фармакологических или хирургических воздействий.

    Существует ряд альтернативных способов того, как восстановить функции органов пациентам в случае серьёзного поражения:

    1) Стимуляция процессов регенерации в организме. Кроме фармакологических воздействий в практике применяется процедура введения в организм стволовых клеток, которые имеют способность к превращению в полноценные функциональные клетки организма. Уже получены положительные результаты при лечении с помощью стволовых клеток самых разных заболеваний, в том числе, наиболее распространенных в обществе заболеваний, таких, как инфаркты, инсульты, нейродегенеративные заболевания, диабет и другие. Однако ясно, что такой способ лечения применим лишь для устранения относительно небольших повреждений органов.

    2) Восполнение функций органов с помощью аппаратов не биологического происхождения. Это могут быть крупных размеров аппараты, к которым больные подключаются на определенное время (например, аппараты для гемодиализа при почечной недостаточности). Также имеются модели носимых устройств, или устройств, имплантируемых внутрь организма (существуют варианты сделать это, оставив собственный орган пациента, однако, иногда его удаляют, и аппарат полностью берёт на себя его функции, как в случае использования искусственного сердца AbioCor ). Подобные приспособления в ряде случаев используют на время ожидания появления необходимого донорского органа. Пока не биологические аналоги значительно уступают по совершенству естественным органам.

    3) Использование донорских органов. Донорские органы, пересаживаемые от одного человека к другому, уже широко и порою успешно применяются в клинической практике. Однако это направление сталкивается с рядом проблем, таких, как серьёзный дефицит донорских органов, проблема реакции отторжения чужого органа иммунной системой и др. Уже были попытки пересаживать человеку органы животных (это называется ксенотрансплантацией), но пока успехи в применении такого способа скромные и в регулярную практику он не внедрён. Однако ведутся исследования с целью повысить эффективность ксенотрансплантации, например, посредством генетической модификации.

    4) Выращивание органов. Органы могут выращиваться искусственно как в теле человека, так и вне организма. В ряде случаев имеется возможность выращивать орган из клеток того человека, которому его собираются трансплантировать. Разработан ряд методов выращивания биологических органов, например, с помощью специальных приборов, работающих по принципу 3D принтера. К рассматриваемому направлению можно отнести предложение о возможности выращивания, для замены повреждённого тела человека с сохранившимся мозгом, самостоятельно развивающегося организма, клона - “растения” (с отключенной способностью мыслить).

    Среди перечисленных четырёх вариантов решения проблемы недостаточности функций органов именно их выращивание может быть наиболее естественным для организма способом восстановления при крупных повреждениях.

    В настоящем тексте приводится информация о существующих достижениях в выращивании биологических органов.

    Д О С Т И Ж Е Н И Я И П Е Р С П Е К Т И В Ы В В Ы Р А Щ И В А Н И И О Т Д Е Л Ь Н Ы Х О Р Г А Н О В

    Д Л Я Н У Ж Д М Е Д И Ц И Н Ы

    Выращивание тканей

    Выращивание простых тканей – уже существующая и использующаяся в практике технология.

    Кожа

    Восстановление повреждённых участков кожи уже является частью клинической практики. В ряде случаев используются методы регенерации кожи самого человека, например, пострадавшего от ожога посредством специальных воздействий. Это например разработанный Р.Р. Рахматуллиным биопластический материал гиаматрикс 1 , или биокол 2 , разработанный коллективом под руководством Б.К. Гаврилюка. Для выращивания кожи на месте ожога также используются специальные гидрогели 3 .

    Также развиваются методы распечатки фрагментов ткани кожи с помощью специальных принтеров. Созданием таких технологий занимаются, например, разработчики из американских центров регенерационной медицины AFIRM 4 и WFIRM 5 .

    Доктор Герлах (Jorg Gerlach) с коллегами из Института регенеративной медицины при Университете Питсбурга (Institute for Regenerative Medicine at the University of Pittsburg) изобрели устройство для пересадки кожи, которое поможет людям быстрее излечиться от ожогов различной степени тяжести. Skin Gun распыляет на поврежденную кожу пострадавшего раствор с его же стволовыми клетками. На данный момент новый метод лечения находится на экспериментальной стадии, но результаты уже впечатляют: тяжелые ожоги заживают буквально за пару дней. 6

    Кости

    Группа сотрудников Колумбийского университета под руководством Горданы Вуньяк-Новакович (Gordana Vunjak-Novakovic) получила из стволовых клеток, засеянных на каркас, фрагмент кости, аналогичный части височно-нижнечелюстного сустава. 7

    Учёные израильской компании Bonus Biogroup 8 (основатель и исполнительный директор - Шай Мерецки, Shai Meretzki ) разрабатывают методы выращивания человеческой кости из жировой ткани пациента, полученной посредством липосакции. Выращенную таким образом кость уже удалось успешно пересадить в лапу крысы.

    Зубы

    Итальянским ученым из University of Udine удалось показать, что полученная из единственной клетки жировой ткани популяция мезенхимальных стволовых клеток invitro даже в отсутствие специфического структурного матрикса или подложки может быть дифференцирована в структуру, напоминающую зубной зачаток. 9

    В Токийском университете учёные вырастили из стволовых клеток мышей полноценные зубы, имеющие зубные кости и соединительные волокна, и успешно трансплантировали их в челюсти животных. 10

    Хрящи

    Специалистам из Медицинского центра Колумбийского университета (Columbia University Medical Center) под руководством Джереми Мао (Jeremy Mao) удалось добиться восстановления суставных хрящей кроликов.

    Сначала исследователи удалили животным хрящевую ткань плечевого сустава, а также находящийся под ней слой костной ткани. Затем на место удаленных тканей им были помещены коллагеновые каркасы.

    У тех животных, у которых каркасы содержали трансформирующий фактор роста - белок, который контролирует дифференцировку и рост клеток, вновь сформировалась костная и хрящевая ткань на плечевых костях, а движения в суставе полностью восстановились. 11

    Группе американских ученых из The University of Texasat Austin удалось продвинуться в создании хрящевой ткани с меняющимися в разных участках механическими свойствами и составом внеклеточного матрикса. 12

    В 1997 году, Хирургу Джею Ваканти (Jay Vscanti) из Главной больницы Массачусетса в Бостоне удалось вырастить на спине у мыши человеческое ухо, используя клетки хряща. 13

    Медики Университета Джона Хопкинса удалили пораженное опухолью ухо и часть черепной кости у 42-летней женщины, страдающей раком. Используя хрящевую ткань из грудной клетки, кожу и сосуды из других частей тела пациентки, они вырастили ей искусственное ухо на руке и затем пересадили в нужное место. 14

    Сосуды

    Исследователи из группы профессора Ин Чжэн (Ying Zheng) вырастили в лаборатории полноценные сосуды, научившись управлять их ростом и формировать из них сложные структуры. Сосуды формируют ветвления, нормальным образом реагируют на суживающие вещества, транспортируя кровь даже через острые углы. 15

    Ученые во главе с заведующим кафедрой в Университете Райса Дженнифер Вест (Jennifer West) и молекулярным физиологом из Медицинского колледжа Бэйлора (Baylor College of Medicine - BCM) Мэри Дикинсон (Mary Dickinson) нашли свой способ выращивать кровеносные сосуды, в том числе капилляры с использованием в качестве базового материала полиэтиленгликоля (PEG) – нетоксичного пластика. Ученые модифицировали PEG, имитируя экстрацеллюлярный матрикс организма.

    Затем они соединили его с двумя видами клеток, необходимыми для образования кровеносных сосудов. Используя свет, превращающий полимерные нити PEG в трехмерный гель, они получили мягкий гидрогель, содержащий живые клетки и ростовые факторы. В результате ученые смогли наблюдать за тем, как клетки медленно образуют капилляры во всей массе геля.

    Чтобы протестировать новые сети кровеносных сосудов, ученые имплантировали гидрогели в роговицу глаза мышей, где отсутствует естественное кровоснабжение. Введение красителя в кровь животных подтвердило существование нормального кровотока во вновь образовавшихся капиллярах. 16

    Шведские врачи из университета Готенбурга под руководством профессора Сухитры Сумитран-Хольгешон (Suchitra Sumitran-Holgersson) впервые в мире провели операцию по пересадке вены, выращенной из стволовых клеток пациента. 17

    Участок подвздошной вены длиной около 9 сантиметров, полученный от умершего донора, был очищен от донорских клеток. Внутрь оставшегося белкового каркаса поместили стволовые клетки девочки. Через две недели была проведена операция по пересадке вены с выросшей в ней гладкой мускулатурой и эндотелием.

    Прошло больше года с момента операции, антител к трансплантату в крови пациентки обнаружено не было и самочувствие ребёнка улучшилось.

    Мышцы

    Сотрудники Вустерского политехнического института (США) успешно ликвидировали большую рану в мышечной ткани у мышей путём выращивания и вживления состоящих из белкового полимера фибрина микронитей, покрытых слоем человеческих мышечных клеток. 18

    Израильские ученые из Technion-Israel Institute of Technology исследуют необходимую степень васкуляризации и организации ткани invitro, позволяющую улучшить приживаемость и интеграцию тканеинженерного васкуляризированного мышечного импланта в организме реципиента. 19

    Кровь

    Исследователи из Университета Пьера и Марии Кюри в Париже под руководством Люка Дуая (Luc Douay) впервые в мировой практике успешно испытали на людях-добровольцах искусственную кровь, выращенную из стволовых клеток.

    Каждый из участников эксперимента получил по 10 миллиардов эритроцитов, что эквивалентно примерно двум миллилитрам крови. Уровни выживаемости полученных клеток оказались сопоставимы с аналогичными показателями обычных эритроцитов. 20

    Костный мозг

    Искусственный костный мозг, предназначенный для производства in vitro клеток крови, впервые успешно был создан исследователями в лаборатории химической инженерии Мичиганского Университета (University of Michigan ) под руководством Николая Котова (Nicholas Kotov ). С его помощью уже можно получать гемопоэтические стволовые клетки и В-лимфоциты – клетки иммунной системы, продуцирующие антитела. 21

    Выращивание сложных органов

    Мочевой пузырь.

    Доктор Энтони Атала (Anthony Atala) и его коллеги из американского университета Вэйк Форест (Wake Forest University) занимаются выращиванием мочевых пузырей из собственных клеток пациентов и их трансплантацией пациентам. 22 Они отобрали нескольких пациентов и взяли у них биопсию пузыря - образцы мышечных волокон и уротелиальных клеток. Эти клетки размножались семь-восемь недель в чашках Петри на имеющем форму пузыря основании. Затем выращенные таким способом органы были вшиты в организмы пациентов. Наблюдения за пациентами в течении нескольких лет показали, что органы функционировали благополучно, без негативных эффектов, характерных для более старых методов лечения. Фактически это первый случай, когда достаточно сложный орган, а не простые ткани, такие, как кожа и кости, был искусственно выращен in vitro и пересажен в человеческий организм. Так же этот коллектив разрабатывает методы выращивания других тканей и органов.

    Трахея.

    Испанские хирурги провели первую в мире трансплантацию трахеи, выращенной из стволовых клеток пациентки - 30-летней Клаудии Кастильо (Claudia Castillo). Орган был выращен в университете Бристоля (University of Bristol) на основе донорского каркаса из коллагеновых волокон. Операцию провёл профессор Паоло Маккиарини (Paolo Macchiarini) из госпиталя Барселоны (Hospital Clínic de Barcelona). 23

    Профессор Маккиарини активно сотрудничает с Российскими исследователями, что позволило сделать первые операции по пересадке выращенной трахеи в России. 24

    Почки

    Компания Advanced Cell Technology в 2002 г. сообщила об успешном выращивании полноценной почки из одной клетки, взятой из уха коровы с использованием технологии клонирования для получения стволовых клеток. Применяя специальное вещество, стволовые клетки превратили в почечные.

    Ткань вырастили на каркасе из саморазрушающегося материала, созданного в Гарвардской медицинской школе и имеющего форму обычной почки.

    Полученные в результате почки около 5 см в длину были имплантированы корове рядом с основными органами. В результате искусственная почка успешно начала вырабатывать мочу. 25

    Печень

    Американские специалисты из Массачусетской больницы общего профиля (Massachusetts General Hospital) под руководством Коркута Югуна (Korkut Uygun) успешно пересадили нескольким крысам печень, выращенную в лаборатории из их собственных клеток.

    Исследователи удалили печени у пяти лабораторных крыс, очистили их от клеток хозяина, получив, таким образом, соединительнотканные каркасы органов. Затем в каждый из пяти полученных каркасов исследователи ввели примерно по 50 миллионов клеток печени, взятых у крыс-реципиентов. В течение двух недель на каждом из заселенных клетками каркасов сформировалась полностью функционирующая печень. После чего выращенные в лаборатории органы были успешно пересажены пяти крысам. 26

    Сердце

    Ученые из британского госпиталя Хэафилд под руководством Мегди Якуба впервые в истории вырастили часть сердца, использовав в качестве "строительного материала" стволовые клетки. Врачи вырастили ткань, которая работала в точности как сердечные клапаны, ответственные за кровоток в организме людей. 27

    Ученые из University of Rostock (Германия) использовали технологию лазерного переноса-печатания клеток (Laser-Induced-Forward-Transfer (LIFT) cellprinting) для изготовления “заплатки”, предназначенной для регенерации сердца. 28

    Легкие

    Американские ученые из Йельского университета (Yale University) под руководством Лауры Никласон (Laura Niklason) вырастили в лаборатории легкие (на донорском внеклеточном матриксе).

    Матрикс был заполнен клетками эпителия легких и внутренней оболочки кровеносных сосудов, взятых у других особей. С помощью культивации в биореакторе исследователям удалось вырастить новые легкие, которые затем пересадили нескольким крысам.

    Орган нормально функционировал у разных особей от 45 минут до двух часов после трансплантации. Однако после этого в сосудах легких начали образовываться тромбы. Кроме того, исследователи зафиксировали утечку небольшого количества крови в просвет органа. Тем не менее, исследователям впервые удалось продемонстрировать потенциал регенеративной медицины для трансплантации лёгких. 29

    Кишечник

    Группе японских исследователей из Медицинского университета Нара (Nara Medical University ) под руководством Есиюки Накадзимы (Yoshiyuki Nakajima ) удалось создать фрагмент кишечника мыши из индуцированных плюрипотентных стволовых клеток.

    Его функциональные особенности, структура мышц, нервных клеток соответствуют обычному кишечнику. Например, он мог сокращаться для перемещения пищи. 30

    Поджелудочная железа

    Исследователи израильского института Technion, работающие под руководством профессора Шуламит Левенберг (Shulamit Levenberg), разработали метод выращивания ткани поджелудочной железы, содержащей секреторные клетки, окруженные трехмерной сетью кровеносных сосудов.

    Трансплантация такой ткани мышам с диабетом приводила к значительному снижению уровней глюкозы в крови животных. 31

    Тимус

    Ученые из University of Connecticut Health Center (США) разработали метод направленной дифференцировки invitro мышиных эмбриональных стволовых клеток (ЭСК) в клетки-предшественники эпителия тимуса (ПЭТ), которые invivo дифференцировались в клетки тимуса, и восстанавливали его нормальное строение. 32

    Предстательная железа

    Ученые Пру Кауин, профессор Гейл Рисбриджер и доктор Рения Тейлор из Мельбурнского института медицинских исследований Monash, стали первыми, кому с помощью стволовых эмбриональных клеток удалось вырастить человеческую простату в теле мыши. 33

    Яичник

    Группе специалистов под руководством Сандры Карсон (Sandra Carson ) из университета Брауна удалось вырастить первые яйцеклетки в органе, созданном в лаборатории: пройден путь от стадии «молодого граафова пузырька» до полного взросления. 34

    Пенис, уретра

    Исследователям из Института регенеративной медицины Уэйк-Фореста (Северная Каролина, США) под руководством Энтони Атала (Anthony Atala) удалось вырастить и успешно пересадить пенисы кроликам. После операции функции пенисов восстановились, кролики оплодотворили самок, у них родилось потомство. 35

    Ученые из Университета Уэйк-Форест в Уинстон-Сейлеме, штат Северная Каролина, вырастили мочеиспускательные каналы из собственных тканей больных. В эксперименте они помогли пятерым подросткам восстановить целостность поврежденных каналов. 36

    Глаза, роговицы, сетчатки

    Биологи из Токийского университета имплантировали в глазницу лягушки, из которой было удалено глазное яблоко, эмбриональные стволовые клетки. Затем глазницу заполнили специальной питательной средой, обеспечивавшей питание клеток. Через несколько недель эмбриональные клетки переросли в новое глазное яблоко. Причем восстановился не только глаз, но и зрение. Новое глазное яблоко срослось со зрительным нервом и питающими артериями, полностью заместив прежний орган зрения. 37

    Учeные из Caлгрeнcкoй Aкaдeмии в Швeции (The Sahlgrenska Academy) впeрвыe уcпeшно культивирoвaли из cтвoлoвых клeтoк чeлoвeчecкую рoгoвицу. Этo в будущeм пoмoжeт избeжaть дoлгoго oжидaния дoнoрcкoй роговицы. 38

    Исследователи университета Калифорнии в Ирвине, работающие под руководством Ганса Кайрштеда (Hans Keirstead ), вырастили из стволовых клеток в лабораторных условиях восьмислойную сетчатку, что поможет в разработке готовых к трансплантации сетчаток для лечения таких ведущих к слепоте заболеваний, как пигментный ретинит и макулярная дегенерация. Сейчас они проверяют возможность трансплантации такой сетчатки на животных моделях. 39

    Нервные ткани

    Исследователи Центра биологии развития RIKEN, Кобе, Япония под руководством Йошики Сасаи разработали методику выращивания гипофиза из стволовых клеток, который успешно имплантировали мышам. Проблему создания двух типов тканей ученые решили воздействуя на мышиные эмбриональные стволовые клетки веществами, создающими среду, похожую на ту, в которой формируется гипофиз развивающегося эмбриона, и обеспечили обильное снабжение клеток кислородом. В результате клетки сформировали трехмерную структуру, внешне сходную с гипофизом, содержащую комплекс эндокринных клеток, секретирующих гипофизарные гормоны. 40

    Ученые лаборатории клеточных технологий Нижегородской государственной медицинской академии сумели вырастить нейронную сеть, фактически фрагмент мозга. 41

    Вырастили они нейронную сеть на специальных матрицах – многоэлектродных подложках, которые позволяют снимать электрическую активность этих нейронов на всех этапах роста.

    З А К Л Ю Ч Е Н И Е


    Приведённый обзор публикаций показывает, что уже имеются существенные достижения в использовании выращивания органов для лечения людей не только простейших тканей, таких, как кожа и кости, но и достаточно сложных органов, таких, как мочевой пузырь, или трахея. Технологии выращивания ещё более сложных органов (сердце, печень, глаз и др.) пока отрабатываются на животных. Кроме применения в трансплантологии, такие органы могут послужить, например, для экспериментов, заменяющих некоторые эксперименты на лабораторных животных, или же для нужд искусства (как это сделал вышеупомянутый Дж. Ваканти). Ежегодно в области выращивания органов появляются новые результаты. По прогнозам учёных разработка и внедрение техники выращивания сложных органов – вопрос времени и велика вероятность, что уже в ближайшие десятилетия техника будет отработана настолько, что выращивание сложных органов будет широко использоваться в медицине, вытеснив наиболее распространённый сейчас метод трансплантации от доноров.

    Источники информации.

    1Биоинженерная модель биопластического материала «гиаматрикс» Рахматуллин Р.Р., Барышева Е.С., Рахматуллина Л.Р. // Успехи современного естествознания. 2010. № 9. С. 245-246.

    2Система «биокол» для регенерации ран. Гаврилюк Б.К., Гаврилюк В.Б.// Технологии живых систем. 2011. № 8. С. 79-82.

    3 Sun, G., Zhang, X., Shen, Y., Sebastian, R., Dickinson, L. E., Fox-Talbot, K., et al. Dextran hydrogel scaffolds enhance angiogenic responses and promote complete skin regeneration during burn wound healing. // Proceedings of the National Academy of Sciences of the United States of America, 108(52), 20976-20981.

    7Grayson WL, Frohlich M, Yeager K, Bhumiratana S, Chan ME, Cannizzaro C, Wan LQ, Liu XS, Guo XE, Vunjak-Novakovic G: Engineering anatomically shaped human bone grafts. // Proc Natl Acad Sci U S A 2010, 107:3299-3304.

    9Ferro F, etal. Adipose tissue-derived stem cell in vitro differentiation in a three-dimensional dental bud structure.Am J Pathol. 2011 May;178(5):2299-310.

    10Oshima M, Mizuno M, Imamura A, Ogawa M, Yasukawa M, et al. (2011) Functional Tooth Regeneration Using a Bioengineered Tooth Unit as a Mature Organ Replacement Regenerative Therapy. // PLoS ONE 6(7): e21531.

    11Chang H Lee, James L Cook, Avital Mendelson, Eduardo K Moioli, Hai Yao, Jeremy J Mao Regeneration of the articular surface of the rabbit synovial joint by cell homing: a proof of concept study // The Lancet, Volume 376, Issue 9739, Pages 440 - 448, 7 August 2010

    16Saik, Jennifer E. and Gould, Daniel J. and Watkins, Emily M. and Dickinson, Mary E. and West, Jennifer L., Covalently immobilized platelet-derived growth factor-BB promotes antiogenesis in biomirnetic poly(ethylene glycol) hydrogels, ACTA BIOMATERIALIA, vol 7 no. 1 (2011), pp. 133--143

    17Michael Olausson, Pradeep B Patil, Vijay Kumar Kuna, Priti Chougule, Nidia Hernandez, Ketaki Methe, Carola Kullberg-Lindh, Helena Borg, Hasse Ejnell, Prof Suchitra Sumitran-Holgersson. Transplantation of an allogeneic vein bioengineered with autologous stem cells: a proof-of-concept study. // The Lancet, Volume 380, Issue 9838, Pages 230 - 237, 21 July 2012

    18Megan K. Proulx, Shawn P. Carey, Lisa M. DiTroia, Craig M. Jones, Michael Fakharzadeh, Jacques P. Guyette, Amanda L. Clement, Robert G. Orr, Marsha W. Rolle, George D. Pins, Glenn R. Gaudette. Fibrin microthreads support mesenchymal stem cell growth while maintaining differentiation potential. // Journal of Biomedical Materials Research Part A Volume 96A, Issue 2, pages 301–312, February 2011

    19KofflerJ, etal. Improved vascular organization enhances functional integration of engineered skeletal muscle grafts.Proc Natl Acad Sci U S A.2011 Sep 6;108(36):14789-94. Epub 2011 Aug 30.

    20Giarratana, et al. Proof of principle for transfusion of in vitro-generated red blood cells. // Blood 2011, 118: 5071-5079;

    21Joan E. Nichols, Joaquin Cortiella, Jungwoo Lee, Jean A. Niles, Meghan Cuddihy, Shaopeng Wang, Joseph Bielitzki, Andrea Cantu, Ron Mlcak, Esther Valdivia, Ryan Yancy, Matthew L. McClure, Nicholas A. Kotov. In vitro analog of human bone marrow from 3D scaffolds with biomimetic inverted colloidal crystal geometry. // Biomaterials, Volume 30, Issue 6, February 2009, Pages 1071-1079 Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix. // Nature Medicine 16, 814–820 (2010)

    27Philosophical Transactions of the Royal Society. Bioengineering the Heart issue. Eds Magdi Yacoub and Robert Nerem. 2007 vol 362(1484): 1251-1518.

    28GaebelR, etal. Patterning human stem cells and endothelial cells with laser printing for cardiac regeneration.Biomaterials. 2011 Sep 10.

    29Thomas H. Petersen, Elizabeth A. Calle, Liping Zhao, Eun Jung Lee, Liqiong Gui, MichaSam B. Raredon, Kseniya Gavrilov, Tai Yi, Zhen W. Zhuang, Christopher Breuer, Erica Herzog, Laura E. Niklason. Tissue-Engineered Lungs for in Vivo Implantation. // Science 30 July 2010: Vol. 329 no. 5991 pp. 538-541

    30Takatsugu Yamada, Hiromichi Kanehiro, Takeshi Ueda, Daisuke Hokuto, Fumikazu Koyama, Yoshiyuki Nakajima. Generation of Functional Gut ("iGut") From Mouse Induced Pluripotent Stem Cells. // SBE"s 2nd International Conference on Stem Cell Engineering (2-5 May 2010) in Boston (MA), USA.

    31Keren Kaufman-Francis, Jacob Koffler, Noa Weinberg, Yuval Dor, Shulamit Levenberg. Engineered Vascular Beds Provide Key Signals to Pancreatic Hormone-Producing Cells. // PLoS ONE 7(7): e40741.

    32Lai L, etal. Mouse embryonic stem cell-derived thymic epithelial cell progenitors enhance T-cell reconstitution after allogeneic bone marrow transplantation.Blood.2011 Jul 26.

    33Renea A Taylor, Prue A Cowin, Gerald R Cunha, Martin Pera, Alan O Trounson, + et al. Formation of human prostate tissue from embryonic stem cells. // Nature Methods 3, 179-181

    34Stephan P. Krotz, Jared C. Robins, Toni-Marie Ferruccio, Richard Moore, Margaret M. Steinhoff, Jeffrey R. Morgan and Sandra Carson. In vitro maturation of oocytes via the pre-fabricated self-assembled artificial human ovary. // JOURNAL OF ASSISTED REPRODUCTION AND GENETICS Volume 27, Number 12 (2010), 743-750.

    36Atlantida Raya-Rivera MD, Diego R Esquiliano MD, James J Yoo MD, Prof Esther Lopez-Bayghen PhD, Shay Soker PhD, Prof Anthony Atala MD Tissue-engineered autologous urethras for patients who need reconstruction: an observational study // The Lancet, Vol. 377 No. 9772 pp 1175-1182

    38Charles Hanson, Thorir Hardarson, Catharina Ellerström, Markus Nordberg, Gunilla Caisander, Mahendra Rao, Johan Hyllner, Ulf Stenevi, Transplantation of human embryonic stem cells onto a partially wounded human cornea in vitro // Acta Ophthalmologica, Acta Ophthalmologica on 27 January 2012, DOI: 10.1111/j.1755-3768.2011.02358.x

    39Gabriel Nistor, Magdalene J. Seiler, Fengrong Yan, David Ferguson, Hans S. Keirstead. Three-dimensional early retinal progenitor 3D tissue constructs derived from human embryonic stem cells. // Journal of Neuroscience Methods, Volume 190, Issue 1, 30 June 2010, Pages 63–70

    40Hidetaka Suga, Taisuke Kadoshima, Maki Minaguchi, Masatoshi Ohgushi, Mika Soen, Tokushige Nakano, Nozomu Takata, Takafumi Wataya, Keiko Muguruma, Hiroyuki Miyoshi, Shigenobu Yonemura, Yutaka Oiso & Yoshiki Sasai. Self-formation of functional adenohypophysis in three-dimensional culture. // Nature 480, 57–62 (01 December 2011)

    41Мухина И.В., Хаспеков Л.Г. Новые технологии в экспериментальной нейробиологии: нейронные сети на мультиэлектродной матрице. Анналы клинической и экспериментальной неврологии. 2010. №2. С. 44-51.


    В В Е Д Е Н И Е

    Выращивание органов и его альтернативы

    Многие болезни, в том числе, угрожающие жизни человека, связаны с нарушениями в деятельности конкретного органа (например, почечная недостаточность, сердечная недостаточность, сахарный диабет и др.). Далеко не во всех случаях эти нарушения можно исправить с помощью традиционных фармакологических или хирургических воздействий.

    Существует ряд альтернативных способов того, как восстановить функции органов пациентам в случае серьёзного поражения:

    1) Стимуляция процессов регенерации в организме. Кроме фармакологических воздействий в практике применяется процедура введения в организм стволовых клеток, которые имеют способность к превращению в полноценные функциональные клетки организма. Уже получены положительные результаты при лечении с помощью стволовых клеток самых разных заболеваний, в том числе, наиболее распространенных в обществе заболеваний, таких, как инфаркты, инсульты, нейродегенеративные заболевания, диабет и другие. Однако ясно, что такой способ лечения применим лишь для устранения относительно небольших повреждений органов.

    2) Восполнение функций органов с помощью аппаратов не биологического происхождения. Это могут быть крупных размеров аппараты, к которым больные подключаются на определенное время (например, аппараты для гемодиализа при почечной недостаточности). Также имеются модели носимых устройств, или устройств, имплантируемых внутрь организма (существуют варианты сделать это, оставив собственный орган пациента, однако, иногда его удаляют, и аппарат полностью берёт на себя его функции, как в случае использования искусственного сердца AbioCor ). Подобные приспособления в ряде случаев используют на время ожидания появления необходимого донорского органа. Пока не биологические аналоги значительно уступают по совершенству естественным органам.

    3) Использование донорских органов. Донорские органы, пересаживаемые от одного человека к другому, уже широко и порою успешно применяются в клинической практике. Однако это направление сталкивается с рядом проблем, таких, как серьёзный дефицит донорских органов, проблема реакции отторжения чужого органа иммунной системой и др. Уже были попытки пересаживать человеку органы животных (это называется ксенотрансплантацией), но пока успехи в применении такого способа скромные и в регулярную практику он не внедрён. Однако ведутся исследования с целью повысить эффективность ксенотрансплантации, например, посредством генетической модификации.

    4) Выращивание органов. Органы могут выращиваться искусственно как в теле человека, так и вне организма. В ряде случаев имеется возможность выращивать орган из клеток того человека, которому его собираются трансплантировать. Разработан ряд методов выращивания биологических органов, например, с помощью специальных приборов, работающих по принципу 3D принтера. К рассматриваемому направлению можно отнести предложение о возможности выращивания, для замены повреждённого тела человека с сохранившимся мозгом, самостоятельно развивающегося организма, клона - “растения” (с отключенной способностью мыслить).

    Среди перечисленных четырёх вариантов решения проблемы недостаточности функций органов именно их выращивание может быть наиболее естественным для организма способом восстановления при крупных повреждениях.

    В настоящем тексте приводится информация о существующих достижениях в выращивании биологических органов.

    Д О С Т И Ж Е Н И Я И П Е Р С П Е К Т И В Ы В В Ы Р А Щ И В А Н И И О Т Д Е Л Ь Н Ы Х О Р Г А Н О В

    Д Л Я Н У Ж Д М Е Д И Ц И Н Ы

    Выращивание тканей

    Выращивание простых тканей – уже существующая и использующаяся в практике технология.

    Кожа

    Восстановление повреждённых участков кожи уже является частью клинической практики. В ряде случаев используются методы регенерации кожи самого человека, например, пострадавшего от ожога посредством специальных воздействий. Это например разработанный Р.Р. Рахматуллиным биопластический материал гиаматрикс , или биокол , разработанный коллективом под руководством Б.К. Гаврилюка. Для выращивания кожи на месте ожога также используются специальные гидрогели .

    Также развиваются методы распечатки фрагментов ткани кожи с помощью специальных принтеров. Созданием таких технологий занимаются, например, разработчики из американских центров регенерационной медицины AFIRM и WFIRM .

    Доктор Герлах (Jorg Gerlach) с коллегами из Института регенеративной медицины при Университете Питсбурга (Institute for Regenerative Medicine at the University of Pittsburg) изобрели устройство для пересадки кожи, которое поможет людям быстрее излечиться от ожогов различной степени тяжести. Skin Gun распыляет на поврежденную кожу пострадавшего раствор с его же стволовыми клетками. На данный момент новый метод лечения находится на экспериментальной стадии, но результаты уже впечатляют: тяжелые ожоги заживают буквально за пару дней.

    Кости

    Группа сотрудников Колумбийского университета под руководством Горданы Вуньяк-Новакович (Gordana Vunjak-Novakovic) получила из стволовых клеток, засеянных на каркас, фрагмент кости, аналогичный части височно-нижнечелюстного сустава.

    Учёные израильской компании Bonus Biogroup (основатель и исполнительный директор - Шай Мерецки, Shai Meretzki ) разрабатывают методы выращивания человеческой кости из жировой ткани пациента, полученной посредством липосакции. Выращенную таким образом кость уже удалось успешно пересадить в лапу крысы.

    Зубы

    Итальянским ученым из University of Udine удалось показать, что полученная из единственной клетки жировой ткани популяция мезенхимальных стволовых клеток invitro даже в отсутствие специфического структурного матрикса или подложки может быть дифференцирована в структуру, напоминающую зубной зачаток.

    В Токийском университете учёные вырастили из стволовых клеток мышей полноценные зубы, имеющие зубные кости и соединительные волокна, и успешно трансплантировали их в челюсти животных.

    Хрящи

    Специалистам из Медицинского центра Колумбийского университета (Columbia University Medical Center) под руководством Джереми Мао (Jeremy Mao) удалось добиться восстановления суставных хрящей кроликов.

    Сначала исследователи удалили животным хрящевую ткань плечевого сустава, а также находящийся под ней слой костной ткани. Затем на место удаленных тканей им были помещены коллагеновые каркасы.

    У тех животных, у которых каркасы содержали трансформирующий фактор роста - белок, который контролирует дифференцировку и рост клеток, вновь сформировалась костная и хрящевая ткань на плечевых костях, а движения в суставе полностью восстановились.

    Группе американских ученых из The University of Texasat Austin удалось продвинуться в создании хрящевой ткани с меняющимися в разных участках механическими свойствами и составом внеклеточного матрикса.

    В 1997 году, Хирургу Джею Ваканти (Jay Vscanti) из Главной больницы Массачусетса в Бостоне удалось вырастить на спине у мыши человеческое ухо, используя клетки хряща.

    Медики Университета Джона Хопкинса удалили пораженное опухолью ухо и часть черепной кости у 42-летней женщины, страдающей раком. Используя хрящевую ткань из грудной клетки, кожу и сосуды из других частей тела пациентки, они вырастили ей искусственное ухо на руке и затем пересадили в нужное место.

    Сосуды

    Исследователи из группы профессора Ин Чжэн (Ying Zheng) вырастили в лаборатории полноценные сосуды, научившись управлять их ростом и формировать из них сложные структуры. Сосуды формируют ветвления, нормальным образом реагируют на суживающие вещества, транспортируя кровь даже через острые углы.

    Ученые во главе с заведующим кафедрой в Университете Райса Дженнифер Вест (Jennifer West) и молекулярным физиологом из Медицинского колледжа Бэйлора (Baylor College of Medicine - BCM) Мэри Дикинсон (Mary Dickinson) нашли свой способ выращивать кровеносные сосуды, в том числе капилляры с использованием в качестве базового материала полиэтиленгликоля (PEG) – нетоксичного пластика. Ученые модифицировали PEG, имитируя экстрацеллюлярный матрикс организма.

    Затем они соединили его с двумя видами клеток, необходимыми для образования кровеносных сосудов. Используя свет, превращающий полимерные нити PEG в трехмерный гель, они получили мягкий гидрогель, содержащий живые клетки и ростовые факторы. В результате ученые смогли наблюдать за тем, как клетки медленно образуют капилляры во всей массе геля.

    Чтобы протестировать новые сети кровеносных сосудов, ученые имплантировали гидрогели в роговицу глаза мышей, где отсутствует естественное кровоснабжение. Введение красителя в кровь животных подтвердило существование нормального кровотока во вновь образовавшихся капиллярах.

    Шведские врачи из университета Готенбурга под руководством профессора Сухитры Сумитран-Хольгешон (Suchitra Sumitran-Holgersson) впервые в мире провели операцию по пересадке вены, выращенной из стволовых клеток пациента.

    Участок подвздошной вены длиной около 9 сантиметров, полученный от умершего донора, был очищен от донорских клеток. Внутрь оставшегося белкового каркаса поместили стволовые клетки девочки. Через две недели была проведена операция по пересадке вены с выросшей в ней гладкой мускулатурой и эндотелием.

    Прошло больше года с момента операции, антител к трансплантату в крови пациентки обнаружено не было и самочувствие ребёнка улучшилось.

    Мышцы

    Сотрудники Вустерского политехнического института (США) успешно ликвидировали большую рану в мышечной ткани у мышей путём выращивания и вживления состоящих из белкового полимера фибрина микронитей, покрытых слоем человеческих мышечных клеток.

    Израильские ученые из Technion-Israel Institute of Technology исследуют необходимую степень васкуляризации и организации ткани invitro, позволяющую улучшить приживаемость и интеграцию тканеинженерного васкуляризированного мышечного импланта в организме реципиента.

    Кровь

    Исследователи из Университета Пьера и Марии Кюри в Париже под руководством Люка Дуая (Luc Douay) впервые в мировой практике успешно испытали на людях-добровольцах искусственную кровь, выращенную из стволовых клеток.

    Каждый из участников эксперимента получил по 10 миллиардов эритроцитов, что эквивалентно примерно двум миллилитрам крови. Уровни выживаемости полученных клеток оказались сопоставимы с аналогичными показателями обычных эритроцитов.

    Костный мозг

    Искусственный костный мозг, предназначенный для производства in vitro клеток крови, впервые успешно был создан исследователями в лаборатории химической инженерии Мичиганского Университета (University of Michigan ) под руководством Николая Котова (Nicholas Kotov ). С его помощью уже можно получать гемопоэтические стволовые клетки и В-лимфоциты – клетки иммунной системы, продуцирующие антитела.

    Выращивание сложных органов

    Мочевой пузырь.

    Доктор Энтони Атала (Anthony Atala) и его коллеги из американского университета Вэйк Форест (Wake Forest University) занимаются выращиванием мочевых пузырей из собственных клеток пациентов и их трансплантацией пациентам. Они отобрали нескольких пациентов и взяли у них биопсию пузыря - образцы мышечных волокон и уротелиальных клеток. Эти клетки размножались семь-восемь недель в чашках Петри на имеющем форму пузыря основании. Затем выращенные таким способом органы были вшиты в организмы пациентов. Наблюдения за пациентами в течении нескольких лет показали, что органы функционировали благополучно, без негативных эффектов, характерных для более старых методов лечения. Фактически это первый случай, когда достаточно сложный орган, а не простые ткани, такие, как кожа и кости, был искусственно выращен in vitro и пересажен в человеческий организм. Так же этот коллектив разрабатывает методы выращивания других тканей и органов.

    Трахея.

    Испанские хирурги провели первую в мире трансплантацию трахеи, выращенной из стволовых клеток пациентки - 30-летней Клаудии Кастильо (Claudia Castillo). Орган был выращен в университете Бристоля (University of Bristol) на основе донорского каркаса из коллагеновых волокон. Операцию провёл профессор Паоло Маккиарини (Paolo Macchiarini) из госпиталя Барселоны (Hospital Clínic de Barcelona).

    Профессор Маккиарини активно сотрудничает с Российскими исследователями, что позволило сделать первые операции по пересадке выращенной трахеи в России.

    Почки

    Компания Advanced Cell Technology в 2002 г. сообщила об успешном выращивании полноценной почки из одной клетки, взятой из уха коровы с использованием технологии клонирования для получения стволовых клеток. Применяя специальное вещество, стволовые клетки превратили в почечные.

    Ткань вырастили на каркасе из саморазрушающегося материала, созданного в Гарвардской медицинской школе и имеющего форму обычной почки.

    Полученные в результате почки около 5 см в длину были имплантированы корове рядом с основными органами. В результате искусственная почка успешно начала вырабатывать мочу.

    Печень

    Американские специалисты из Массачусетской больницы общего профиля (Massachusetts General Hospital) под руководством Коркута Югуна (Korkut Uygun) успешно пересадили нескольким крысам печень, выращенную в лаборатории из их собственных клеток.

    Исследователи удалили печени у пяти лабораторных крыс, очистили их от клеток хозяина, получив, таким образом, соединительнотканные каркасы органов. Затем в каждый из пяти полученных каркасов исследователи ввели примерно по 50 миллионов клеток печени, взятых у крыс-реципиентов. В течение двух недель на каждом из заселенных клетками каркасов сформировалась полностью функционирующая печень. После чего выращенные в лаборатории органы были успешно пересажены пяти крысам.

    Сердце

    Ученые из британского госпиталя Хэафилд под руководством Мегди Якуба впервые в истории вырастили часть сердца, использовав в качестве "строительного материала" стволовые клетки. Врачи вырастили ткань, которая работала в точности как сердечные клапаны, ответственные за кровоток в организме людей.

    Ученые из University of Rostock (Германия) использовали технологию лазерного переноса-печатания клеток (Laser-Induced-Forward-Transfer (LIFT) cellprinting) для изготовления “заплатки”, предназначенной для регенерации сердца.

    Легкие

    Американские ученые из Йельского университета (Yale University) под руководством Лауры Никласон (Laura Niklason) вырастили в лаборатории легкие (на донорском внеклеточном матриксе).

    Матрикс был заполнен клетками эпителия легких и внутренней оболочки кровеносных сосудов, взятых у других особей. С помощью культивации в биореакторе исследователям удалось вырастить новые легкие, которые затем пересадили нескольким крысам.

    Орган нормально функционировал у разных особей от 45 минут до двух часов после трансплантации. Однако после этого в сосудах легких начали образовываться тромбы. Кроме того, исследователи зафиксировали утечку небольшого количества крови в просвет органа. Тем не менее, исследователям впервые удалось продемонстрировать потенциал регенеративной медицины для трансплантации лёгких.

    Кишечник

    Группе японских исследователей из Медицинского университета Нара (Nara Medical University ) под руководством Есиюки Накадзимы (Yoshiyuki Nakajima ) удалось создать фрагмент кишечника мыши из индуцированных плюрипотентных стволовых клеток.

    Его функциональные особенности, структура мышц, нервных клеток соответствуют обычному кишечнику. Например, он мог сокращаться для перемещения пищи.

    Поджелудочная железа

    Исследователи израильского института Technion, работающие под руководством профессора Шуламит Левенберг (Shulamit Levenberg), разработали метод выращивания ткани поджелудочной железы, содержащей секреторные клетки, окруженные трехмерной сетью кровеносных сосудов.

    Трансплантация такой ткани мышам с диабетом приводила к значительному снижению уровней глюкозы в крови животных.

    Тимус

    Ученые из University of Connecticut Health Center (США) разработали метод направленной дифференцировки invitro мышиных эмбриональных стволовых клеток (ЭСК) в клетки-предшественники эпителия тимуса (ПЭТ), которые invivo дифференцировались в клетки тимуса, и восстанавливали его нормальное строение.

    Предстательная железа

    Ученые Пру Кауин, профессор Гейл Рисбриджер и доктор Рения Тейлор из Мельбурнского института медицинских исследований Monash, стали первыми, кому с помощью стволовых эмбриональных клеток удалось вырастить человеческую простату в теле мыши.

    Яичник

    Группе специалистов под руководством Сандры Карсон (Sandra Carson ) из университета Брауна удалось вырастить первые яйцеклетки в органе, созданном в лаборатории: пройден путь от стадии «молодого граафова пузырька» до полного взросления.

    Пенис, уретра

    Исследователям из Института регенеративной медицины Уэйк-Фореста (Северная Каролина, США) под руководством Энтони Атала (Anthony Atala) удалось вырастить и успешно пересадить пенисы кроликам. После операции функции пенисов восстановились, кролики оплодотворили самок, у них родилось потомство.

    Ученые из Университета Уэйк-Форест в Уинстон-Сейлеме, штат Северная Каролина, вырастили мочеиспускательные каналы из собственных тканей больных. В эксперименте они помогли пятерым подросткам восстановить целостность поврежденных каналов.

    Глаза, роговицы, сетчатки

    Биологи из Токийского университета имплантировали в глазницу лягушки, из которой было удалено глазное яблоко, эмбриональные стволовые клетки. Затем глазницу заполнили специальной питательной средой, обеспечивавшей питание клеток. Через несколько недель эмбриональные клетки переросли в новое глазное яблоко. Причем восстановился не только глаз, но и зрение. Новое глазное яблоко срослось со зрительным нервом и питающими артериями, полностью заместив прежний орган зрения.

    Учeные из Caлгрeнcкoй Aкaдeмии в Швeции (The Sahlgrenska Academy) впeрвыe уcпeшно культивирoвaли из cтвoлoвых клeтoк чeлoвeчecкую рoгoвицу. Этo в будущeм пoмoжeт избeжaть дoлгoго oжидaния дoнoрcкoй роговицы.

    Исследователи университета Калифорнии в Ирвине, работающие под руководством Ганса Кайрштеда (Hans Keirstead ), вырастили из стволовых клеток в лабораторных условиях восьмислойную сетчатку, что поможет в разработке готовых к трансплантации сетчаток для лечения таких ведущих к слепоте заболеваний, как пигментный ретинит и макулярная дегенерация. Сейчас они проверяют возможность трансплантации такой сетчатки на животных моделях.

    Нервные ткани

    Исследователи Центра биологии развития RIKEN, Кобе, Япония под руководством Йошики Сасаи разработали методику выращивания гипофиза из стволовых клеток, который успешно имплантировали мышам. Проблему создания двух типов тканей ученые решили воздействуя на мышиные эмбриональные стволовые клетки веществами, создающими среду, похожую на ту, в которой формируется гипофиз развивающегося эмбриона, и обеспечили обильное снабжение клеток кислородом. В результате клетки сформировали трехмерную структуру, внешне сходную с гипофизом, содержащую комплекс эндокринных клеток, секретирующих гипофизарные гормоны.

    Ученые лаборатории клеточных технологий Нижегородской государственной медицинской академии сумели вырастить нейронную сеть, фактически фрагмент мозга.

    Вырастили они нейронную сеть на специальных матрицах – многоэлектродных подложках, которые позволяют снимать электрическую активность этих нейронов на всех этапах роста.

    З А К Л Ю Ч Е Н И Е


    Приведённый обзор публикаций показывает, что уже имеются существенные достижения в использовании выращивания органов для лечения людей не только простейших тканей, таких, как кожа и кости, но и достаточно сложных органов, таких, как мочевой пузырь, или трахея. Технологии выращивания ещё более сложных органов (сердце, печень, глаз и др.) пока отрабатываются на животных. Кроме применения в трансплантологии, такие органы могут послужить, например, для экспериментов, заменяющих некоторые эксперименты на лабораторных животных, или же для нужд искусства (как это сделал вышеупомянутый Дж. Ваканти). Ежегодно в области выращивания органов появляются новые результаты. По прогнозам учёных разработка и внедрение техники выращивания сложных органов – вопрос времени и велика вероятность, что уже в ближайшие десятилетия техника будет отработана настолько, что выращивание сложных органов будет широко использоваться в медицине, вытеснив наиболее распространённый сейчас метод трансплантации от доноров.

    Источники информации.

    GaebelR, etal. Patterning human stem cells and endothelial cells with laser printing for cardiac regeneration.Biomaterials. 2011 Sep 10.

    Stephan P. Krotz, Jared C. Robins, Toni-Marie Ferruccio, Richard Moore, Margaret M. Steinhoff, Jeffrey R. Morgan and Sandra Carson. In vitro maturation of oocytes via the pre-fabricated self-assembled artificial human ovary. // JOURNAL OF ASSISTED REPRODUCTION AND GENETICS Volume 27, Number 12 (2010), 743-750.

    Загрузка...