docgid.ru

Что такое кора больших полушарий головного мозга. Кора больших полушарий это

Кора больших полушарий

Регенерация.

Серое вещество очень плохо регенерирует. Белое вещество способно регенерировать, но данный процесс очень длительный. В случае если сохранено тело нервной клетки. То волокна регенерируют.

В ней осуществляется высший функциональный анализ раздражителœей и синтез-то есть принятие осмысленных решений для осознанной двигательной реакции. В КГМ располагаются центральные (корковые) отделы анализаторов-производится окончательная дифференцировка раздражения. Основная функция КГМ - мышление.

Развивается из переднего мозгового пузыря. В его стенке пролиферируют вентрикулярные клетки, из которых дифференцируются глиобласты и нейробласты (первые 2 недели). Постепенно пролиферация нейробластов снижается. Из глиобластов образуется радиальная глия, отростки клеток которой пронизывают всю стенку нервной трубки. Нейробласты мигрируют по ходу этих отростков, постепенно дифференцируются в нейроны (16-20 неделя). Вначале закладываются крайние слои коры, а затем между ними образуются промежуточные слои. Развитие коры продолжается после рождения и завершается к 16-18 годам. В процессе развития образуется большое количество нервных клеток, особенно развиваются межнейронные синапсы. Что ведет к образованию рефлекторных дуᴦ.

КГМ представлена пластинкой серого вещества толщиной 3-5мм, которая снаружи покрывает большие полушария. Она содержит ядра в виде полей. Четкой границы между полями нет, они переходят друг в друга. Серое вещество отличается высоким содержанием нервных клеток. До 17-20млрд. Οʜᴎ всœе мультиполярные, разного размера, по форме преобладают пирамидные и звездчатые нервные клетки . Особенности распределœения нервных клеток в мозге обозначаются термином архитектоника. Для КГМ характерна послойная организация, где классически выделяют 6 слоев, между которыми нет четкой границы. Снаружи к КГМ прилежит мягкая мозговая оболочка, которая содержит пиальные сосуды, которые под прямым углом внедряются в КГМ.

1. Молекулярный слой -сравнительно широкий слой. Содержит небольшое количество веретеновидных нейронов, которые располагаются горизонтально. Основной объём этого слоя составляют отростки (слабо миелинизированные), которые поступают из белого вещества, в основном из коры этого же или других участков коры мозга обоих полушарий. Большая часть располагается горизонтально, они образуют большое количество синапсов. Этот слой выполняет ассоциативную функцию этого участка с другими отделами этого полушария или другого полушария. В молекулярном слое заканчиваются возбуждающие волокна, несущие информацию от ретикулярной формации. Через данный слой возбуждающая неспецифическая импульсация передается на нижелœежащие слои.

2. Наружный зернистый слой сравнительно узкий. Характеризуется высокой частотой расположения нервных клеток, преобладают мелкие пирамидные нейроны. Дендриты этих клеток уходят в молекулярный слой, а аксоны в КГМ этого же полушария. Клетки обеспечивают связь с другими участками коры этого же полушария.

3. Пирамидный слой -наиболее широкий слой. Содержит пирамидные нейроны-мелкие, средние (преимущественно), крупные, которые образуют 3 подслоя. Дендриты этих клеток достигают молекулярного слоя, аксоны части клеток заканчиваются в других участках коры этого же полушария или противоположного полушария. Οʜᴎ образуют ассоциативные нервные пути . Выполняют ассоциативные функции. Часть нервных клеток-аксоны крупных пирамидных нейронов уходят в белое вещество и участвуют в образовании нисходящих проекционных двигательных путей. Этот слой выполняет наиболее мощные ассоциативные функции.

4. Внутренний зернистый слой - узкий, содержит мелкие звездчатые и пирамидные нейроны. Их дендриты достигают молекулярного слоя, аксоны заканчиваются в коре мозга этого же полушария или противоположного полушария. При этом часть отростков идет горизонтально в пределах 4 слоя. Выполняет ассоциативные функции.

5. Ганглиозный слой довольно широкий, содержит крупные и средние пирамидные нейроны. В нем располагаются гигантские нейроны (клетки Беца). Дендриты уходят в вышелœежащие слои, достигают молекулярного слоя. Аксоны уходят в белое вещество и образуют нисходящие двигательные пути .

6. Полиморфный слой - уже, чем ганглиозный. Содержит клетки разнообразные по форме, но преобладают веретеновидные нейроны. Их дендриты также уходят в вышелœежащие слои, достигают молекулярного слоя, а аксоны поступают в белое вещество и участвуют в образовании нисходящих нервных двигательных путей.

1-4 слои являются ассоциативными. 5-6 слои являются проекционными.

К коре прилежит белое вещество. Оно содержит миелиновые нервные волокна. Ассоциативные волокна обеспечивают связь внутри одного полушария, комиссуральные-между разными полушариями, проекционные-между отделами разного уровня.

В чувствительных отделах коры (90%) содержатся хорошо развитые 2, 4 слои-наружный и внутренний зернистые слои. Такая кора относится к гранулярному типу коры.

В двигательной коре хорошо развиты проекционные слои, особенно 5. Это агранулярный тип коры.

Для КГМ характерна модульная организация . В коре выделяют вертикальные модули, которые занимают всю толщину коры. В таком модуле в средней части располагается пирамидный нейрон, дендрит которого достигает молекулярного слоя. Также имеется большое количество мелких вставочных нейронов, отростки которых заканчиваются на пирамидном нейроне. Часть из них возбуждающие по функции, а большая часть-тормозные. В данный модуль из других участков коры входит кортико-кортикальное волокно, ĸᴏᴛᴏᴩᴏᴇ пронизывает всю толщину коры, по ходу отдает отростки-коллатерали на вставочные нейроны и небольшая часть-на пирамидный нейрон и достигает молекулярного слоя. Также в модуль входят 1-2 таламокортикальных волокна. Οʜᴎ достигают 3-4 слоя коры, разветвляются и образуют синапсы с вставочными нейронами и пирамидным нейроном. По этим нервным волокнам поступает афферентная возбуждающая информация, которая через вставочные нейроны, которые регулируют проведение информации, или напрямую поступает на пирамидный нейрон. Она обрабатывается, образуется эффекторный импульс в начальном отделœе аксона пирамидного нейрона, который отводится от тела клетки по аксону. Этот аксон в составы нервного кортикоспинального волокна поступает в другой модуль. И так от модуля к модулю информация передается из чувствительных отделов в двигательную кору. Причем информация идет как горизонтально, так и вертикально.

КГМ отличается высокой плотностью сосудисто-капиллярной сети и нервные клетки располагаются в ячейке из 3-5 капилляров. Нервные клетки высоко чувствительны к гипоксии. С возрастом происходит ухудшение кровоснабжения и гибель части нервных клеток и атрофия вещества мозга.

Нервные клетки коры головного мозга способны регенерировать при сохранении тела нейрона. При этом восстанавливаются поврежденные отростки и образуются синапсы, за счёт этого восстанавливают нервные цепи и рефлекторные дуги.

Кора больших полушарий - понятие и виды. Классификация и особенности категории "Кора больших полушарий" 2014, 2015.

  • - Кора больших полушарий.

    Полушария головного мозга Общее строение полушарий головного мозга. Полушария детей отличаются от полушарий взрослых только «мелкими деталями рельефа». Примерно к 9-10 годам извилины и борозды полушарий занимает такое же положение, как и у взрослого. На поперечном и... .


  • - Лекция №10. Кора больших полушарий. Современные методы исследования функций мозга.

    «Мозг – это последняя из тайн природы, которая когда-либо откроется человеку.» англ. физиолог Чарлз Скотт Шеррингтон. «Асимметрия является основным свойством жизни.» Луи Пастер. Большие полушария – парные образования головного мозга. У человека они достигают...

  • Составными частями мозговых полушарий являются мозговой плащ и подкорковые ганглии. Окружают их боковые желудочки.

    Между правым полушарием и левым проходит глубокая продольная борозда. В ее глубине располагается мозолистое тело. Его образуют нервные волокна.

    Кора больших полушарий головного представлена мозговым плащом. Это серое вещество сформировано нервными клетками с отростками, отходящими от них, и Считается, что последние выполняют для нейронов опорную функцию и участвуют в обмене их веществ.

    Кора больших полушарий является высшим, с филогенетической точки зрения, наиболее молодым формированием ЦНС. Толщина ее слоя от полутора до трех миллиметров. Кора больших полушарий имеет порядка двенадцати-восемнадцати миллиардов нейронов.

    Ее общая поверхность увеличивается за счет наличия многочисленных борозд. Они разделяют поверхности полушарий на доли и выпуклые извилины. В каждом полушарии находится четыре доли. Они формируются за счет трех борозд: боковой, теменно-затылочной и центральной. В результате образуются затылочная, височная, теменная и лобная доли.

    Последняя расположена спереди от борозды центральной. Теменная доля ограничивается центральной бороздой впереди, внизу - боковой, теменно-затылочной - сзади. Височную долю ограничивает глубокая боковая борозда вверху. Затылочная доля расположена сзади от теменно-затылочной.

    Выше мозолистого тела находится В его состав входят проекционные, комиссуральные и ассоциативные волокна. Кора больших полушарий имеет двустороннюю связь с лежащими ниже отделами ЦНС посредством восходящих и нисходящих путей. В их состав входят проекционные волокна, выходящие за пределы полушарий.

    Отдельные корковые области обладают функциональным различным значением. Вместе с этим кора больших полушарий работает как единое целое. Однако в ней не существует строгой функциональной локализации. Опыты над животными показали, что после разрушения отдельных участков в коре, по истечении некоторого периода времени соседние области начинали выполнять функции разрушенных участков. Данную особенность связывают с высокой пластичностью клеток.

    Кора полушарий принимает от рецепторных образований центростремительные импульсы. Для каждого аппарата рецепторов в ней соответствует участок, названный И.П. Павловым «корковое ядро анализатора». Области коры, в которых они располагаются, называются сенсорными участками.

    В заднецентральной и переднецентральной зонах коры располагается ядерная область двигательного анализатора. В него проводится от рецепторов сухожилий, скелетных мышц и суставов возбуждение.

    Область располагается сзади центральной борозды (в заднецентральной зоне). Он связан с тактильной, болевой и температурной чувствительностью.

    Самую обширную площадь занимает область анализаторов лица, голосового аппарата, кистей рук. Наименьшая площадь отведена представительству анализаторов голени, бедра и туловища.

    В затылочной зоне расположена ядерная область в височной - слухового. Область находится вблизи боковой борозды.

    Движение возникает в результате раздражения, формирующегося от взаимодействия с сенсорными областями моторной зоны коры. Расположена она от центральной борозды кпереди.

    Ядерные области анализаторов представлены в коре участками, в которых заканчивается большая часть их проводящих путей. За их пределами располагаются рассеянные элементы. В них осуществляется поступление импульсов тех же рецепторов, что поступают в ядро анализатора.

    КОРА ПОЛУШАРИЙ БОЛЬШОГО МОЗГА

    Кора полушарий большого мозга представляет собой высший и наиболее сложно организованный нервный центр экранного типа, деятельность которого обеспечивает регуляцию разнообразных функций организма и сложные формы поведения.

    Кора образована слоем серого вещества толщиной 3-5 мм на по­верхности извилин (30%) и в глубине борозд (70%) общей площадью 1500-2500 см 2 при объеме около 300 см 3 . Серое вещество содержит нервные клетки (около 10-15 млрд.), нервные волокна и клетки нейро-глии (более 100 млрд.).

    На основании различий плотности расположения и строения клеток (цитоархитектоники), хода волокон (миелоархитектоники) и функциональных особенностей различных участков коры в ней вы­деляют 52 нерезко разграниченные поля.

    Нейроны коры - мультиполярные, различных размеров и форм, включают более 60 видов, среди которых выделены два основ­ных типа - пирамидные и непирамидные.

    Пирамидные клетки - специфический для коры полушарий тип нейронов; по разным оценкам, составляют 50-90% всех нейроцитов коры. От апикального полюса их конусовидного (на срезах - треуголь­ного) тела, который обращен к поверхности коры, отходит длинный (апикальный) покрытый шипиками дендрит, направляющийся в молеку­лярный слой коры, где он ветвится (рис. 11-И). От базальной и лате­ральных частей тела вглубь коры и в стороны от тела нейрона расхо­дятся 5-16 более коротких боковых (латеральных) дендритов, которые, ветвясь, распространяются в пределах того же слоя, где находится тело клетки. От середины базальной поверхности тела отходит длинный и тонкий аксон, идущий в белое вещество, который на расстоянии 60-90 мкм начинает давать коллатерали. Размеры пирамидных нейронов варьируют от 10 до 140 мкм; различают гигантские, крупные, средние и малые пирамидные клетки.

    Основная функция пирамидных клеток - интеграция внутри коры (средние и малые клетки) и образование эфферентных путей (гигант­ские и крупные клетки).

    Непирамидные клетки располагаются практически во всех слоях коры, воспринимая поступающие афферентные сигналы, а их аксоны распространяются в пределах самой коры, передавая импульсы на пирамидные нейроны. Эти клетки весьма разнообразны и преиму­щественно являются разновидностями звездчатых клеток. Они включа­ют шипикоеые звездчатые, корзинчатые, аксо-аксонные клетки, клет­ки-" канделябры", клетки с двойным букетом дендритов, горизонталь­ные клетки Кахаля, клетки Мартинотти и др. Основная функция не­пирамидных клеток - интеграция нейронных цепей внутри коры.

    Цитоархитектоника коры полушарий большого мозга. Нейроны коры располагаются нерезко разграниченными слоями (пластинками), которые обозначаются римскими цифрами и ну­меруются снаружи внутрь (см. рис. 11-11, А, Б).

    / - молекулярный слой располагается под мягкой мозговой оболочкой; содержит сравнительно небольшое число мелких нейронов -горизонтальных клеток Кахаля с длинными ветвящимися дендритами, отходящими в горизонтальной плоскости от веретеновидного тела. Их аксоны участвуют в образовании тангенциального сплетения волокон этого слоя. В молекулярном слое имеются многочисленные дендриты и аксоны клеток более глубоко расположенных слоев, образующих межнейронные связи.

    II - наружный зернистый слой образован многочисленными мелкими пирамидными и звездчатыми клетками, дендриты которых ветвятся и поднимаются в молекулярный слой, а аксоны либо уходят в белое вещество, либо образуют дуги и также направляются в моле­кулярный слой.

    III - пирамидный слой - значительно варьирует по ширине и максимально выражен в ассоциативных и сенсомоторных областях коры. В нем преобладают пирамидные клетки, размеры которых уве­личиваются вглубь слоя от мелких до крупных. Апикальные дендриты пирамидных клеток направляются в молекулярный слой, а латеральные образуют синапсы с клетками данного слоя. Аксоны этих клеток окан­чиваются в пределах серого вещества или направляются в белое. Поми­мо пирамидных клеток, слой содержит разнообразные непирамидные нейроны. Слой выполняет преимущественно ассоциативные функции, связывая клетки как в пределах данного полушария, так и с противо­положным полушарием.

    /V - внутренний зернистый слой - широкий в зрительной и слуховой областях коры, а в сенсомоторной области практически отсутствует. Он образован мелкими пирамидными и звездчатыми клетками. В этом слое заканчивается основная часть таламических афферентных волокон. Аксоны клеток этого слоя образуют связи с клетками выше- и нижележащих слоев коры.

    V - ганглионарныи слой образован крупными, а в области моторной коры (прецентральной извилины) - гигантскими пирамид­ными клетками (Беца). Апикальные дендриты пирамидных клеток до­стигают I слоя, образуя там верхушечные букеты, латеральные дендриты распространяются в пределах того же слоя. Аксоны гигантских и круп­ных пирамидных клеток проецируются на ядра головного и спинного мозга, наиболее длинные из них в составе пирамидных путей достигают каудальных сегментов спинного мозга. В V слое сосредоточено боль­шинство корковых проекционных эфферентов.

    VI - слой полиморфных клеток образован разнообразными по форме нейронами (веретеновидными, звездчатыми, клетками Map -тинотти). Наружные участки слоя содержат более крупные клетки, вну­тренние - более мелкие и редко расположенные. Аксоны этих клеток уходят в белое вещество в составе эфферентных путей, а дендриты проникают до молекулярного слоя. Аксоны мелких клеток Мартинотти поднимаются к поверхности коры и ветвятся в молекулярном слое.

    Миелоархигектоника коры полушарий большого мозга. Нервные волокна коры полушарий большого мозга включают три группы: 1) афферентные, 2) ассоциативные и комиссуральные и 3) эфферентные волокна.

    Кора больших полушарий является высшим отделом центральной нервной системы, который в процессе филогенетического развития появляется позже всего и формируется в ходе индивидуального (онтогенетического) развития позже других отделов мозга. Кора представляет собой слой серого вещества толщиной 2-3 мм, содержащий в среднем около 14 млрд. (от 10 до 18 млрд.) нервных клеток, нервные волокна и межуточную ткань (нейроглию). На поперечном ее срезе по расположению нейрон ов и их связей различают 6 горизонтальных слоев. Благодаря многочисленным извилинам и бороздам площадь поверхности коры достигает 0,2 м2. Непосредственно под корой находится белое вещество, состоящее из нервных волокон, которые передают возбуждение в кору и из нее, а также от одних участков коры другим.
    Корковые нейрон ы и их связи. Несмотря на огромное число нейрон ов в коре, известно очень немного их разновидностей. Основными типами их являются пирамидные и звездчатые нейрон ы.
    ...
    В афферентной функции коры и в процессах переключения возбуждения на соседние нейрон ы основная роль принадлежит звездчатым нейрон ам. Они составляют у человека более половины всех клеток коры. Эти клетки имеют короткие ветвящиеся аксон ы, не выходящие за пределы серого вещества коры, и короткие ветвящиеся дендрит ы. Звездчатые нейрон ы участвуют в процессах восприятия раздражении и объединении деятельности различных пирамидных нейрон ов.

    Пирамидные нейрон ы осуществляют эфферентную функцию коры и внутрикорковые процессы взаимодействия между удаленными друг от друга нейрон ами. Они делятся на крупные пирамиды, от которых начинаются проекционные, или эфферентные, пути к подкорковым образованиям, и мелкие пирамиды, образующие ассоциативные пути к другим отделам коры. Наиболее крупные пирамидные клетки - гигантские пирамиды Беца - находятся в передней центральной извилине, в так называемой моторной зоне коры. Характерная особенность крупных пирамид - их вертикальная ориентация в толще коры. От тела клетки вертикально вверх к поверхности коры направлен наиболее толстый (верхушечный) дендрит , через который в клетку поступают различные афферентные влияния от других нейрон ов, а вертикально вниз отходит эфферентный отросток - аксон .

    Многочисленность контактов (например, только на дендрит ах крупной пирамиды их насчитывают от 2 до 5 тыс.) обеспечивает возможность широкой регуляции деятельности пирамидных клеток со стороны множества других нейрон ов. Это позволяет координировать ответные реакции коры (в первую очередь ее моторную функцию) с разнообразными воздействиями из внешней среды и внутренней среды организма.

    Для коры больших полушарий характерно обилие межнейрон ных связей. По мере развития мозга человека после его рождения увеличивается число межцентральных взаимосвязей, особенно интенсивно до 18 лет.

    ...
    Первичные, вторичные и третичные поля коры . Особенности строения и функционального значения отдельных участков коры позволяют выделить отдельные корковые поля.

    Различают три основные группы полей в коре: первичные, вторичные и третичные поля.

    Первичные поля связаны с органами чувств и органами движения на периферии, они раньше других созревают в онтогенез е, имеют наиболее крупные клетки. Это так называемые ядерные зоны анализаторов, по И. П. Павлову (например, поле болевой, температурной, тактильной и мышечно-суставной чувствительности в задней центральной извилине коры, зрительное поле в затылочной области, слуховое поле в височной области и двигательное поле в передней центральной извилине коры) (рис. 54). Эти поля осуществляют анализ отдельных раздражений, поступающих в кору от соответствующих рецептор ов. При разрушении первичных полей возникают так называемая корковая слепота, корковая глухота и т. п. Рядом расположены вторичные поля, или периферические зоны анализаторов, которые связаны с отдельными органами только через первичные поля. Они служат для обобщения и дальнейшей обработки поступающей информации. Отдельные ощущения синтезируются в них в комплексы, обусловливающие процессы восприятия. При поражении вторичных полей сохраняется способность видеть предметы, слышать звуки, но человек их не узнает, не помнит их значения. Первичные и вторичные поля имеются и у человека, и у животных.

    Наиболее далеки от непосредственных связей с периферией третичные поля, или зоны перекрытия анализаторов. Эти поля есть только у человека. Они занимают почти половину территории коры и имеют обширные связи с другими отделами коры и с неспецифическими системами мозга. В этих полях преобладают наиболее мелкие и разнообразные клетки. Основным клеточным элементом здесь являются звездчатые нейрон ы. Третичные поля находятся в задней половине коры - на границах теменных, височных и затылочных ее областей и в передней половине - в передних частях лобных областей. В этих зонах оканчивается наибольшее число нервных волокон, соединяющих левое и правое полушария, поэтому роль их особенно велика в организации согласованной работы обоих полушарий. Третичные поля созревают у человека позже других корковых полей, они осуществляют наиболее сложные функции коры. Здесь происходят процессы высшего анализа и синтеза. В третичных полях на основе синтеза всех афферентных раздражении и с Учетом следов прежних раздражении вырабатываются цели и задачи поведения. Согласно им происходит программирование двигательной деятельности. Развитие третичных полей у человека связывают с функцией речи. Мышлени е (внутренняя речь) возможно только при совместной деятельности анализаторов, объединение информации от которых происходит в третичных полях.

    При врожденном недоразвитии третичных полей человек не в состоянии овладеть речью (произносит лишь бессмысл енные звуки) и даже простейшими двигательными навыками (не может одеваться, пользоваться орудиями труда и т. п.).

    Воспринимая и оценивая все сигналы из внутренней и внешней среды, кора больших полушарий осуществляет высшую регуляцию всех двигательных и эмоционально-вегетативных реакций.

    Функции коры больших полушарии . Кора больших полушарий выполняет наиболее сложные функции организации приспособительного поведения организма во внешней среде. Это прежде всего функция высшего анализа и синтеза всех афферентных раздражении.

    Афферентные сигналы поступают в кору по разным каналам, в разные ядерные зоны анализаторов (первичные поля), а затем синтезируются во вторичных и третичных полях, благодаря деятельности которых создается целостное восприятие внешнего мира. Этот синтез лежит в основе сложных психи ческих процессов восприятия, представления, мышлени я. Кора больших полушарий представляет собою орган, тесно связанный с возникновением у человека сознания и регуляцией его общественного поведения. Важной стороной деятельности коры больших полушарий является замыкательная функция - образование новых рефлексов и их систем (условные рефлексы, динамические стереотипы-см. главу XV).

    Благодаря необычайно большой продолжительности сохранения в коре следов прежних раздражении (памяти) в ней накапливается огромный объем информации. Это имеет большое значение для сохранения индивидуального опыта, который используется по мере необходимости.
    ...
    Экспериментально показано, что у высших представителей животного мира после полного оперативного удаления коры высшая нервная деятельность резко ухудшается. Они теряют способность тонко приспосабливаться к внешней среде и самостоятельно существовать в ней.

    Кора больших полушарий

    Кора больших полушарий головного мозга или кора головного мозга (лат. cortex cerebri ) - структура головного мозга , слой серого вещества толщиной 1,3-4,5 мм , расположенный по периферии полушарий большого мозга, и покрывающий их. Наибольшая толщина отмечается в верхних участках предцентральной, постцентральной извилин и парацентральной дольки .

    Кора головного мозга играет очень важную роль в осуществлении высшей нервной (психической) деятельности .

    У человека кора составляет в среднем 44% от объёма всего полушария в целом . Площадь поверхности коры одного полушария у взрослого человека в среднем равна 220 000 мм² . На поверхностные части приходится 1 / 3 , на залегающие в глубине между извилинами - 2 / 3 всей площади коры .

    Величина и форма борозд подвержены значительным индивидуальным колебаниям - не только мозг различных людей, но даже полушария одной и той же особи по рисунку борозд не вполне похожи .

    Всю кору полушарий принято разделять на 4 типа: древняя (палеокортекс), старая (архикортекс), новая (неокортекс) и межуточная кора. Поверхность неокортекса у человека занимает 95,6%, старой 2,2%, древней 0,6%, межуточной 1,6% .

    Анатомия

    Кора большого мозга покрывает поверхность полушарий и образует большое количество различных по глубине и протяжённости борозд (лат. sulci cerebri ). Между бороздами расположены различной величины извилины большого мозга (лат. gyri cerebri ) .

    В каждом полушарии различают следующие поверхности:

    Эти три поверхности каждого полушария, переходя одна в другую, образуют три края. Верхний край (лат. margo superior ) разделяет верхнелатеральную и медиальную поверхности. Нижнелатеральный край (лат. margo inferolateralis ) отделяет верхнелатеральную поверхность от нижней. Нижнемедиальный край (лат. margo inferomedialis ) располагается между нижней и медиальной поверхностями .

    В каждом полушарии различают наиболее выступающие места: спереди - лобный полюс (лат. polus frontalis ), сзади - затылочный (лат. polus occipitalis ), и сбоку - височный (лат. polus temporalis ) .

    Полушарие разделено на пять долей. Четыре из них примыкают к соответствующим костям свода черепа:

    1. лобная доля (лат. lobus frontalis )
    2. теменная доля (лат. lobus parietalis )
    3. затылочная доля (лат. lobus occipitalis )
    4. височная доля (лат. lobus temporalis )

    Борозды и извилины верхнелатеральной поверхности

    Лобная доля - обозначена синим. Теменная доля - обозначена желтым. Височная доля - обозначена зелёным. Затылочная доля - обозначена розовым.

    Лобная доля

    Лобную долю от теменной отделяет глубокая центральная борозда (лат. sulcus centralis ). Она начинается на медиальной поверхности полушария, переходит на его верхнелатеральную поверхность, идёт по ней немного косо, сзади наперёд, и обычно не доходит до латеральной борозды мозга .

    Приблизительно параллельно центральной борозде располагается предцентральная борозда (лат. sulcus precentralis ), которая не доходит до верхнего края полушария. Предцентральная борозда окаймляет спереди прецентральную извилину (лат. gyrus precentralis ) .

    Верхняя и нижняя лобные борозды (лат. sulci frontales superior et inferior ) направляются от предцентральной борозды вперёд. Они делят лобную долю на:

    От латеральной борозды к верху отходят мелкие борозды, называемые ветвями. Наиболее постоянными из них являются восходящая (лат. ramus ascendens ) и передняя (лат. ramus anterior ) ветви. Верхнезадний отдел борозды называется задней ветвью (лат. ramus posterior ) .

    Нижняя лобная извилина, в пределах которой проходят восходящая и передняя ветви, разделяется ими на три части:

    Теменная доля

    Залегает cзади от центральной борозды, которая отделяет её от лобной. От височной отграничена латеральной бороздой мозга, от затылочной - частью теменно-затылочной борозды (лат. sulcus parietooccipitalis ) .

    Между восходящей и задней ветвями латеральной борозды мозга расположен участок коры, обозначаемый как лобно-теменная покрышка (лат. operculum frontoparietalis ). В неё входят задняя часть нижней лобной извилины, нижние отделы предцентральной и постцентральной извилин, а также нижний отдел передней части теменной доли .

    Затылочная доля

    На верхнелатеральной поверхности не имеет границ, отделяющих её от теменной и височной долей, за исключением верхнего отдела теменно-затылочной борозды, которая располагается на медиальной поверхности полушария и отделяет затылочную долю от теменной .

    Наиболее крупная из борозд - поперечная затылочная борозда (лат. sulcus occipitalis transversus ). Иногда она является продолжением кзади внутритеменной борозды и в заднем отделе переходит в непостоянную полулунную борозду (лат. sulcus lunatus ) .

    Височная доля

    Имеет наиболее выраженные границы. В ней различают выпуклую латеральную поверхность и вогнутую нижнюю. Тупой полюс височной доли обращён вперёд и несколько вниз. Латеральная борозда большого мозга резко отграничивает височную долю от лобной .

    Две борозды, расположенные на верхнелатеральной поверхности: верхняя (лат. sulcus temporalis superior ) и нижняя (лат. sulcus temporalis inferior ) височные борозды, следуя почти параллельно латеральной борозде мозга, разделяют долю на три височные извилины: верхнюю, среднюю и нижнюю (лат. gyri temporales superior, medius et inferior ) .

    Те участки височной доли, которые направлены в сторону латеральной борозды мозга изрезаны короткими поперечными височными бороздами (лат. sulci temporales transversi ). Между этими бороздами залегают 2-3 короткие поперечные височные извилины, связанные с извилинами височной доли (лат. gyri temporales transversi ) и островком .

    Островковая доля (островок)

    Залегает на дне латеральной ямки большого мозга (лат. fossa lateralis cerebri ).

    Она представляет собой трёхстороннюю пирамиду, обращённую своей вершиной - полюсом островка - кпереди и кнаружи, в сторону латеральной борозды. С периферии островок окружён лобной, теменной и височной долями, участвующими в образовании стенок латеральной борозды мозга .

    Основание островка с трёх сторон окружено круговой бороздой островка (лат. sulcus circularis insulae ).

    Его поверхность прорезана глубокой центральной бороздой островка (лат. sulcus centralis insulae ). Эта борозда разделяет островок на переднюю и заднюю части .

    На поверхности различают большое количество мелких извилин островка (лат. gyri insulae ). Большая передняя часть состоит из нескольких коротких извилин островка (лат. gyri breves insulae ), задняя - одной длинной извилины (лат. gyrus longus insulae ) .

    Борозды и извилины медиальной поверхности

    На медиальную поверхность полушария выходят лобная, теменная и затылочная доли.

    Поясная извилина ограничена сверху поясной бороздой (лат. sulcus cinguli ). В последней различают выпуклую по направлению к лобному полюсу переднюю часть и заднюю часть, которая, следуя вдоль поясной извилины и не доходя до её заднего отдела, поднимается к верхнему краю полушария большого мозга. Задний конец борозды лежит позади верхнего конца центральной борозды. Между предцентральной бороздой, окончание которой иногда хорошо видно у верхнего края медиальной поверхности полушария, и концом поясной борозды, располагается парацентральная долька (лат. lobulus paracentralis ) .

    Выше поясной извилины, Спереди от подмозолистого поля, начинается медиальная лобная извилина (лат. gyrus frontalis medialis ). Она тянется до парацентральной дольки и является нижней частью верхней лобной извилины.

    Сзади от поясной борозды лежит небольшая четырёхугольная долька - предклинье (лат. precuneus ). Её задней границей является глубокая теменно-затылочная борозда (лат. sulcus parietooccipitalis ), нижней - подтеменная борозда (лат. sulcus subparietalis ), отделяющая предклинье от заднего отдела поясной извилины .

    Сзади и ниже предклинья залегает треугольная долька - клин (лат. cuneus ). Выпуклая наружная поверхность клина участвует в образовании затылочного полюса. Направленная вниз и вперёд вершина клина почти доходит до заднего отдела поясной извилины. Задненижней границей клина является очень глубокая шпорная борозда (лат. sulcus calcarinus ), передней - теменно-затылочная борозда .

    Борозды и извилины нижней поверхности

    На нижней поверхности лобной доли располагается обонятельная борозда (лат. sulcus olfactorius ). Кнутри от неё, между нею и нижнемедиальным краем полушария, лежит прямая извилина (лат. gyrus rectus ). Её задний отдел доходит до переднего продырявленного вещества (лат. substantia perforata anterior ). Кнаружи от борозды располагается остальная часть нижней поверхности лобной доли, изрезанная короткими глазничными бороздами (лат. sulci orbitales ), на ряд небольших глазничных извилин (лат. gyri orbitales ) .

    Нижняя поверхность височной доли глубокой бороздой гиппокампа (лат. sulcus hippocampi ) отделена от ножек мозга. В глубине борозды залегает узкая зубчатая извилина (лат. gyrus dentatus ). Передний её конец переходит в крючок, а задний - в ленточную извилину (лат. gyrus fasciolaris ) залегающую под валиком мозолистого тела. Латерально от борозды находится парагиппокампальная извилина (лат. gyrus parahippocampalis ). Впереди эта извилина имеет утолщение в виде крючка (лат. uncus ), а кзади продолжается в язычную извилину (лат. gyrus lingualis ). Парагиппокампальную и язычную извилины с латеральной стороны ограничивает коллатеральная борозда (лат. sulcus collateralis ), переходящая кпереди в носовую борозду (лат. sulcus rhinalis ). Остальную часть нижней поверхности височной доли занимают медиальная и латеральная затылочно-височные извилины (лат. gyri occipitotemporales medialis et lateralis ), разделённые затылочно-височной бороздой (лат. sulcus occipitotemporalis ). Латеральная затылочно-височная извилина нижнелатеральным краем полушария отделяется от нижней височной извилины .

    Гистология

    Строение

    Цитоархитектоника (расположение клеток)

    • молекулярный слой
    • наружный зернистый слой
    • слой пирамидальных нейронов
    • внутренний зернистый слой
    • ганглионарный слой (внутренний пирамидный слой;клетки Беца)
    • слой полиморфных клеток

    Миелоархитектоника (расположение волокон)

    Кора полушарий головного мозга представлена слоем серого вещества толщиной в среднем около 3 мм (1,3 - 4,5 мм). Наиболее сильно развита она в передней центральной извилине. Обилие борозд и извилин значительно увеличивает площадь серого вещества головного мозга. В коре содержится около 10-14 млрд нервных клеток. Различные её участки, отличающиеся друг от друга некоторыми особенностями расположения и строения клеток (цитоархитектоника), расположения волокон (миелоархитектоника) и функциональным значением, называются полями . Они представляют собой места высшего анализа и синтеза нервных импульсов . Резко очерченные границы между ними отсутствуют. Для коры характерно расположение клеток и волокон слоями .

    Цитоархитектоника

    Пирамидные клетки различных слоёв коры отличаются размерами и имеют разное функциональное значение. Мелкие клетки представляют собой вставочные нейроны, аксоны которых связывают отдельные участки коры одного полушария (ассоциативные нейроны) или двух полушарий (комиссуральные нейроны). Эти клетки встречаются в разных количествах во всех слоях коры. Особенно богата ими кора головного мозга человека. Аксоны крупных пирамидных нейронов принимают участие в образовании пирамидных путей , проецирующих импульсы в соответствующие центры мозгового ствола и спинного мозга .

    Нейроны коры расположены нерезко отграниченными слоями. Каждый слой характеризуется преобладанием какого-либо одного вида клеток. В двигательной зоне коры различают 6 основных слоёв:

    Кора полушарий головного мозга также содержит мощный нейроглиальный аппарат, выполняющий трофическую, защитную, опорную и разграничительную функции .

    На медиальной и нижней поверхности полушарий сохранились участки старой, древней коры, которые имеют двухслойное и трехслойное строение.

    Молекулярный слой

    Молекулярный слой коры содержит небольшое количество мелких ассоциативных клеток веретеновидной формы. Их аксоны проходят параллельно поверхности мозга в составе тангенциального сплетения нервных волокон молекулярного слоя. Основная масса волокон этого сплетения представлена ветвлениями дендритов нейронов нижележащих слоёв .

    Наружный зернистый слой

    Наружный зернистый слой образован мелкими нейронами диаметром около 10 мкм, имеющими округлую, угловатую и пирамидальную форму, и звёздчатыми нейронами. Дендриты этих клеток поднимаются в молекулярный слой. Аксоны или уходят в белое вещество, или, образуя дуги, также поступают в тангенциальное сплетение волокон молекулярного слоя .

    Слой пирамидальных нейронов

    Является самым широким по сравнению с другиями слоями коры головного мозга. Он особенно хорошо развит в прецентральной извилине. Величина пирамидных клеток последовательно увеличивается в пределах 10-40 мкм от наружной зоны этого слоя к внутренней. От верхушки пирамидной клетки отходит главный дендрит, который располагается в молекулярном слое. Дендриты, берущие начало от боковых поверхностей пирамиды и её основания, имеют незначительную длину и образуют синапсы со смежными клетками этого слоя. Аксон пирамидной клетки всегда отходит от её основания. В мелких клетках он остаётся в пределах коры; аксон же, принадлежащий крупной пирамиде, обычно формирует миелиновое ассоцативное или комиссуральное волокно, идущее в белое вещество .

    Внутренний зернистый слой

    В некоторых полях коры развит очень сильно (например, в зрительной зоне коры). Однако в других участках он может отсутствовать (в прецентральной извилине). Этот слой образован мелкими звёздчатыми нейронами. В его состав входит большое количество горизонтальных волокон .

    Ганглионарный слой (Внутренний пирамидный слой;Клетки Беца)

    Образован крупными пирамидными клетками, причём область прецентральной извилины содержит гигантские клетки, описанные впервые киевским анатомом В. А. Бецем в 1874 году (клетки Беца). Они достигают в высоту 120 и в ширину 80 мкм. В отличие от других пирамидных клеток коры гигантские клетки Беца характеризуются наличием крупных глыбок хроматофильного вещества. Их аксоны образуют главную часть кортико-спинальных и кортико-нуклеарных путей и оканчиваются на мотонейронах мозгового ствола и спинного мозга .

    Слой мультиморфных клеток

    Образован нейронами различной, преимущественно веретенообразной формы. Внешняя зона этого слоя содержит более крупные клетки. Нейроны внутренней зоны мельче и лежат на большом расстоянии друг от друга. Аксоны клеток полиморфного слоя уходят в белое вещество в составе эфферентных путей головного мозга. Дендриты достигают молекулярного слоя коры .

    Миелоархитектоника

    Среди нервных волокон коры полушарий головного мозга можно выделить:

    Кроме тангенциального сплетения молекулярного слоя, на уровне внутреннего зернистого и ганглионарного слоёв расположены два тангенциальных слоя миелиновых нервных волокон и коллатералей аксонов клеток коры. Вступая в синаптические связи с нейронами коры, горизонтальные волокна обеспечивают широкое распространение в ней нервного импульса .

    Модуль

    I, II, III, IV, V, VI - слои коры
    Афферентные волокна
    1. кортико-кортикальное волокно
    2. таламо-кортикальное волокно
    2а. зона распространения специфических таламо-кортикальных волокон
    3. пирамидные нейроны
    3а. заторможенные пирамидные нейроны
    4. тормозные нейроны и их синапсы
    4а. клетки с аксональной кисточкой
    4б. малые корзинчатые клетки
    4в. большие корзинчатые клетки
    4г. аксоаксональные нейроны
    4д. клетки с двойным букетом дендритов (тормозящие тормозные нейроны)
    5. шипиковые звёздчатые клетки , возбуждающие пирамидные нейроны непосредственно и путём стимуляции клеток с двойным букетом дендритов

    Исследуя кору больших полушарий головного мозга Сентаготаи и представители его школы установили, что её структурно-функциональной единицей является модуль - вертикальная колонка диаметром около 300 мкм. Модуль организован вокруг кортико-кортикального волокна, представляющего собой аксон пирамидной клетки III слоя (слоя пирамидальных клеток) того же полушария (ассоциативное волокно), либо от пирамидальных клеток противоположного (комиссуральное). В модуль входят два таламо-кортикальных волокна - специфических афферентных волокна, оканчивающихся в IV слое коры на шипиковых звёздчатых нейронах и отходящих от основания (базальных) дендритах пирамидальных нейронов. Каждый модуль, по мнению Сентаготаи разделяется на два микромодуля диаметром менее 100 мкм. Всего в неокортексе человека примерно 3 млн модулей. Аксоны пирамидальных нейронов модуля проецируются на три модуля той же стороны и через мозолистое тело посредством комиссуральных волокон на два модуля противоположного полушария. В отличие от специфических афферентных волокон, оканчивающихся в IV слое коры, кортико-кортикальные волокна образуют окончания во всех слоях коры, и, достигая I слоя, дают горизонтальные ветви, выходящие далеко за пределы модуля .

    Помимо специфических (таламо-кортикальных) афферентных волокон, на выходные пирамидальные нейроны возбуждающее влияние оказывают шипиковые звёздчатые нейроны. Различают два типа шипиковых клеток:

    Тормозная система модуля представлена следующими типами нейронов:

    Система угнетения тормозных нейронов:

    Мощный возбуждающий эффект фокальных шипиковых звёздчатых клеток объясняется тем, что они одновременно возбуждают пирамидные нейроны и клетку с двойным букетом дендритов. Таким образом, первые три тормозных нейрона тормозят пирамидные клетки, а клетки с двойным букетом дендритов возбуждают их, угнетая тормозные нейроны .

    Однако, также существуют критические и альтернативные концепции , ставящие под сомнение модульную организацию коры больших полушарий и мозжечка. Безусловно, влияние на эти воззрения оказало предсказание в 1985 г. и в дальнейшем открытие в 1992 г. диффузного объёмного нейротрансмиттинга .

    Резюме

    Межнейрональные взаимосвязи нейронов коры больших полушарий головного мозга можно представить следующим образом: входящая (афферентная) информация поступает из таламуса по таламо-кортикальным волокнам, которые заканчиваются на клетках IV (внутреннего зернистого) слоя. Его звёздчатые нейроны оказывают возбуждающее воздействие на пирамидные клетки III (пирамидальных нейронов) и V (ганглионарного) слоёв, а также на клетки с двойным букетом дендритов, которые блокируют тормозные нейроны. Клетки III слоя образуют волокна (ассоциативные и комиссуральные), которые связывают между собой различные отделы коры. Клетки V и VI (мультиморфных клеток) слоёв формируют проекционные волокна, которые уходят в белое вещество и несут информацию другим отделам центральной нервной системы. Во всех слоях коры находятся тормозные нейроны, играющие роль фильтра путём блокирования пирамидных нейронов .

    Кора различных отделов характеризуется преимущественным развитием тех или иных её слоёв. Так, в двигательных центрах коры, например в передней центральной извилине, сильно развиты III, V и VI и плохо выражены II и IV слои. Это так называемый агранулярный тип коры . Из этих областей берут начало нисходящие проводящие пути центральной нервной системы. В чувствительных корковых центрах, где заканчиваются афферентные проводники, идущие от органов обоняния, слуха и зрения, слабо развиты слои, содержащие крупные и средние пирамидные клетки, тогда как зернистые слои (II и IV) достигают своего максимального развития. Это гранулярный тип коры

    Загрузка...