docgid.ru

Вред светодиодных и люминесцентных ламп. Какую пользу или вред приносит людям синий свет

Массовое появление светодиодных ламп на прилавках хозяйственных магазинов, визуально напоминающих лампу накаливания (цоколь Е14, Е27), привело к появлению дополнительных вопросов среди населения о целесообразности их применения. Рекламодатели заявляют о небывалых энергетических показателях, рабочем ресурсе в несколько десятков лет и мощнейшем световом потоке инновационных источников света. Исследовательские центры, в свою очередь, выдвигают теории и преподносят факты, свидетельствующие о вреде светодиодных ламп. Как далеко шагнули осветительные технологии, и что скрывает обратная сторона медали под названием «светодиодное освещение»?

Что правда, а что вымысел?

Несколько лет использования светодиодных ламп позволило учёным сделать первые выводы об их истинной эффективности и безопасности. Оказалось, что такие яркие источники света, как светодиодные лампы также имеют свои «тёмные стороны». Негатива добавили китайские коллеги, которые, в очередной раз, наводнили рынок некачественной продукцией. Какому освещению отдать предпочтение, чтобы в погоне за энергоэффективностью не ухудшить зрение? В поисках компромиссного решения придётся ближе познакомиться со светодиодными лампами.

В конструкции имеются вредные вещества

Чтобы убедиться в экологичности светодиодной лампы, достаточно вспомнить из каких деталей она состоит. Её корпус выполнен из пластика и стального цоколя. В мощных образцах по окружности расположен радиатор из алюминиевого сплава. Под колбой закреплена печатная плата со светоизлучающими диодами и радиокомпоненты драйвера. В отличие от энергосберегающих люминесцентных ламп колбу со светодиодами не герметизируют и не заполняют газом. По наличию вредных веществ, светодиодные лампы можно занести в одну категорию с большинством электронных устройств без аккумуляторов. Безопасная эксплуатация – существенный плюс инновационных источников света.

Белый светодиодный свет вредит зрению

Отправляясь за покупкой LED-ламп, нужно обращать внимание на . Чем она выше, тем больше интенсивность излучения в синем и голубом спектре. Сетчатка глаза наиболее чувствительна к синему свету, который в течение длительного повторяющегося воздействия приводит к её деградации. Особенно вреден холодный белый свет для детских глаз, структура которых находится в стадии развития.

Чтобы снизить раздражение органов зрения в светильники с двумя и более патронами рекомендуется включать лампы накаливания малой мощности (40–60 Вт), а также использовать светодиодные лампы, излучающие тёплый белый свет. Применение подобных светильников без высокого не наносит вреда и одобрено министерством здравоохранения РФ. Цветовая температура (Тс) указывается на упаковке и должна быть в пределах 2700–3200 К Российские производители Оптоган и SvetaLed рекомендуют приобретать осветительные приборы теплых тонов, т. к. их спектр излучения наиболее похож на солнечный свет.

Сильно мерцают

Вред пульсаций от любого искусственного источника света давно доказан. Мерцания частотой от 8 до 300 Гц отрицательно влияют на нервную систему. Как видимые, так и невидимые пульсации проникают через органы зрения в головной мозг и способствуют ухудшению здоровья. Светодиодные лампы не стали исключением. Однако, не всё так плохо. Если выходное напряжение драйвера дополнительно проходит качественную фильтрацию, избавляясь от переменной составляющей, то величина пульсаций не превысит 1%.
Коэффициент пульсаций (Кп) ламп, в которые встроен импульсный блок питания, не превышает 10%, что удовлетворяет санитарным нормам, действующим на территории РФ. Цена прибора освещения с высококачественным драйвером не может быть низкой, а её производитель должен быть известным брендом.

Подавляют секрецию мелатонина

Мелатонин – гормон, отвечающий за периодичность сна и регулирующий суточный ритм. В здоровом организме его концентрация увеличивается с наступлением темноты и вызывает сонливость. Работая в ночное время, человек подвержен воздействию различных вредных факторов, в том числе и освещения. В результате неоднократных исследований доказано негативное воздействие светодиодного света в ночное время на зрение человека.

Поэтому с наступлением темноты следует избегать яркого светодиодного излучения, особенно в спальных комнатах. Отсутствие сна после длительного просмотра телевизора (монитора) со светодиодной подсветкой также объясняется снижением выработки мелатонина. Систематическое воздействие синего спектра в ночное время провоцирует бессонницу. Кроме регуляции сна мелатонин нейтрализует окислительные процессы, а значит, замедляет старение.

Для светодиодных ламп не имеется стандартов

Данное утверждение является частично ошибочным. Дело в том, что светодиодное освещение ещё развивается, а значит, обретает новые плюсы и минусы. Индивидуального стандарта для него не существует, но оно включено в ряд действующих нормативных документов, предусматривающих влияние искусственного освещения на человека. Например, ГОСТ Р МЭК 62471–2013 «Светобиологическая безопасность ламп и ламповых систем». В нём подробно описаны условия и методики измерений параметров ламп, включая светодиодные, приведены формулы для расчёта предельных значений опасного облучения. Согласно МЭК 62471–2013 все лампы непрерывной волны классифицируют по четырём группам опасности для глаз. Определение группы риска для конкретного типа ламп проводят экспериментально на основании замеров опасного УФ и ИК излучения, опасного синего света, а также теплового воздействия на сетчатку глаза.

СП 52.13330.2011 устанавливает нормативные требования ко всем видам освещения. В разделе «Искусственное освещение» светодиодным лампам и модулям уделено должное внимание. Их рабочие параметры не должны выходить за рамки допустимых значений, предусмотренных настоящим сводом правил. Например, п.7.4 указывает на применение в качестве источников искусственного освещения ламп с цветовой температурой 2400–6800 К и максимально допустимым УФ-излучением 0,03 Вт/м2. Кроме этого, нормируется значение коэффициента пульсаций, освещённости и световой отдачи.

Излучают много света в инфракрасном и ультрафиолетовом диапазоне

Чтобы разобраться с данным утверждением, нужно проанализировать два способа получения белого света на базе светодиодов. Первый способ предполагает размещение в одном корпусе трёх кристаллов – синего, зеленого и красного. Излучаемая ими длина волны не выходит за пределы видимого спектра. Следовательно, такие светодиоды не генерируют световой поток в инфракрасном и ультрафиолетовом диапазоне.

Чтобы получить белый свет вторым способом на поверхность синего светодиода наносят люминофор, который формирует световой поток с преобладающим желтым спектром. В результате их смешения можно получить разные оттенки белого. Присутствие УФ излучения в данной технологии ничтожно и безопасно для человека. Интенсивность ИК излучения в начале длинноволнового диапазона не превышает 15%, что несоизмеримо мало с аналогичным значением для лампы накаливания. Рассуждения о нанесении люминофора на ультрафиолетовый светодиод вместо синего небезосновательны. Но, пока, получение белого света таким методом является дорогостоящим, имеет низкий КПД и много технологических проблем. Поэтому до промышленных масштабов белые лампы на УФ светодиодах ещё не дошли.

Имеют вредное электромагнитное излучение

Высокочастотный модуль драйвера является самым мощным источником электромагнитного излучения в LED-лампе. Испускаемые драйвером ВЧ импульсы, могут влиять на работу и ухудшать передаваемый сигнал радиоприёмников, WIFI передатчиков, расположенных в непосредственной близости. Но вред от электромагнитного потока светодиодной лампы для человека на несколько порядков меньше вреда от мобильного телефона, СВЧ печи или WIFI роутера. Поэтому влиянием электромагнитного излучения от LED ламп с импульсным драйвером можно пренебречь.

Дешёвые китайские лампочки безвредны для здоровья

Частично ответ на это утверждение уже дан выше. Относительно китайских светодиодных ламп принято считать: дешево – значит некачественно. И к сожалению, это действительно так. Анализируя товар в магазинах, можно отметить, что все LED лампы стоимостью менее 200 рублей за штуку имеют некачественный модуль преобразования напряжения. Внутри таких ламп вместо драйвера ставят бестрансформаторный блок питания (БП) с полярным конденсатором для нейтрализации переменной составляющей. Из-за малой ёмкости с возложенной функцией конденсатор справляется лишь частично. Как следствие – коэффициент пульсаций может достигать до 60%, что может негативно повлиять на зрение и здоровье человека в целом.
Минимизировать вред от таких светодиодных ламп можно двумя способами. Первый предусматривает замену электролита на аналог ёмкостью около 470 мкФ (если позволит свободное пространство внутри корпуса). Такие лампы можно будет использовать в коридоре, туалете и прочих комнатах с низким зрительным напряжением. Второй – более дорогостоящий и предполагает замену некачественного БП на драйвер с импульсным преобразователем. Но в любом случае для освещения жилых комнат и рабочих мест лучше использовать достойные , а от приобретения дешевой продукции из Китая лучше воздержаться.

В настоящее время доказано повреждающее воздействие синего света на фоторецепторы и пигментный эпителий сетчатки


Солнечный свет — источник жизни на Земле, свет от Солнца доходит до нас за 8,3 мин. Хотя лишь 40% энергии солнечных лучей, попадающих на верхнюю границу атмосферы, преодолевают ее толщу, но и эта энергия не менее чем в 10 раз превышает ту, которая содержится во всех разведанных запасах подземного топлива. Солнце решающим образом повлияло на образование всех тел Солнечной системы и создало условия, которые привели к возникновению и развитию жизни на Земле. Однако длительное воздействие некоторых наиболее высокоэнергетичных диапазонов солнечного излучения представляет реальную опасность для многих живых организмов, в том числе и человека. На страницах журнала мы неоднократно рассказывали о том, с каким риском для глаз связано длительное воздействие ультрафиолетового света, однако, как показывают данные научных исследований, синий свет видимого диапазона также представляет определенную опасность.

Ультрафиолетовый и синий диапазоны солнечного излучения

Ультрафиолетовое излучение - это невидимое глазом электромагнитное излучение, занимающее часть спектральной области между видимым и рентгеновским излучениями в пределах длин волн 100-380 нм. Вся область ультрафиолетового излучения условно делится на ближнюю (200-380 нм) и далекую, или вакуумную (100-200 нм). Ближний УФ-диапазон, в свою очередь, подразделяется на три составляющих - UVA, UVB и UVC, отличающихся по своему воздействию на организм человека. UVC является наиболее коротковолновым и высокоэнергетичным ультрафиолетовым излучением с диапазоном длин волн 200-280 нм. UVB-излучение включает длины волн от 280 до 315 нм и является излучением средней энергии, представляющим опасность для органов зрения человека. Именно UVB способствует возникновению загара, фотокератита, в экстремальных случаях и заболеваний кожи. UVB практически полностью поглощается роговицей, но часть UVB-диапазона (300-315 нм) может проникать в глаза. UVA - это наиболее длинноволновая и наименее энергетичная составляющая ультрафиолета с диапазоном длин волн 315-380 нм. Роговица поглощает некоторое количество UVА, однако большая часть поглощается хрусталиком.

В отличие от ультрафиолета синий свет является видимым. Именно синие световые волны придают окраску небу (или любому другому предмету). Синий свет начинает видимый диапазон солнечного излучения - к нему относятся световые волны с длиной от 380 до 500 нм, которые имеют наиболее высокую энергию. Название «синий свет» в сущности является упрощенным, поскольку оно охватывает световые волны начиная от фиолетового диапазона (от 380 до 420 нм) и собственно синего (от 420 до 500 нм). Так как синие волны имеют наименьшую длину, они, согласно законам релеевского светорассеяния, наиболее интенсивно рассеиваются, поэтому значительная часть раздражающего блеска солнечного излучения обусловлена синим светом. Пока человек не достигает весьма почтенного возраста, синий свет не поглощается такими естественными физиологическими фильтрами, как слезная пленка, роговица, хрусталик и стекловидное тело глаза.


Прохождение света через различные структуры глаза

Наивысшая проницаемость коротковолнового видимого синего света обнаруживается в молодом возрасте и медленно сдвигается в более длинноволновый видимый диапазон по мере увеличения срока жизни человека.



Светопроницаемость структур глаза в зависимости от возраста

Вредное воздействие синего света на сетчатку

Вредное воздействие синего света на сетчатку было впервые доказано в разнообразных исследованиях на животных. Воздействуя на обезьян большими дозами синего света, исследователи Харверт и Перлинг (Harwerth & Pereling) установили в 1971 году, что это приводит к продолжительной утрате спектральной чувствительности в синем диапазоне, возникающей из-за повреждений сетчатки. В 1980-е годы эти результаты были подтверждены другими учеными, которые обнаружили, что воздействие синим светом приводит к образованию фотохимических повреждений сетчатки, в особенности ее пигментного эпителия и фоторецепторов. В 1988 году в опытах на приматах Янг (Young) установил взаимосвязь между спектральным составом излучения и риском возникновения повреждений сетчатки. Он продемонстрировал, что достигающие сетчатки различные компоненты спектра излучения опасны в разной степени, а риск поражения экспоненциально возрастает с увеличением энергии фотонов. При воздействии на глаза светом диапазона от ближней инфракрасной области и до середины видимого спектра повреждающие эффекты незначительны и слабо зависят от продолжительности облучения. В то же время было обнаружено резкое увеличение повреждающего воздействия при достижении длины светового излучения 510 нм.



Спектр светового повреждения сетчатки

Согласно результатам этого исследования при равных условиях эксперимента синий свет в 15 раз более опасен для сетчатки, чем весь оставшийся диапазон видимого спектра.
Эти данные были подтверждены другими экспериментальными исследованиями, в том числе исследованием профессора Реме, который показал, что при облучении глаз крыс зеленым светом не обнаружено апоптоза или других вызванных светом повреждений, в то время как наблюдается массовая апоптическая гибель клеток после облучения синим светом. В исследованиях было показано, что изменение тканей после длительного воздействия ярким светом было таким же, какое связывают с симптомами возрастной дегенерации макулы.

Кумулятивное воздействие синего света

Уже давно было установлено, что старение сетчатки непосредственно зависит от продолжительности воздействия солнечного излучения. В настоящее время, хотя и нет абсолютно четких клинических доказательств, все большее число специалистов и экспертов убеждены, что кумулятивное воздействие синего света является фактором риска развития возрастной дегенерации макулы (ВДМ). Для установления четкой корреляции были проведены широкомасштабные эпидемиологические исследования. В 2004 году в США были опубликованы результаты исследования «The Beaver Dam Study», в котором участвовали 6 тыс. человек, а наблюдения проводились на протяжении 5-10 лет. Результаты исследования показали, что у людей, которые летом подвергаются воздействию солнечного света более 2 ч в день, риск развития ВДМ в 2 раза выше, чем у тех, кто проводит летом на солнце менее 2 ч. Однако не было выявлено однозначной взаимосвязи между длительностью солнечного облучения и частотой обнаружения ВДМ, что может свидетельствовать о кумулятивном характере повреждающего воздействия света, ответственного за риск ВДМ. Было указано, что кумулятивное воздействие солнечного света связано с риском возникновения ВДМ, что является скорее результатом воздействия видимого, а не ультрафиолетового света. Предыдущие исследования не обнаружили взаимосвязи между кумулятивным воздействием UBA- или UVB-диапазонов, но была установлена взаимосвязь между ВДМ и воздействием на глаза синего света. В настоящее время доказано повреждающее воздействие синего света на фоторецепторы и пигментный эпителий сетчатки. Синий свет вызывает фотохимическую реакцию, продуцирующую свободные радикалы, которые оказывают повреждающее воздействие на фоторецепторы - колбочки и палочки. Образующиеся вследствие фотохимической реакции продукты метаболизма не могут быть нормально утилизированы эпителием сетчатки, они накапливаются и вызывают ее дегенерацию.

Меланин - пигмент, обуславливающий цвет глаз, поглощает лучи света, защищая сетчатку и препятствуя ее повреждению. Люди со светлой кожей и голубыми или светлоокрашенными глазами потенциально более подвержены развитию ВДМ, так как у них меньшая концентрация меланина. Голубые глаза пропускают во внутренние структуры в 100 раз больше света, чем глаза темной окраски.

Для профилактики развития ВДМ следует применять очки с линзами, отрезающими синюю область видимого спектра. При одинаковых условиях воздействия синий свет в 15 раз более опасен для сетчатки, чем остальной свет видимого диапазона.

Как защитить глаза от синего света

Ультрафиолетовое излучение невидимо для наших глаз, поэтому мы пользуемся специальными приборами - УФ-тестерами или спектрофотометрами для оценки защитных свойств очковых линз в ультрафиолетовой области. В отличие от ультрафиолетового синий свет мы видим хорошо, поэтому во многих случаях можем оценить, насколько наши линзы отфильтровывают синий свет.
Очки, получившие название блю-блокеры (blue-blockers), появились в 1980-е годы, когда результаты вредного воздействия излучения синего диапазона видимого спектра еще не были так очевидны. Желтый цвет прошедшего через линзу света свидетельствует о поглощении линзой сине-фиолетовой группы, поэтому блю-блокеры, как правило, имеют желтый оттенок в своей окраске. Они могут быть желтыми, темно-желтыми, оранжевыми, зелеными, янтарными, коричневыми. Помимо защиты глаз блю-блокеры значительно улучшают контрастность изображения. Очки отфильтровывают синий свет, в результате чего исчезает хроматическая аберрация света на сетчатке, что увеличивает и разрешающую способность глаза. Блю-блокеры могут быть окрашенными в темные тона и поглощать до 90-92% света, а могут быть светлыми, если поглощают только фиолетово-синий диапазон видимого спектра. В том случае, когда линзы блю-блокеров поглощают более 80-85% лучей всех фиолетово-синих фрагментов видимого спектра, они могут изменить цвет наблюдаемых синих и зеленых предметов. Поэтому для обеспечения цветоразличения предметов всегда необходимо оставлять пропускание хотя бы малой части синих фрагментов света.

В настоящее время в ассортименте многих компаний представлены линзы, отрезающие синий диапазон видимого спектра. Так, концерн « » производит линзы «SunContrast», которые обеспечивают увеличение контрастности и четкости, то есть разрешающей способности изображения за счет поглощения синей составляющей света. Линзы «SunContrast» с различными коэффициентами поглощения выпускаются шести цветов, среди которых оранжевый (40%), светло-коричневый (65%), коричневый (75 и 85%), зеленый (85%) и специально созданный для водителей вариант «SunContrast Drive» с коэффициентом светопоглощения 75%.

На международной оптической выставке «MIDO-2007» концерн « » представил линзы специального назначения «Airwear Melanin», которые избирательно отфильтровывают синий свет. Эти линзы выполнены из окрашенного в массе поликарбоната и содержат синтетический аналог природного пигмента меланина. Они отфильтровывают 100% ультрафиолетового и 98% коротковолнового синего диапазона солнечного излучения. Линзы «Airwear Melanin» защищают глаза и тонкую, чувствительную кожу вокруг них, при этом они обеспечивают естественную цветопередачу (на российском рынке новинка доступна с 2008 года).

Все полимерные материалы для очковых линз корпорации «HOYA», а именно PNX 1.53, EYAS 1.60, EYNOA 1.67, EYRY 1.70, отсекают не только ультрафиолетовое излучение, но и часть видимого спектра до 390-395 нм, являясь коротковолновыми фильтрами. Кроме того, корпорация «HOYA» производит по заказу широкий ассортимент линз «Special Sphere», повышающих контрастность изображения. К этой категории продукции относятся линзы «Office Brown» и «Office Green» - соответственно светло-коричневого и светло-зеленого цветов, рекомендуемые для работы с компьютером и в офисе в условиях искусственного освещения. Также в эту группу продукции входят линзы оранжевого и желтого цветов «Drive» и «Save Life», рекомендуемые для водителей, линзы коричневого цвета «Speed» для занятий спортом на открытом воздухе, серо-зеленые солнцезащитные линзы «Pilot» для занятий экстремальными видами спорта и темно-коричневые солнцезащитные линзы «Snow» для занятий зимними видами спорта.

В нашей стране в 1980-е годы были внедрены очки для оленеводов, представлявшие собой окрашенные линзы-фильтры. Из отечественных разработок можно отметить релаксационные комбинированные очки, разработанные компанией ООО «Алис-96» (патент РФ № 35068, приоритет от 27.08.2003) под руководством академика С. Н. Федорова. Очки обеспечивают защиту структур глаза от светового повреждения, провоцирования глазной патологии и преждевременного старения под действием ультрафиолетовых и фиолетово-синих лучей. Фильтрация лучей фиолетово-синей группы позволяет улучшить различительную способность при различных нарушениях зрения. Достоверно установлено, что у людей с компьютерным зрительным синдромом (КЗС) легкой и средней степени улучшается острота зрения вдаль, повышаются резервы аккомодации и конвергенции, устойчивость бинокулярного зрения, улучшается контрастная и цветовая чувствительность. По данным компании ООО «Алис-96», проведенные исследования релаксационных очков позволяют рекомендовать их не только для лечения КЗС, но и для профилактики зрительного утомления пользователям видеотерминалов, водителям транспорта и всем, кто подвергается воздействию высоких световых нагрузок.

Мы надеемся, уважаемые читатели, что вам было интересно ознакомиться с результатами научных исследований, связывающих длительное воздействие коротковолнового синего излучения с риском возникновения возрастной дегенерации макулы. Теперь вы сможете подобрать эффективные солнцезащитные и контрастные очковые линзы не только для улучшения контрастности зрения, но и для профилактики болезней глаз.

* Что такое возрастная дегенерация макулы
Это заболевание глаз, встречающееся у 8% людей в возрасте старше 50 лет и 35% людей старше 75 лет. Оно развивается, когда повреждаются очень хрупкие клетки макулы - зрительного центра сетчатки. Люди, страдающие этим заболеванием, не могут нормально фокусировать глаза на предметах, находящихся в самом центре поля зрения. Это нарушает процесс зрения в центральной области, жизненно важной для чтения, вождения автомобиля, просмотра телепередач, распознавания предметов и лиц. При высокой стадии развития ВДМ пациенты видят только благодаря своему периферийному зрению. Причины развития ВДМ обусловлены генетическими факторами и образом жизни - курением, пищевыми привычками, а также воздействием солнечного света. ВДМ стала основной причиной слепоты у людей старше 50 лет в индустриально развитых странах. В настоящее время от ВДМ страдают от 13 до 15 млн жителей США. Риск развития ВДМ в два раза выше у людей, подвергающихся среднему или продолжительному воздействию солнечного света по сравнению с теми, кто мало времени проводит на солнце.

Ольга Щербакова, Веко 10, 2007. Статья подготовлена с использованием материалов компании "Essilor"

В настоящее время доказано повреждающее воздействие синего света на фоторецепторы и пигментный эпителий сетчатки


Солнечный свет — источник жизни на Земле, свет от Солнца доходит до нас за 8,3 мин. Хотя лишь 40% энергии солнечных лучей, попадающих на верхнюю границу атмосферы, преодолевают ее толщу, но и эта энергия не менее чем в 10 раз превышает ту, которая содержится во всех разведанных запасах подземного топлива. Солнце решающим образом повлияло на образование всех тел Солнечной системы и создало условия, которые привели к возникновению и развитию жизни на Земле. Однако длительное воздействие некоторых наиболее высокоэнергетичных диапазонов солнечного излучения представляет реальную опасность для многих живых организмов, в том числе и человека. На страницах журнала мы неоднократно рассказывали о том, с каким риском для глаз связано длительное воздействие ультрафиолетового света, однако, как показывают данные научных исследований, синий свет видимого диапазона также представляет определенную опасность.

Ультрафиолетовый и синий диапазоны солнечного излучения

Ультрафиолетовое излучение - это невидимое глазом электромагнитное излучение, занимающее часть спектральной области между видимым и рентгеновским излучениями в пределах длин волн 100-380 нм. Вся область ультрафиолетового излучения условно делится на ближнюю (200-380 нм) и далекую, или вакуумную (100-200 нм). Ближний УФ-диапазон, в свою очередь, подразделяется на три составляющих - UVA, UVB и UVC, отличающихся по своему воздействию на организм человека. UVC является наиболее коротковолновым и высокоэнергетичным ультрафиолетовым излучением с диапазоном длин волн 200-280 нм. UVB-излучение включает длины волн от 280 до 315 нм и является излучением средней энергии, представляющим опасность для органов зрения человека. Именно UVB способствует возникновению загара, фотокератита, в экстремальных случаях и заболеваний кожи. UVB практически полностью поглощается роговицей, но часть UVB-диапазона (300-315 нм) может проникать в глаза. UVA - это наиболее длинноволновая и наименее энергетичная составляющая ультрафиолета с диапазоном длин волн 315-380 нм. Роговица поглощает некоторое количество UVА, однако большая часть поглощается хрусталиком.

В отличие от ультрафиолета синий свет является видимым. Именно синие световые волны придают окраску небу (или любому другому предмету). Синий свет начинает видимый диапазон солнечного излучения - к нему относятся световые волны с длиной от 380 до 500 нм, которые имеют наиболее высокую энергию. Название «синий свет» в сущности является упрощенным, поскольку оно охватывает световые волны начиная от фиолетового диапазона (от 380 до 420 нм) и собственно синего (от 420 до 500 нм). Так как синие волны имеют наименьшую длину, они, согласно законам релеевского светорассеяния, наиболее интенсивно рассеиваются, поэтому значительная часть раздражающего блеска солнечного излучения обусловлена синим светом. Пока человек не достигает весьма почтенного возраста, синий свет не поглощается такими естественными физиологическими фильтрами, как слезная пленка, роговица, хрусталик и стекловидное тело глаза.


Прохождение света через различные структуры глаза

Наивысшая проницаемость коротковолнового видимого синего света обнаруживается в молодом возрасте и медленно сдвигается в более длинноволновый видимый диапазон по мере увеличения срока жизни человека.



Светопроницаемость структур глаза в зависимости от возраста

Вредное воздействие синего света на сетчатку

Вредное воздействие синего света на сетчатку было впервые доказано в разнообразных исследованиях на животных. Воздействуя на обезьян большими дозами синего света, исследователи Харверт и Перлинг (Harwerth & Pereling) установили в 1971 году, что это приводит к продолжительной утрате спектральной чувствительности в синем диапазоне, возникающей из-за повреждений сетчатки. В 1980-е годы эти результаты были подтверждены другими учеными, которые обнаружили, что воздействие синим светом приводит к образованию фотохимических повреждений сетчатки, в особенности ее пигментного эпителия и фоторецепторов. В 1988 году в опытах на приматах Янг (Young) установил взаимосвязь между спектральным составом излучения и риском возникновения повреждений сетчатки. Он продемонстрировал, что достигающие сетчатки различные компоненты спектра излучения опасны в разной степени, а риск поражения экспоненциально возрастает с увеличением энергии фотонов. При воздействии на глаза светом диапазона от ближней инфракрасной области и до середины видимого спектра повреждающие эффекты незначительны и слабо зависят от продолжительности облучения. В то же время было обнаружено резкое увеличение повреждающего воздействия при достижении длины светового излучения 510 нм.



Спектр светового повреждения сетчатки

Согласно результатам этого исследования при равных условиях эксперимента синий свет в 15 раз более опасен для сетчатки, чем весь оставшийся диапазон видимого спектра.
Эти данные были подтверждены другими экспериментальными исследованиями, в том числе исследованием профессора Реме, который показал, что при облучении глаз крыс зеленым светом не обнаружено апоптоза или других вызванных светом повреждений, в то время как наблюдается массовая апоптическая гибель клеток после облучения синим светом. В исследованиях было показано, что изменение тканей после длительного воздействия ярким светом было таким же, какое связывают с симптомами возрастной дегенерации макулы.

Кумулятивное воздействие синего света

Уже давно было установлено, что старение сетчатки непосредственно зависит от продолжительности воздействия солнечного излучения. В настоящее время, хотя и нет абсолютно четких клинических доказательств, все большее число специалистов и экспертов убеждены, что кумулятивное воздействие синего света является фактором риска развития возрастной дегенерации макулы (ВДМ). Для установления четкой корреляции были проведены широкомасштабные эпидемиологические исследования. В 2004 году в США были опубликованы результаты исследования «The Beaver Dam Study», в котором участвовали 6 тыс. человек, а наблюдения проводились на протяжении 5-10 лет. Результаты исследования показали, что у людей, которые летом подвергаются воздействию солнечного света более 2 ч в день, риск развития ВДМ в 2 раза выше, чем у тех, кто проводит летом на солнце менее 2 ч. Однако не было выявлено однозначной взаимосвязи между длительностью солнечного облучения и частотой обнаружения ВДМ, что может свидетельствовать о кумулятивном характере повреждающего воздействия света, ответственного за риск ВДМ. Было указано, что кумулятивное воздействие солнечного света связано с риском возникновения ВДМ, что является скорее результатом воздействия видимого, а не ультрафиолетового света. Предыдущие исследования не обнаружили взаимосвязи между кумулятивным воздействием UBA- или UVB-диапазонов, но была установлена взаимосвязь между ВДМ и воздействием на глаза синего света. В настоящее время доказано повреждающее воздействие синего света на фоторецепторы и пигментный эпителий сетчатки. Синий свет вызывает фотохимическую реакцию, продуцирующую свободные радикалы, которые оказывают повреждающее воздействие на фоторецепторы - колбочки и палочки. Образующиеся вследствие фотохимической реакции продукты метаболизма не могут быть нормально утилизированы эпителием сетчатки, они накапливаются и вызывают ее дегенерацию.

Меланин - пигмент, обуславливающий цвет глаз, поглощает лучи света, защищая сетчатку и препятствуя ее повреждению. Люди со светлой кожей и голубыми или светлоокрашенными глазами потенциально более подвержены развитию ВДМ, так как у них меньшая концентрация меланина. Голубые глаза пропускают во внутренние структуры в 100 раз больше света, чем глаза темной окраски.

Для профилактики развития ВДМ следует применять очки с линзами, отрезающими синюю область видимого спектра. При одинаковых условиях воздействия синий свет в 15 раз более опасен для сетчатки, чем остальной свет видимого диапазона.

Как защитить глаза от синего света

Ультрафиолетовое излучение невидимо для наших глаз, поэтому мы пользуемся специальными приборами - УФ-тестерами или спектрофотометрами для оценки защитных свойств очковых линз в ультрафиолетовой области. В отличие от ультрафиолетового синий свет мы видим хорошо, поэтому во многих случаях можем оценить, насколько наши линзы отфильтровывают синий свет.
Очки, получившие название блю-блокеры (blue-blockers), появились в 1980-е годы, когда результаты вредного воздействия излучения синего диапазона видимого спектра еще не были так очевидны. Желтый цвет прошедшего через линзу света свидетельствует о поглощении линзой сине-фиолетовой группы, поэтому блю-блокеры, как правило, имеют желтый оттенок в своей окраске. Они могут быть желтыми, темно-желтыми, оранжевыми, зелеными, янтарными, коричневыми. Помимо защиты глаз блю-блокеры значительно улучшают контрастность изображения. Очки отфильтровывают синий свет, в результате чего исчезает хроматическая аберрация света на сетчатке, что увеличивает и разрешающую способность глаза. Блю-блокеры могут быть окрашенными в темные тона и поглощать до 90-92% света, а могут быть светлыми, если поглощают только фиолетово-синий диапазон видимого спектра. В том случае, когда линзы блю-блокеров поглощают более 80-85% лучей всех фиолетово-синих фрагментов видимого спектра, они могут изменить цвет наблюдаемых синих и зеленых предметов. Поэтому для обеспечения цветоразличения предметов всегда необходимо оставлять пропускание хотя бы малой части синих фрагментов света.

В настоящее время в ассортименте многих компаний представлены линзы, отрезающие синий диапазон видимого спектра. Так, концерн « » производит линзы «SunContrast», которые обеспечивают увеличение контрастности и четкости, то есть разрешающей способности изображения за счет поглощения синей составляющей света. Линзы «SunContrast» с различными коэффициентами поглощения выпускаются шести цветов, среди которых оранжевый (40%), светло-коричневый (65%), коричневый (75 и 85%), зеленый (85%) и специально созданный для водителей вариант «SunContrast Drive» с коэффициентом светопоглощения 75%.

На международной оптической выставке «MIDO-2007» концерн « » представил линзы специального назначения «Airwear Melanin», которые избирательно отфильтровывают синий свет. Эти линзы выполнены из окрашенного в массе поликарбоната и содержат синтетический аналог природного пигмента меланина. Они отфильтровывают 100% ультрафиолетового и 98% коротковолнового синего диапазона солнечного излучения. Линзы «Airwear Melanin» защищают глаза и тонкую, чувствительную кожу вокруг них, при этом они обеспечивают естественную цветопередачу (на российском рынке новинка доступна с 2008 года).

Все полимерные материалы для очковых линз корпорации «HOYA», а именно PNX 1.53, EYAS 1.60, EYNOA 1.67, EYRY 1.70, отсекают не только ультрафиолетовое излучение, но и часть видимого спектра до 390-395 нм, являясь коротковолновыми фильтрами. Кроме того, корпорация «HOYA» производит по заказу широкий ассортимент линз «Special Sphere», повышающих контрастность изображения. К этой категории продукции относятся линзы «Office Brown» и «Office Green» - соответственно светло-коричневого и светло-зеленого цветов, рекомендуемые для работы с компьютером и в офисе в условиях искусственного освещения. Также в эту группу продукции входят линзы оранжевого и желтого цветов «Drive» и «Save Life», рекомендуемые для водителей, линзы коричневого цвета «Speed» для занятий спортом на открытом воздухе, серо-зеленые солнцезащитные линзы «Pilot» для занятий экстремальными видами спорта и темно-коричневые солнцезащитные линзы «Snow» для занятий зимними видами спорта.

В нашей стране в 1980-е годы были внедрены очки для оленеводов, представлявшие собой окрашенные линзы-фильтры. Из отечественных разработок можно отметить релаксационные комбинированные очки, разработанные компанией ООО «Алис-96» (патент РФ № 35068, приоритет от 27.08.2003) под руководством академика С. Н. Федорова. Очки обеспечивают защиту структур глаза от светового повреждения, провоцирования глазной патологии и преждевременного старения под действием ультрафиолетовых и фиолетово-синих лучей. Фильтрация лучей фиолетово-синей группы позволяет улучшить различительную способность при различных нарушениях зрения. Достоверно установлено, что у людей с компьютерным зрительным синдромом (КЗС) легкой и средней степени улучшается острота зрения вдаль, повышаются резервы аккомодации и конвергенции, устойчивость бинокулярного зрения, улучшается контрастная и цветовая чувствительность. По данным компании ООО «Алис-96», проведенные исследования релаксационных очков позволяют рекомендовать их не только для лечения КЗС, но и для профилактики зрительного утомления пользователям видеотерминалов, водителям транспорта и всем, кто подвергается воздействию высоких световых нагрузок.

Мы надеемся, уважаемые читатели, что вам было интересно ознакомиться с результатами научных исследований, связывающих длительное воздействие коротковолнового синего излучения с риском возникновения возрастной дегенерации макулы. Теперь вы сможете подобрать эффективные солнцезащитные и контрастные очковые линзы не только для улучшения контрастности зрения, но и для профилактики болезней глаз.

* Что такое возрастная дегенерация макулы
Это заболевание глаз, встречающееся у 8% людей в возрасте старше 50 лет и 35% людей старше 75 лет. Оно развивается, когда повреждаются очень хрупкие клетки макулы - зрительного центра сетчатки. Люди, страдающие этим заболеванием, не могут нормально фокусировать глаза на предметах, находящихся в самом центре поля зрения. Это нарушает процесс зрения в центральной области, жизненно важной для чтения, вождения автомобиля, просмотра телепередач, распознавания предметов и лиц. При высокой стадии развития ВДМ пациенты видят только благодаря своему периферийному зрению. Причины развития ВДМ обусловлены генетическими факторами и образом жизни - курением, пищевыми привычками, а также воздействием солнечного света. ВДМ стала основной причиной слепоты у людей старше 50 лет в индустриально развитых странах. В настоящее время от ВДМ страдают от 13 до 15 млн жителей США. Риск развития ВДМ в два раза выше у людей, подвергающихся среднему или продолжительному воздействию солнечного света по сравнению с теми, кто мало времени проводит на солнце.

Ольга Щербакова, Веко 10, 2007. Статья подготовлена с использованием материалов компании "Essilor"

Представьте, что электричества не существует, а старинные методы освещения – свечи и лампы – вам по какой-то причине недоступны. Не нужно обладать буйным воображением, чтобы понимать: в этом случае вы «потеряете» большую часть суток (и, наконец-то, начнете как следует высыпаться). Вам просто нечего будет делать вечерами – да уже сразу после сумерек! Эта маленькая фантазия помогает понять, что все мы окружены искусственным освещением, при котором занимаемся буквально всем – от готовки и игр с детьми до учебы, работы и чтения. Но при этом искусственное освещение так основательно слилось с образом жизни цивилизованного человека, что мы его уже просто не замечаем. А ведь искусственное освещение является одним из главных факторов, влияющих на зрение.

Самый лучший свет для зрения – разумеется, естественный солнечный. Но и тут есть свои нюансы: так, смотреть на яркое солнце без темных очков не рекомендуется, а долгое пребывание на палящем солнце без защиты глаз может привести к нарушению зрения и способствовать развитию различных . Наиболее здоровый вариант – это чуть рассеянный дневной белый свет . Но даже днем далеко не всегда такого света достаточно: во-первых, если вы находитесь в помещении, степень освещенности в течение дня меняется из-за перемещения солнца относительно вашей стороны здания; во-вторых, в зимний период (захватывая позднюю осень и раннюю весну) свет в наших широтах вообще слишком тусклый для полноценного освещения. Поэтому в дневное время естественный свет часто используется лишь как фоновый, который обязательно нужно дополнять местным искусственным освещением. Тут мы приближаемся к главному вопросу: какое искусственное освещение наиболее полезно для зрения?

Лампы накаливания или люминисцентные

Как и следовало ожидать, люди еще не изобрели идеального искусственного освещения. Чаще всего споры о пользе/вреде для зрения касаются выбора между традиционными лампами накаливания и люминисцентными лампами дневного света, - и в этих спорах нет победителей. Все дело в том, что в чем-то лампы накаливания превосходят люминисцентные лампы – и наоборот; обе технологии не дают идеального эффекта. Главное достоинство ламп накаливания состоит в том, что они не мерцают, а значит, не дают нагрузки на глаза. Свет таких ламп распространяется равномерно и плавно, пульсация полностью отсутствует. Недостатком ламп накаливания является низкая экономичность и экологичность, а также желтый оттенок и слабая интенсивность света. Главным достоинством ламп дневного света можно назвать белый свет высокой интенсивности, подходящий для освещения больших помещений, офисов, учебных классов и т.д., главным недостатком – мерцание, пусть и незаметное для невооруженного глаза. Лампы дневного света старого образца мерцали совершенно очевидно – и это было заметно, теперь такой проблемы нет, но мерцание все равно присутствует и теоретически может негативно влиять на ваше зрение, хотя убедительных доказательств этого пока не получено.

Что касается оттенка света , то в последнее время разгорелась настоящая дискуссия о том, какой именно свет более предпочтителен для зрения, - совершенно белый или желтый. Считается, что белый свет более эргономичен, он повторяет оттенок дневного света, поэтому для глаз полезнее. С другой стороны, существует противоположное мнение, которое состоит в том, что в белом дневном свете присутствуют естественный желтый оттенок, который отсутствует в люминисцентных лампах. Поэтому от чересчур белого света глаза устают, а человек чувствует себя некомфортно. Окончательной ясности по этому вопросу пока нет, а специалисты советуют пользоваться светом того оттенка, который комфортен лично для вас. Совершенно определенно вредными для глаз являются лишь холодные оттенки света – особенно синий.

Интенсивность освещения

Слишком тусклое освещение портит зрение и заставляет вас засыпать на ходу, слишком яркое освещение утомляет (распространенный симптом – головная боль из-за перенапряжения глазных мышц). Оптимальный вариант – умеренно-интенсивное освещение, при котором вам все прекрасно видно, но глазам все еще комфортно. Для достижения такого эффекта можно воспользоваться несложным приемом – сочетать общий и местный источник света . Общий свет должен быть рассеянным, ненавязчивым, местный свет должен быть на 2-3 порядка интенсивнее общего. Очень желательно, чтобы местный свет был регулируемым и направленным. При общем свете вы можете общаться, отдыхать, заниматься домашними делами или работой, не напрягающей зрение. Если же ваша деятельность требует вовлечения глаз, зрения, вы можете включить местное освещение, подобрать интенсивность (для чтения – одна, – другая и т.д.).

Очень вредны для зрения выразительные световые блики ; именно поэтому специалисты по освещению часто критикуют интерьерную моду на глянцевые поверхности, стекло и зеркала: такие элементы как раз и дают заметные блики. Блики отвлекают внимание, напрягают зрение, мешают фокусироваться на выбранном объекте. Поэтому очень желательно, чтобы поверхности в помещении были светлыми, но матовыми: такие поверхности отражают свет, но не создают бликов.

В целом, наиболее полезным для зрения вариантом является комбинирование различных методов освещения – вплоть до того, чтобы вы иногда давали отдых глазам, освещая комнату, например, свечой или открытым огнем камина. Используйте интенсивный свет только в том случае, если это необходимо для работы или чтения, в остальных случаях предпочитайте рассеянный общий свет естественного желтоватого оттенка. Помните, что лампы изначально расчитаны на применение в светильниках, поэтому очень желательно наличие плафона или абажура как минимум из матового стекла. Освещайте свое жилое и рабочее пространство с умом: в некоторых случаях уместнее всего слабая подсветка, в других требуется четко направленный яркий свет, а иногда достаточно и маломощной лампочки под плотным абажуром.

Светодиоды стали очень популярным источником света в последнее десятилетие. Они пришла на замену компактным люминесцентным лампам (КЛЛ) или, как их называют в народе — энергосберегайкам. Тогда и началась эра светодиодного освещение для человека.

Энергосберегающие лампы представляли относительную опасность, из-за содержащихся в их колбе паров ртути. В случае её разрушения, есть риск получить серьезный вред для вашего здоровья, вплоть до летального исхода. Мы же разберем – вредны ли светодиодные лампы для человека?

Источники вреда для здоровья

Чтоб доказать или опровергнуть вред светодиодных ламп для здоровья, определим источники ущерба для организма. Условно разделим их на 2 группы: характеристики прибора и неправильная эксплуатация.

Характеристики осветительного прибора, которые наносят вред организму:

  • Спектральные характеристики источника света;
  • излучения в инфракрасном спектре;
  • пульсации светового потока.

Вторая группа, это вред здоровью не от самого источника света, а от неправильного его использования. Давайте рассмотрим каждый фактор освещения, который влияет на ваше здоровье и определимся, вреден ли светодиодный свет для глаз.

Чем отличаются источники света

За эталон нужно принять солнечный свет, поскольку он содержит наиболее полный спектр светового излучения. Из всех искусственных осветительных приборов, наиболее приближена к солнцу лампочка накаливания. Сравните спектральные характеристики разных источников.

На графиках изображены различные спектры осветительных приборов. Лампа накаливания имеет гладкий спектр, возрастающий к области красных цветов. Спектр люминесцентных источников света довольно рваный, плюс низкий индекс цветопередачи (около 70).

Работа в помещениях с таким освещением вызывает повышенную усталость и головные боли, а также искаженное восприятие цвета.

Спектр светодиодных ламп более полный и ровный. Имеет повышенную интенсивность в области длин волн 450нм, для холодного свечения, и в области 600нм, для «тёплых» ламп соответственно. LED источники обеспечивают нормальную цветопередачу с индексом CRI более 80. Светодиодные лампы имеют крайне низкую интенсивность ультрафиолетового излучения .

Если сравнить спектр диодных и популярных люминесцентных ламп, становится понятно почему последние используются все реже. Спектр КЛЛ совершенно далеки от эталона, а их индекс цветопередачи оставляет желать лучшего.

На основании этого можно сделать вывод, что по характеристикам спектра светодиодные лампы безвредны для здоровья.

Почему лампы мерцают?

Следующий фактор, который влияет на самочувствие – это коэффициент пульсаций светового потока. Чтобы понять, что это такое и от чего он зависит нужно рассмотреть форму напряжения в электросети.

Качество света и его пульсация зависят от источника питания, от которого они работают. Источники света, которые работают от постоянного напряжения, например светодиодные лампы на 12 вольт, не мерцают. Давайте рассмотрим мерцание и вред светодиодных ламп для глаз, причины их возникновения и способы устранения.

Из розетки мы получаем переменное напряжение с действующим значением 220В и 310В амплитудным, что вы можете видеть на верхнем графике (а).

Поскольку светодиоды питаются постоянным током, а не переменным – нужно его выпрямить. В корпусе светодиодной лампы размещена электронная схема с одно- или двухполупериодным выпрямителем, после которого напряжение становится однополярным. Оно постоянное по знаку, но не по величине, т.е. пульсирующим от 0 до 310 вольт, график посередине (б).

Такие лампы пульсируют с частотой 100 герц или 100 раз в секунду, в такт с пульсациями напряжения. Вред для глаз светодиодных ламп зависит от их качества, об этом далее.

Пульсируют ли светодиоды?

В светодиодных лампах используются драйвера со стабилизацией тока по величине (дорого), или сглаживающие фильтры (дешево). Напряжение становится постоянным и стабилизированным, если использованы емкостные фильтры.

Если производитель не сэкономил на драйвере – стабильным становится значение тока. Это лучший вариант как для уменьшения пульсации, так и для срока службы LED.

На фото ниже показано как выглядят пульсации взглядом камеры. Вы можете не замечать пульсации, поскольку органы зрения стремятся адаптировать картинку для восприятия. Мозг же эти пульсации прекрасно усваивает, что и вызывает усталость и другие побочные явления.

Влияние светодиодных ламп на зрение человека может быть негативным, если они выдают пульсирующий световой поток. Санитарные нормы ограничивают глубину пульсаций для офисных помещений на значении 20%, а для мест где ведется работа вызывающая зрительное напряжение и вовсе 15%.

Лампы с большими пульсациями не стоит устанавливать дома, они годятся разве что для освещения коридора, кладовой, подъездов и хозяйственных помещений. Любые помещения, где вы не выполняете никакой зрительной работы и не находитесь долго.

Вред от светодиодных ламп низкого ценового сегмента вызван в первую очередь пульсациями. Не экономьте на освещении, LED с нормальным драйвером стоит всего на 50-100 рублей дороже, чем самые дешевые китайские аналоги.

Другие источники света и их пульсации

Лампы накаливания не мерцают потому, что работают от переменного тока и нить накала не успевает остыть когда величина напряжения пересекает нулевую отметку. Люминесцентные трубчатые лампы мерцают, если подключены по старой «дроссельной» схем. Отличить её можно по характерному гулу дросселя во время работы. На фото ниже изображены пульсации растрового светильника, как их видит камера телефона.

Современнее КЛЛ и ЛЛ не гудят и не мерцают только потому, что в их схеме используется импульсный блок питания высокой частоты. Такой источник питания называется ЭПРА (электронная пускорегулирующая аппаратура или устройство).

Вред инфракрасного спектра

Чтоб определить вредны ли светодиодные лампы для зрения, рассмотрим третий фактор вреда – инфракрасное излучение. Стоит отметить, что:

  • Во-первых, вредность ИК спектра сомнительна и не имеет основательной аргументации;
  • во-вторых, в спектре светодиодов инфракрасное излучение либо отсутствует, либо крайне мало. Убедиться можно на графиках, приведенных в начале статьи.

Вредны ли галогеновые лампы для здоровья? В источниках света, богатых инфракрасным спектром (галогенки), ответственные производители (Philips, Osram и пр.) применяют ИК-светофильтры, поэтому их вред для здоровья сведен к минимуму.

Вред синего спектра

Научно доказано, что излучение в спектре синего цвета уменьшает выработку гормона сна – мелатонина и вредит сетчатке, вызывая в ней необратимые изменения.

Кроме падения уровня мелатонина, излучение синего цвета вызывает целый ряд побочных эффектов: усталость, повышенное зрительное напряжение, заболевание глаз. Этот цвет воспринимается ярче, что часто используется в маркетинге, для привлечения нашего внимания. Большинство индикаторов на колонках, ТВ, мониторах и пр. технике выполнены в синем цвете.

Подробно об этом и насколько безопасны светодиодные лампы для глаз, пишут в сообществе .

Белые светодиоды – это синие светодиоды, покрытые специальным люминофором, который преобразует излучение в белый цвет.

Синий цвет — самый отрицательный фактор влияния светодиодных ламп на зрение. Взгляните на графики, а именно на спектр излучения светодиодов, представленный выше. Даже на Led лампе тёплого света есть пик яркости в синем спектре, а у холодной он очень высокий.

Практическая сторона проблемы

Значит вред светодиодных ламп для человека – это не миф? Не совсем так. Дело в том, что исследования проводились в условиях, когда исследуемые образцы засвечивались мощными синими светодиодами и весь их спектр был во «вредном» диапазоне.

Хоть в холодных светодиодах доля синего света и присутствует, но в солнечном свете она ничуть не меньше.

Современные люди любого возраста проводят очень много времени перед экраном компьютеров, смартфонов и планшетов. Несравнимо больший вред наносит зрению непрерывная фокусировка на расстоянии 0,3-1 метр от экрана.

Вредность синего спектра светодиодных ламп, по сравнению с вредом от экранов устройств, незначительна. Для освещения комнаты, рабочего кабинета и других помещений потоком яркого света, с низким энергопотреблением, LED подходит идеально.

Если же вы переживаете, для снижения вреда синего излучения разработаны различные варианты линз и очков для работы за компьютером. Их светофильтры отражают свет в синем диапазоне и делают цвета более тёплыми.

Нужно помнить : не светодиоды вредны для здоровья человека, а неправильный режим работы с гаджетами и плохая освещенность.

Светодиоды — польза или вред?

Понять вредны светодиодные лампы или нет, можно занимаясь организацией правильного освещения согласно . В нем регламентируется количество света, для проведения работ разной точности и размера деталей, с которыми вы оперируете во время работы.

Светодиодные источники света позволяют добиться нужной яркости на рабочем месте, с минимальными счетами за электричество. Вы сохраните зрение, вам будет легче работать, когда в комнате светло и не нужно разглядывать мелкие детали в тусклом свете. В таком случае вредность светодиодных ламп для глаз минимальна.

Высокое энергопотребление старых ламп накаливания не выгодно как в государственных масштабах (большая нагрузка на ЛЭП), так и в индивидуальном (большое потребление и высокая цена электроэнергии).

Сегодня споры о том вредны ли светодиодные лампы для зрения, остаются открытыми и нельзя дать однозначный ответ. Они относительно недавно, менее 10 лет, заполнили рынок осветительных приборов и многие относятся к ним скептически.

Влияние светодиодных ламп на здоровье человека при правильном соблюдении режима дня, сна и работы будет нулевым. Если же человек подвержен стрессам, чрезмерным нагрузкам и несерьезно относится к качеству сна — ни один источник света не сохранит его здоровье.

Польза LED в быту

Кроме бытовых применений вы можете сэкономить на искусственном освещении теплицы. Спектр позволяет вашему урожаю расти быстрее и лучше. Для этого часто применяют лампы ДНАТ, свет которых содержит различные длины волн.

Счет мощностей таких источников света ведется на сотни ватт, тогда как светодиодные фитолампы имеют мощность в десятки раз меньше и содержат только необходимые длины волн, для лучшего роста растений.

Хоть и цены с 2011 по 2017 год снизились примерно в 10 раз, все равно цена одной светодиодной лампы эквивалентом 100 Вт накаливания остаётся на уровне 10 ламп накаливания, что останавливает многих потребителей перед покупкой.

Для экологии отказ от газоразрядных светильников – безусловный плюс, об этом мы писали в статье об . Но какую опасность несут светодиодные лампы для здоровья до конца еще не известно. Ясно только то, что паров ртути можно уже не боятся.

Применение новых источников света широким кругом людей, позволяет разработчикам получать финансы для новых более совершенных проектов. А технологический прогресс всегда идёт вперед. Поэтому нужно ждать статистики, тогда станет известно насколько сильный вред от светодиодных ламп для здоровья, а на это нужно время.

Загрузка...