docgid.ru

Острый и хронический пиелонефрит клиника. Пиелонефрит. Предрасполагающие факторы пиелонефрита

из клеток эктодермалыюго зародышевого листка образуется мозговая, или медуллярная, пластинка. Ее края в результате неравномерного размножения ее клеток сближаются, а центральная часть, наоборот, погружается в тело зародыша. Затем края пластинки смыкаются - образуется медуллярная трубка Образование нервной трубки из эктодермы

Головной мозг эмбриона. Стадия трех мозговых пузырей из клеток, входящих в состав нервных валиков, образуются узловые (ганглиозные) пластинки. В дальнейшем они расщепляются: часть их, располагаясь в виде валиков по бокам нервной трубки, ближе к ее дорсальной поверхности, образует спинномозговые узлы; другая часть нервных клеток мигрирует на периферию, образуя узлы вегетативной нервной системы.

Нейроны развиваются как высокоспециализированные клетки. Посредством своих отростков одни нейроны устанавливают связи между различными отделами мозга – это вставочные (ассоциативные) нейроны, другие осуществляют связь нервной системы с другими органами – это афферентные (рецепторные) и эфферентные (эффекторные) нейроны. Аксоны афферентных и эфферентных нейронов входят в состав нервов, отходящих от головного и спинного мозга. Головной мозг эмбриона. Стадия пяти мозговых пузырей

Эмбрион длиной 13, 6 мм Эмбрион длиной 10, 2 мм Эмбрион длиной 50 мм Эмбрион длиной 13 см

Одной из важных нейрогистологических характеристик развития нервной системы высших позвоночных является асинхронность дифференцировки ее отделов. Нейроны различных отделов нервной системы и даже нейроны в пределах одного центра дифференцируются асинхронно: а) дифференцировка нейронов вегетативной нервной системы значительно отстает от таковой в основных отделах соматической системы; б) дифференцировка симпатических нейронов несколько отстает от развития парасимпатических.

Раньше всего происходит созревание продолговатого и спинного мозга, позже морфологически и функционально развиваются ганглии ствола головного мозга, подкорковые узлы, мозжечок и кора больших полушарий. Каждое из этих образований проходит определенные этапы функционального и структурного развития. Так, в спинном мозге раньше созревают элементы в области шейного утолщения, а затем идет постепенное развитие клеточных структур в каудальном направлении; первыми дифференцируются спинальные мотонейроны, позже чувствительные нейроны и в последнюю очередь - вставочные нейроны и проводящие межсегментные пути.

Ядра стволовой части головного мозга, промежуточный мозг, подкорковые ганглии, мозжечок и отдельные слои коры большого мозга структурно развиваются также в определенной последовательнос ти и в тесной связи друг с другом. Сагиттальный разрез головного мозга: 1 - лобная доля; 2 - поясная извилина; 3 - мозолистое тело; 4 - прозрачная перегородка; 5 - свод; 6 - передняя спайка; 7 - зрительный перекрест; 8 - подталамическая область; 9 - гипофиз; 10 - височная доля; 11 - мост; 12 - продолговатый мозг; 13 - четвертый желудочек; 14 - мозжечок; 15 - водопровод мозга; 16 - затылочная доля; 17 - пластинка крыши; 18 - шишковидное тело; 19 - теменная доля; 20 - таламус.

Развитие спинного мозга и спинномозговых ганглиев После разделения нервной трубки на три слоя в той ее части, которая образует в дальнейшем спинной, продолговатый, задний и средний мозг, в мантийном слое по всему длиннику названных отделов определяются четыре параллельные колонки нейробластов: две расположенные дорсолатерально и две вентролатерально. Они являются закладками будущих рогов серого вещества спинного мозга и их аналогов в вышележащих отделах ствола. Из вентролатеральных колонок образуются передние рога, из дорсолатеральных - задние.

Одним из наиболее выраженных даже на макроскопическом уровне изменений является формирование шейных и поясничных утолщений спинного мозга, связанных с ростом зачатков верхних и нижних конечностей. Спинной мозг новорожденного представляет собой анатомически и гистологически вполне дифференцированную структуру, обеспечивающую на необходимом уровне рефлекторную деятельность ребенка этого этапа развития. Его масса составляет 3 -4 г; масса спинного мозга взрослого человека равна приблизительно 30 г. Схематическое изображение соотношений сегментов спинного мозга и позвонков на сагиттальном разрезе позвоночника. Оранжевым и желтым цветом обозначены шейные сегменты и шейные позвонки, фиолетовым и сиреневым - грудные, голубым - поясничные и копчиковые, розовым - крестцовые. Римскими цифрами обозначены позвонки, арабскими - корешки спинномозговых нервов соответствующих сегментов.

Схематическое изображение поперечного разреза спинного мозга. Слева обозначены проводящие пути, справа - участки серого вещества; одинаковыми цветами обозначены группы проводящих путей и соответствующие им участки серого вещества; синим цветом - чувствительные пути и задний рог, красным - пирамидные пути и передний рог, серым - собственные пучки спинного мозга и промежуточное вещество, зеленым - восходящие пути экстрапирамидной системы, желтым - боковой рог: 1 - покрышечно-спинномозговой путь; 2 - передний корково-спинномозговой путь; 3 - передний спиноталамический путь; 4 - преддверно-спинномозговой путь; 5 - оливоспинномозговой путь; 6 - ретикул-спинномозговой путь: 7 - передний спиномозжечковый путь; 8 - латеральный спиноталамический путь; 9 - красноядерно-спинномозговой путь; 10 - задний спиномозжечковый путь; 11 - латеральный корково-спинномозговой путь; 12 - собственные пучки спинного мозга; 13 - клиновидный пучок; 14 - тонкий пучок; 15 - овальный пучок; 16 - задний канатик; 17 - боковой канатик; 18 - передний канатик: 19 - промежуточное вещество; 20 - задний рог; 21 - боковой рог; 22 - передний рог; 23 - задний корешок; 24 - передний корешок.

Развитие продолговатого, заднего, среднего и промежуточного мозга Уровни срезов ствола мозга. I - срез продолговатого мозга на его границе со спинным мозгом; II - срез продолговатого мозга на уровне его средней части; III - срез продолговатого мозга на уровне верхней части; IV - срез на границе продолговатого мозга и моста; V - срез на уровне средней трети моста; VII - срез на уровне передних бугров четверохолмия.

На начальных этапах формирования продолговатый мозг имеет сходство со спинным мозгом. В нем также в середине 2 -го месяца внутриутробного развития образуются вентролатеральные и дорсолатеральные колонки клеток. При дальнейшем морфогенезе крыловидная и базальная пластинки как бы расходятся в латеральном направлении, раскрываясь наподобие книжки. Это происходит в период образования мозгового изгиба. Клетки мезенхимы, прилежащие к верхним отделам развивающегося продолговатого мозга, дают начало большому числу ангиобластов, образующих сосудистые сплетения, из которого формируется сосудистое сплетение четвертого (IV) желудочка. Этот процесс начинается на 6 -й неделе внутриутробного развития. На 3 -м месяце внутриутробного развития крыловидная и базальная пластинки расщепляются в продольном направлении, из крыловидной пластинки образуются 4 клеточные колонки, а из базальной - 3. Некоторые черепные нервы берут начало из этих колонок или заканчиваются в них. В этих колонках локализуются ядра языкоглоточного нерва, ядро одиночного пути, одно из ядер тройничного нерва, ядро вестибуло-кохлеарного нерва. Два ядра тройничного нерва закладываются изначально в продолговатом мозге, затем, вторично, перемещаются в задний мозг. Впродолговатом мозге закладывается большая часть ядер черепных нервов, которые затем мигрируют в другие отделы нервной системы, в частности в задний мозг. У новорожденного в продолговатом мозге продолжается процесс уменьшения клеточных масс. У полуторагодовалого ребенка клетки продолговатого мозга организованы в четко определяемые ядра и имеют почти все признаки дифференцировки. У ребенка 7 лет нейроны продолговатого мозга неотличимы от нейронов взрослого даже по тонким морфологическим признакам.

Задний мозг. Анатомически задний мозг делится на три части: 1) центрально расположенную ядросодержащую часть, которая служит прямым продолжением продолговатого мозга; 2) мозжечок и 3) мост. Мозжечок В конце 2 -го месяца развития в центральной части крыловидной пластинки образуются нижние ножки мозжечка (веревчатые тела). У новорожденного мозжечок, будучи заметно вытянут в длину, лежит в черепной коробке выше, чем у взрослого. Борозды относительно неглубокие, слабо обрисовано древо жизни. С ростом ребенка борозды становятся глубже. До 3 месячного возраста в коре мозжечка сохраняется зародышевый слой. У ребенка сразу после рождения можно видеть наружный зернистый слой и процессы миграции клеток-зерен. Есть наблюдения, что некоторые клетки Пуркинье у человека возникают в результате деления клеток наружного зернистого слоя. К концу 3 -го месяца внутриутробного развития эти клетки мигрируют в направлении внутреннего зернистого слоя и занимают промежуточное положение. Именно они в дальнейшем становятся грушевидными клетками коры мозжечка. Первые клетки Пуркинье появляются в черве мозжечка человека уже на 4 -м месяце внутриутробного развития. Следует подчеркнуть, что формирование борозд в развивающемся мозжечке человека идет параллельно или вслед за дифференцировкой клеток Пуркинье. В возрасте от 3 мес до 1 года происходит активная дифференцировка мозжечка: нарастает объем и масса перикарионов грушевидных клеток, увеличивается количество синапсов на них, увеличивается диаметр волокон в белом веществе мозжечка, интенсивно растет молекулярный слой коры. Дифференцировка мозжечка происходит и в более поздние сроки. Это связано с дальнейшим совершенствованием движений ребенка.

Схематическое изображение мозжечка (вид спереди): 1 - центральная долька; 2 - четырехугольная долька; 3 - узелок; 4 - миндалина; 5 - язычок червя; 6 - пирамида червя; 7 - горизонтальная щель; 8 - бугор червя; 9 - нижняя полулунная долька; 10 - верхняя полулунная долька; 11 - двубрюшная долька.

Средний мозг. Так же как и спинной, средний мозг имеет крыловидную и базальную пластинки. Из базальной пластинки развивается одно ядро глазодвигательного нерва, которое хорошо выражено уже к концу 3 -го месяца внутриутробного периода. Крыловидная пластинка дает начало ядрам нижних и верхних бугорков четверохолмия, а также, возможно, части клеток красных ядер. Во второй половине внутриутробного развития на вентральной поверхности среднего мозга появляются два крупных скопления волокон - основания ножек мозга. Рост крыловидной и базальной пластинок среднего мозга кнаружи, особенно интенсивный во второй половине внутриутробного периода, сдавливает полость IV желудочка, сужая его до небольшого канала, именуемого водопроводом мозга.

Разрез промежуточного мозга. Строение гипоталамуса. Промежуточный мозг. Образуется промежуточный мозг из переднего мозгового пузыря, гистологически представляя собой массивное утолщение мантийного слоя, разросшегося до такой степени, что почти не остается краевой вуали. В результате неравномерной пролиферации клеточного материала промежуточного мозга в нем образуются закладки: таламуса дорсально расположенная и гипоталамуса - вентрально расположенная. В передненижнем отделе промежуточного мозга формируются глазные бокалы.

Развитие конечного мозга Конечный мозг также развивается из переднего мозгового пузыря. Его стенка, соответствующая конечному мозгу, выпячивается в дорсолатеральном направлении и образует два мозговых пузыря, которые с течением времени преобразуются в полушария мозга. Полости этих пузырей образуют боковые желудочки полушарий. Головной мозг (вид сверху): 1 - лобные доли; 2 - теменные доли; 3 - затылочные доли; 4 - продольная щель большого мозга

Конечный мозг В начале 2 -го месяца развития стенка мозговых пузырей содержит большое количество мелких короткоотростчатых нейробластов - так называемый материнский слой коры. Среди этих клеточных элементов встречаются спонгиобласты, имеющие длинные тонкие отростки, направляющиеся к наружной поверхности мозгового пузыря. Начиная с 3 -го месяца внутриутробного развития гистологически становится отчетливой закладка коры: она представляет собой узкую ленту, состоящую из густо расположенных клеток. Дальнейшая дифференцировка идет двумя параллельными путями: путем образования слоев и путем дифференцировки клеточных элементов, которая заканчивается лишь в постнатальном периоде. К 3 -му месяцу развития между пузырями образуется мозолистое тело. На 11 -12 -й неделе внутриутробного периода полушария мозга можно узнать по их форме. С 5 -го месяца в коре больших полушарий уже заметна цитоар-хитектоника. К середине 6 -го месяца внутриутробного развития в тех участках коры, которые образуют филогенетически молодую кору (neocortex), видно более или менее четкое разделение на шесть слоев, обнаруживаются отличия в строении отдельных полей. Существуют выраженные отличия в скорости дифференцировки каждого из слоев коры. Так, II и III слои коры становятся четко различимыми только после рождения. Морфологически раньше других дифференцируются гигантские пирамиды V слоя передней центральной извилины.

К моменту рождения большинство нейронов глубоких слоев коры достигают уже значительной степени зрелости, по форме тела и развитию отростков приближаясь к структуре этих слоев у взрослого. Значительная часть нейронов поверхностных слоев коры находится на более ранних этапах формирования. К концу периода внутриутробного развития отчетливо выражена миелинизация волокон, особенно в более простых (филогенетически старых) системах мозга. В это время происходят важные биохимические сдвиги в нервной ткани. Наиболее существенными из них являются изменения ряда ферментных систем, в результате которых осуществляется переход метаболизма мозга от анаэробного к аэробному. Следует отметить, что новорожденный ребенок, так же как и детеныши других млекопитающих, легче переживает относительно длительную гипоксию, чем взрослый. У плодов и новорожденных нервные клетки в коре лежат сравнительно близко друг от друга, причем часть из них располагается и в белом веществе. По мере роста ребенка концентрация клеток в единице площади снижается, несмотря на то что в серое вещество мигрируют клетки из белого вещества. Мозг новорожденного очень велик - более 10% от общей массы тела. К периоду полового созревания масса его составляет всего около 2% от массы тела, хотя, естественно, абсолютная масса мозга увеличивается с ростом ребенка.

«Новорожденный от рождения не способен ни к чему, кроме способности всему научиться» (Л. О. Бадалян). Мозг новорожденного незрелый, причем кора полушарий; большого мозга является наименее зрелым отделом всей нервной системы. Основные функции регулирования различных физиологических процессов выполняют промежуточный и средний мозг. В глубокой неприспособленности ЦНС новорожденного заложены основы гибкой, дифференцированной адаптации к условиям среды, обучения. Повидимому, это прямо связано с самым большим по продолжительности в животном мире периодом детства у человека. Даже у высших обезьян детеныш 1, 5 -2 лет уже вполне способен к самостоятельному существованию и не нуждается в родительском уходе. После рождения масса мозга увеличивается в основном за счет роста тел нейронов, происходит дальнейшее формирование ядер головного мозга. Их форма меняется мало, однако размеры и состав их, а также топография относительно друга претерпевают достаточно демонстративные изменения. Процессы развития коры заключаются, с одной стороны, в образовании ее шести слоев, а с другой - в дифференциации нервных клеток, характерных для каждого коркового слоя. К моменту рождения у ребенка уже заканчивается образование шестислойной коры. В то же время дифференцировка нервных клеток отдельных слоев к этому времени еще далеко не завершается. Наиболее интенсивно дифференциация клеточных элементов, а также миелинизация аксонов нервных клеток коры идет в постнатальном периоде - в течение 1 -го и 2 го годов жизни ребенка. В этот период резко увеличиваются масса и поверхность коры полушарий большого мозга.

К 2 -летнему возрасту заканчивают свое формирование пирамидные клетки коры. Первые 2 -3 года жизни являются наиболее ответственными этапами морфологического и функционального становления мозга ребенка. На 1 -м году жизни закладываются основы психической деятельности, идет подготовка к самостоятельному хождению, речевой деятельности. Существует мнение, что в этот период происходит «первичное обучение» , т. е. формирование нейронных ансамблей, которые в дальнейшем служат фундаментом для более сложных форм обучения. В последующие годы темп развития корковых структур хотя и замедляется, но к 4 -7 годам клетки большинства областей коры становятся близкими по строению клеткам коры взрослого человека. Полностью развитие клеточных структур коры полушарий большого мозга заканчивается только к 10 -12 годам.

Морфологическое созревание отдельных областей коры, связанных с деятельностью различных анализаторов, идет неодновременно. Раньше других приближаются к строению мозга взрослого человека корковые концы обонятельного анализатора, представленного в древней, старой и межуточной коре. В новой коре прежде всего развиваются корковые концы двигательного и кожного анализаторов, а также лимбическая область, связанная с интерорецепторами, и инсулярная область, имеющая отношение к обонятельной и речедвигательной функциям. Затем дифференцируются корковые концы слухового и зрительного анализаторов и верхняя теменная область, связанная с кожным анализатором. В последнюю очередь достигают полной зрелости структуры лобной и нижней теменной областей и височно-теменно-затылочной подобласти. Особенности структурного развития отдельных корковых отделов анализаторов определяют до некоторой степени последовательность появления условнорефлекторных реакций ребенка.

В этой связи следует помнить, что миелинизация черепных нервов осуществляется в течение первых 3 -4 мес и заканчивается к 1 году - 1 г 3 мес постнатальной жизни. Миелинизация спинальных нервов завершается несколько позднее - к 2 -3 годам. Процесс миелинизации нервных проводников начинается еще в эмбриогенезе. Однако темп образования миелиновых оболочек у разных нервных стволов различен, в результате чего к моменту рождения часть нервных проводников как центральной, так и периферической нервной системы не заканчивает миелинизацию.

Масса головного мозга новорожденного имеет относительно большую величину и в среднем составляет 1/8 массы тела, т. е. около 400 г, причем у мальчиков она несколько больше, чем у девочек. У новорожденного хорошо выражены длинные борозды, крупные извилины, но глубина и высота их невелики. Мелких борозд и извилин относительно мало; они появляются постепенно в течение первых лет жизни. К 9 -месячному возрасту первоначальная масса мозга удваивается и к концу 1 -го года жизни составляет 1/11 -1/12 массы тела. К 3 годам масса головного мозга по сравнению с массой его при рождении утраивается, к 5 годам составляет 1/13 -1/14 массы тела, к 20 годам первоначальная масса мозга увеличивается в 4 -5 раз и составляет у взрослого человека всего 1/40 массы тела. Наряду с ростом головного мозга меняются и пропорции черепа. Боковые желудочки сравнительно широкие. Мозолистое тело тонкое и короткое, в течение первых 5 лет оно становится толще и длиннее, достигая к 20 годам окончательных размеров.

Основные принципы развития ЦНС . В процессе онтогенеза ЦНС, согласно П.К. Анохину, происходит последовательное образование функциональных систем, обеспечивающих необходимые на данном этапе онтогенеза полезные для организма приспособительные результаты, причем, в этом развитии отражен общий биологический закон – филогенетически более старые части мозга развиваются раньше, чем молодые, которые отстают в развитии. На ранних стадиях внутриутробного развития нервный контроль функций осуществляется главным образом спинным мозгом, в последующем, на 7–10 неделе контроль переходит к продолговатому мозгу, а с 13–14 недели – к среднему мозгу. Кортиколизация контроля происходит уже на постнатальном этапе развития.

Развитие ЦНС во внутриутробном периоде регулируется, главным образом, генетическими и гормональными (йодсодержащие гормоны щитовидной железы, стероидные гормоны) факторами. В постнатальном периоде ведущую роль в развитии играют потоки афферентной импульсации с различных рецепторов, которые создаются в процессе воспитания и обучения ребенка

Развитие рефлекторных функций различных отделов мозга зависит от становления их морфологических (развитие нейронов, миелинизация волокон, образование связей между нейронами и др.) и функциональных (установление соответствующих величин лабильности, хронаксии, МП, ПД и др.) особенностей. Трудно говорить о преобладании каких-то отдельных факторов, важно их единство на определенном этапе развития. Связывая появление различных рефлекторных реакций с развитием того или иного отдела головного мозга, необходимо иметь в виду, что в их осуществлении принимают участие и другие отделы центральной нервной системы.

Закономерности формирование ЦНС в онтогенезе. Формирование структур центральной нервной системы (нейруляция), является одним из первых процессов гистогенеза, который начинается уже в середине первого месяца эмбрионального развития. (Рис) В этот период, в середине быстро растущего полого зародыша образуется плоская клеточная пластинка, называемая эмбриональным диском . Эта пластинка составляет часть одного из трех основных зародышевых листков - эктодермы , которая дает также начало коже. Вскоре после своего появления эмбриональный диск утолщается и разрастается вдоль средней линии, на этой стадии в нем уже можно распознать первичную нервную пластинку. Нервная пластинка продолжает быстро расти, ее края начинают утолщаться, приподниматься, сближаться, и срастаются по средней линии, образуя нервную трубку .

На переднем конце трубки (на том конце, где впоследствии образуется голова), возникают три первичных мозговых пузыря . Из каждого пузыря развивается один из трех основных отделов мозга: передний, средний или задний мозг . Остальная часть нервной трубки становится спинным мозгом . Во время сворачивания нервной трубки некоторые клетки остаются вне ее, и из них формируется нервный гребень , который дает начало периферической нервной системе.



Вскоре после формирования трех первичных пузырей отмечаются первые признаки развития глаз. Затем наступает первый этап серии изгибов, которые помогают еще яснее разграничить основные структурные единицы, а также подразделить широкие внутренние полости, которые в конечном итоге будут мозговыми желудочками.

Следующий важный шаг по пути специализации происходит тогда, когда большой пузырь переднего мозга подразделяется на конечный мозг, из которого позже разовьется вся кора больших полушарий, и промежуточный мозг, из которого будут образованы таламус и гипоталамус.

Конечный мозг проходит затем еще три стадии раннего развития. Прежде всего, он дает начало обонятельным долям мозга, гиппокампу и другим соседним областям, которые лежат вокруг краев развивающегося конечного мозга. Это и будет лимбическая система, расположенная, как уже говорилось, вдоль внутренней кромки коры.

На второй стадии происходит утолщение стенок переднего мозга. Массы растущих внутри них клеток это базальные ганглии, из которых впоследствии разовьются такие структуры, как хвостатое ядро, бледный шар и скорлупа, играющие важнейшую роль в координации работы систем сенсорного и двигательного контроля, а также миндалина (миндалевидное ядро) столь же важный центр интеграции сенсорных сигналов и внутренних адаптивных реакций.

Третья стадия, развития конечного мозга включает формирование коры больших полушарий со всеми ее специализированными частями.

Так как обонятельные и лимбические структуры имеются в мозгу даже очень примитивных позвоночных животных, эту область коры называют палеокортексом или древней корой.

Кора, развивающаяся на третьей стадии, носит название неокортекс или новой коры. Когда неокортекс у приматов достигает максимальной скорости роста (около 250 тыс. клеток в минуту), поверхность его образует складки мозговые извилины. Это позволяет намного увеличить объем корковой ткани без соответствующего увеличения общих размеров мозга.

Дальнейшее развитие нервной системы обеспечивается, прежде всего, двумя существенными аспектами этого процесса: эмбриологическими перестройками, ведущими к закреплению основных функций (к функциональной детерминации), и процессами клеточной дифференцировки.

Функциональная детерминация обеспечивает обособление прежде всего сенсорных и двигательных зон будущих отделов ЦНС. Процессы клеточной дифференцировки приводят к формированию трехслойной нервной трубки. Ее слои образуют различные типы нейронов и их отростков в формирующихся отделах ЦНС. Такое трехслойное строение можно увидеть на всех уровнях от спинного до конечного мозга.

В общем виде можно сказать, что все части мозга в своем развитии проходят следующие основные стадии:

· Клетки нервной пластинки детерминируются как будущие нейроны того или иного общего типа.

· Клетки детерминированного участка начинают делиться.

· Эти клетки мигрируют к местам их промежуточного или окончательного назначения.

· Достигнув места своей окончательной локализации, все еще незрелые нейроны начинают собираться в группы, из которых позже разовьются «ядра» взрослой нервной системы.

· Эмбриональные нейроны, образующие скопления, перестают делиться и начинают формировать соединительные отростки.

· Это приводит к раннему образованию связей и обеспечивает возможность синтеза и выделения нейромедиаторов.

· В конце концов «правильные» связи стабилизируются, а клетки, связи которых оказались «неудачными» или слишком малочисленными, отмирают. Этот процесс известен как «запрограммированная гибель клеток».

Число нейронов в формирующейся ЦНС достигает максимума к 20 – 24-й неделе внутриутробного развития, и уже не увеличивается до пожилого возраста. В то же время размеры нейронов, количество отростков и функционирующих синапсов после рождения увеличиваются. Изменяются электрофизиологические характеристики нейронов. Так, например, возрастает их мембранный потенциал, от 50 мВ у новорожденных до 60-70 мВ у взрослых. С возрастом снижается длительность потенциала действия и возрастает его амплитуда, повышается частота ритмической активности нейрона. У детей первого года жизни нервные клетки обладают низкой возбудимостью и лабильностью, поэтому у них легко развивается запредельное торможение, эти дети быстро переходят из бодрствующего состояния в сон.

В синапсах повышается интенсивность образования медиатора, возрастает число рецепторов на постсинаптической мембране, увеличивается скорость синаптической передачи, повышается лабильность. Вначале формируются синапсы спинного мозга, в последующем – синапсы других отделов, включая кору больших полушарий.

Важнейшим механизмом созревания ЦНС является миелинизация нервных структур. В различных отделах ЦНС миелинизация совершается гетерохронно. Она начинается внутриутробно, а окончательно завершается к 30 – 40 годам. Миелинизация нервных волокон осуществляется в центробежном направлении, отступая несколько микрон от тела клетки к периферии нервного волокна. Отсутствие миелиновой оболочки ограничивает функциональные возможности нервного волокна и делает работу ЦНС слабо координированной.

Миелинизация некоторых спиномозговых и черепно-мозговых нервов начинается уже на 4 месяце внутриутробного развития. Первыми подвергаются миелинизации передние, двигательные корешки спинного мозга, затем – задние, чувствительные корешки. Двигательные волокна к моменту рождения практически полностью миелинизированны, окончательная миелинизация чувствительных нервов растягивается на период от 3 месев до 3 лет после рождения. К моменту рождения миелинизированы практически все проводящие пути спинного мозга, за исключением пирамидных.

Ветви лицевого нерва, иннервирующие область губ, миелинизируются на 21–24-й неделе внутриутробного развития, что указывает на раннее формирование морфологической основы сосательного рефлекса, жизненно необходимого для новорожденного.

После рождения в первую очередь миелинизируются периферические нервы, затем – волокна спинного мозга, стволовой части головного мозга, мозжечка и значительно позже – волокна коры больших полушарий.

Основная часть черепно-мозговых нервов миелинизируются к 1,5 – 2 годам, слуховые нервы завершают этот процесс к 2 годам, зрительные и языкоглоточные – к 3 – 4 годам. В среднем к 3 годам основная масса нервных волокон миелинизирована, остальные завершают этот процесс к 6 годам. Миелинизация тангенпиальных путей коры больших полушарий завершается к 30 – 40 годам.

В процессе миелинизацци происходит концентрация ионных каналов в области перехватов Ранвье, повышаются возбудимость, проводимость и лабильность нервных волокон. Так, у новорожденных нерв способен проводить 4 – 10 имп/с, в то время как у взрослых – 300 – 1000 имп/с. Скорость проведения возбуждения по нерву у взрослых в 2 раза выше, чем у новорожденных.

Центральная нервная система вместе с периферическими отделами дистантных анализаторов развивается из наружного зародышевого листка – эктодермы. Закладка нервной трубки происходит на 4-й неделе эмбрионального развития, впоследствии из нее формируются мозговые пузыри и спинной мозг. Наиболее интенсивное образование структур центральной нервной системы происходит на 15-25 день беременности (Табл.10-2).

Структурное оформление отделов мозга тесно связано с происходящими в них процессами дифференцировки нервных элементов и установлением между ними морфологических и функциональных связей, а также с развитием периферических нервных аппаратов (рецепторов, афферентных и эфферентных путей и др.). К концу эмбрионального периода развития у плода обнаруживаются первые проявления нервной деятельности, которые выражаются в элементарных формах двигательной активности.

Функциональное созревание ЦНС, происходит в этот период в каудо-краниальном направлении, т.е. от спинного мозга к коре головного мозга. В связи с этим функции организма плода регулируются преимущественно структурами спинного мозга.

К 7-10 неделе внутриутробного периода функциональный контроль над более зрелым спинным мозгом начинает осуществлять продолговатый мозг. С 13-14 недели появляются признаки контроля нижележащих отделов ЦНС со стороны среднего мозга.

Мозговые пузыри образуют полушария головного мозга, до 4-х месячного возраста внутриутробного развития их поверхность гладкая, затем появляются первичные борозды сенсорных полей коры, на 6-м месяце – вторичные, а третичные продолжают формироваться и после рождения. В ответ на стимуляцию коры больших полушарий плода, вплоть до 7-ми месяцев его развития, никаких реакций не возникает. Следовательно, на этом этапе кора больших полушарий не определяет поведение плода.

На протяжении эмбрионального и фетального периодов онтогенеза происходит постепенное усложнение строения и дифференцировки нейронов и глиальных клеток.

Таблица 10-2.

Развитие мозга в антенатальном периоде

возраст, нед

длина, мм

Особенности развития мозга

Намечается нервная бороздка

Хорошо выраженная нервная бороздка быстро закрывается; нервный гребень имеет вид сплошной ленты

Нервная трубка замкнута; образовались 3 первичных мозговых пузыря; формируются нервы и ганглии; закончилось образова­ние эпендимного, мантийного и краевого слоя

Формируются 5 мозговых пузырей; намечаются полушария большого мозга; нервы и ганглии выражены отчетливее (обособляется кора надпочечника)

Образуются 3 первичных изгиба нервной трубки; нервные сплетения сформированы; виден эпифиз (шишковидное тело); симпатические узлы образуют сегментарные скопления; наме­чаются мозговые оболочки

Полушария мозга достигают большого размера; хорошо выра­жены полосатое тело и зрительный бугор; воронка и карман Ратке смыкаются; появляются сосудистые сплетения (мозговое вещество надпочечника начинает проникать в кору)

В коре мозга появляются типичные нервные клетки; заметны обонятельные доли; отчетливо выражены твердая, мягкая и паутинная оболочки мозга; возникают хромаффинные тельца

Формируется дефинитивная внутренняя структура спинного мозга

Появляются общие структурные черты головного мозга; в спинном мозге видны шейное и поясничное утолщение; форми­руются конский хвост и концевая нить спинного мозга, начи­нается дифференцировка клеток нейроглии

Полушария покрывают большую часть мозгового ствола; ста­новятся различимыми доли головного мозга; появляются бу­горки четверохолмия; более выраженным становится мозжечок

Завершается формирование комиссур мозга (20 нед); начинается миелинизация спинного мозга (20 нед); появляются типичные слои коры головного мозга (25 нед); быстро развиваются бо­розды и извилины головного мозга (28-30 нед); происходит миелинизация головного мозга (36-40 нед)

Неокортекс уже у плода 7-8 месячного возраста разделен на слои, но наибольшие темпы роста и дифференцировки клеточных элементов коры отмечаются в последние 2 месяца беременности и в первые месяцы после рождения. Пирамидная система, обеспечивающая произвольные движения, созревает позже, чем экстрапирамидная система, контролирующая непроизвольные движения. Показателем степени зрелости нервных структур является уровень миелинизации ее проводников. Миелинизация в мозге эмбриона начинается на 4-м месяце внутриутробной жизни с передних корешков спинного мозга, подготавливая моторную активность; затем миелинизируются задние корешки, проводящие пути спинного мозга, афференты акустической и лабиринтной систем. В головном мозге процесс миелинизации проводниковых структур продолжается в первые 2 года жизни ребенка, сохраняясь у подростков и даже взрослых людей.

Наиболее рано (7,5 недель) у плода появляется хорошо выраженный локальный рефлекс на раздражение губ. Рефлексогенная зона сосательного рефлекса к 24 неделе внутриутробного развития значительно расширяется и вызывается со всей поверхности лица, кисти, предплечья. В постнатальном онтогенезе она уменьшается до зоны поверхности губ.

Рефлексы на тактильную стимуляцию кожи верхних конечностей появляются у плода к 11 неделе. Наиболее четко кожный рефлекс в этот период вызывается с ладонной поверхности и выглядит в виде изолированных движений пальцев. К 11 неделям эти движения пальцев сопровождаются сгибанием запястья, предплечья, пронацией руки. К 15-й неделе стимуляция ладони приводит к сгибанию и фиксированию в этом положении пальцев, ранее генерализованная реакция исчезает. К 23-й неделе хватательный рефлекс усиливается, становится строго локальным. К 25-й неделе все сухожильные рефлексы руки становятся отчетливыми.

Рефлексы при стимулировании нижних конечностей появляются к 10-11-й неделям развития плода. Первым появляется флексорный рефлекс пальцев ног на раздражение подошвы. К 12-13 неделям флексорный рефлекс на это же раздражение сменяется веерообразным разведением пальцев. После 13-ти недель это же движение на раздражение подошвы сопровождается движениями стопы, голени, бедра. В более старшем возрасте (22-23 недели) раздражение подошвы вызывает преимущественно флексию пальцев стопы.

К 18-й неделе появляется рефлекс сгибания туловища при раздражении нижней части живота. К 20-24-й неделе появляются рефлексы мышц брюшной стенки. К 23-й неделе у плода раздражением различных участков кожной поверхности можно вызвать дыхательные движения. К 25-й неделе плод может самостоятельно дышать, однако дыхательные движения, обеспечивающие выживание плода, устанавливаются только после 27 недель его развития.

Таким образом, рефлексы кожного, двигательного и вестибулярного анализаторов проявляются уже на ранних этапах внутриутробного развития. В поздние сроки внутриутробного развития плод способен реагировать мимическими движениями на вкусовые и запаховые раздражения.

В течение 3-х последних месяцев внутриутробного развития у плода созревают рефлексы, необходимые для выживания новорожденного ребенка: начинает реализовываться корковая регуляция ориентировочных, защитных и др. рефлексов, у новорожденного уже имеются защитные и пищевые рефлексы; рефлексы с мышц и кожи становятся более локализованными и целенаправленными. У плода и новорожденного, в связи с малым количеством тормозных медиаторов, в ЦНС легко возникает генерализованное возбуждение даже при очень небольших силах раздражения. Сила тормозных процессов по мере созревания мозга нарастает.

Стадия генерализации ответных реакций и распространения возбуждения по структурам мозга сохраняется вплоть до рождения и некоторое время после него, но она не препятствует развитию сложных жизненно важных рефлексов. Например, к 21-24 неделе хорошо развит сосательный и хватательный рефлекс.

У плода уже на 4-м месяце его развития хорошо развита проприоцептивная мышечная система, четко вызываются сухожильные и вестибулярные рефлексы, в 3-5 месяцев уже имеются лабиринтные и шейные тонические рефлексы положения. Наклон и поворот головы сопровождается разгибанием конечностей той стороны, в которую повернута голова.

Рефлекторная деятельность плодов обеспечивается преимущественно механизмами спинного мозга и ствола мозга. Однако сенсомоторная кора уже реагирует возбуждением на раздражения рецепторов тройничного нерва на лице, рецепторов кожной поверхности конечностей; у 7-8-ми месячного плода в зрительной коре возникают реакции на световые стимулы, но в этот период кора, воспринимая сигналы, возбуждается локально и не передает значимость сигнала на другие, кроме двигательной коры, структуры мозга.

В последние недели внутриутробного развития у плода происходит чередование “быстрого” и “медленного” сна, причем быстрый сон занимает 30-60% общего времени сна.

Поступление в кровоток плода никотина, алкоголя, наркотиков, медикаментов и вирусов отражается на здоровье будущего ребенка, а в ряде случаев может привести к внутриутробной гибели плода.

Никотин, попадая из крови матери в кровь плода, а затем в нервную систему, влияет на развитие тормозных процессов, а тем самым на рефлекторную деятельность, дифференцировки, что в последующем будет сказываться на процессах памяти, концентрации внимания. Действие алкоголя также вызывает грубые нарушения созревания нервной системы, нарушает последовательность развития ее структур. Наркотики, используемые матерью, угнетают его физиологические центры, образующие естественные эндорфины, что в последующем может привести к дисфункции сенсорной системы, гипоталамическим регуляциям.

10.2 . Особенности развития и функционирования центральной нервной системы в постнатальном онтогенезе.

Общий план строения коры у новорожденного ребенка такой же, как и у взрослого. Масса его головного мозга составляет 10-11% массы тела, а у взрослого – всего 2%.

Общее количество нейронов головного мозга новорожденного равно количеству нейронов взрослого, но число синапсов, дендритов и коллатералей аксонов, их миелинизация у новорожденных значительно отстают от мозга взрослых (Табл.10-1).

Зоны коры новорожденного созревают гетерохронно. Наиболее рано созревает соматосенсорная и моторная кора. Это объясняется тем, что соматосенсорная кора из всех сенсорных систем получает наибольшее количество афферентной импульсации, моторная кора также имеет значительно большую афферентацию, чем другие системы, так как она имеет связи со всеми сенсорными системами и имеет наибольшее число полисенсорных нейронов.

К 3-м годам созревают практически все области сенсорной и моторной коры, за исключением зрительной и слуховой. Наиболее поздно созревает ассоциативная кора мозга. Скачок в развитии ассоциативных областей коры мозга отмечается в 7 лет. Созревание ассоциативных зон идет нарастающим темпом до пубертатного периода, а затем замедляется и завершается к 24-27 годам жизни. Позже всех из ассоциативных зон коры завершают созревание ассоциативные области лобной и теменной коры.

Созревание коры означает не только реализацию установления взаимодействия корковых, но и установление взаимодействия коры с подкорковыми образованиями. Эти взаимоотношения устанавливаются к 10-12 годам, что очень важно для регуляции деятельности систем организма в пубертатный период когда повышается активность гипоталамо-гипофизарной системы, а также систем, имеющих отношение к половому развитию, развитию желез внутренней секреции.

Период новорожденности (неонатальный период). Созревание коры головного мозга ребенка в процессе постэмбрионального развития на клеточном уровне происходит за счет постепенного увеличения размеров первичных, вторичных и третичных зон коры. Чем больше возраст ребенка, тем большие размеры занимают эти корковые зоны и тем сложнее и разнообразнее становится его психическая деятельность. У новорожденного ассоциативные нейронные слои коры головного мозга слабо развиты и совершенствуются только при нормальном его развитии. При врожденном слабоумии верхние слои коры головного мозга остаются недоразвитыми.

Уже в первые часы после рождения у ребенка развитыми являются тактильная и другие системы рецепции, поэтому новорожденный имеет ряд защитных рефлексов на болевые и тактильные раздражения, живо реагирует на температурные раздражители. Из дистантных анализаторов наиболее хорошо у новорожденного ребенка развит слуховой. Наименее развит зрительный анализатор. Лишь к концу периода новорожденности устанавливаются согласованные движения левого и правого глазных яблок. Тем не менее, реакция зрачков на свет имеет место уже в первые часы после рождения (врожденный рефлекс). К концу периода новорожденности появляется способность к конвергенции глаз (Табл.10-3).

Таблица 10-3.

Оценка (баллы) возрастного развития новорожденного (1-я неделя)

Показатель

Оценка ответа

Динамические функции

Соотношения сна и бодрство­вания

Спит спокойно, просыпается только для кор­млении или ког­да мокрый, быс­тро засыпает

Спит спокойно и не просыпает­ся мокрый и для кормления или сытый и сухой не засыпает

Не просыпается голодный и мокрый, а сытый и сухой не засы­пает или часто беспричинно кричит

Очень трудно разбудить или мало спит, но и не кричит или кричит постоянно

Крик громкий, чистый с корот­ким вдохом и удлиненным вы­дохом

Крик тихий, слабый, но с коротким вдо­хом и удлинен­ным выдохом

Крик болезнен­ный, пронзитель-ный или отдель-ные всхлипыва-ния на вдохе

Крик отсутст-вует или от­дельные вскри­кивания, или крик афоничный

Безусловные рефлексы

Все безусловные рефлексы вызываются, симметричны

Требуют более длительной сти­муляции или быстро исто­щаются или не­ постоянно асим­метричны

Вызываются все, но после дли-тельного латент-ного перио­да и повторной стиму-ляции, бы­стро истощают­ся или стойко асимметричны

Большинство рефлексов не вызывается

Мышечный тонус

Симметричный флексорный тонус, преодолеваемый при пассивных движениях

Легкая асим­метрия или тен­денция к гипо- или гипертен-зии, не влияю­щие на позу и движения

Постоянные асимметрии, гипо- или гипер-, ограничивающие спонтанные движения

Позы описто-тонуса или эм­бриона, или лягушки

Асимметричный шейный тониче­ский рефлекс(АШТР)

При повороте головы в сторону непостоянно разгибает “лицевую” руку

Постоянное раз­гибание или отсутствие разги­бания руки при повороте голо­вы в сторону

Поза фехто­вальщика

Цепной симмет­ричный рефлекс

Отсутствует

Сенсорные реакции

Жмурится и бес­покоится при ярком свете; повора-чивает глаза к источнику све-та и вздрагива-ет при гром­ком звуке

Одна из реак­ций сомнитель­на

Одна из реак­ций оценки от­вета 3 отсут­ствует или 2-3 реакции сомни­ тельные

Все реакции оценки ответа 3 отсутствуют

Двигательная активность новорожденного ребенка беспорядочна и некоординированна. Неонатальный период доношенного ребенка характеризуется преимущественной активностью мышц-сгибателей. Хаотичные движения ребенка обусловлены деятельностью подкорковых образований и спинного мозга не координируемой корковыми структурами.

С момента рождения у новорожденного начинают функционировать важнейшие безусловные рефлексы (Табл.10-4). Первый крик новорожденного, первый выдох являются рефлекторными. У доношенного ребенка хорошо выражены три безусловных рефлекса – пищевой, оборонительный и ориентировочный. Поэтому уже на второй неделе жизни у него вырабатываются условные рефлексы (например, рефлекс положения на кормление).

Таблица 10-4.

Рефлексы новорожденного.

Способ определения

Краткая характеристика

Бабинского

Легкое поглаживание стопы от пятки к пальцам

Сгибает I палец стопы и вытягивает остальные

Неожиданный шум (например, хлопок ладошами) или быстрое опускание головки ребенка

Разводит ручки в стороны, а затем скрещивает их на груди

Смыкание

(закрывание век)

Вспышка света

Зажмуривает глаза

Хватательный

В руки ребенка вкладывают палец или карандаш

Захватывает палец (карандаш) пальцами рук

В неонатальном периоде происходит быстрое созревание уже имеющихся перед рождением рефлексов, а также появление новых рефлексов или их комплексов. Усиливается механизм реципрокного торможения спинальных, симметричных и реципрокных рефлексов.

У новорожденного любое раздражение вызывает ориентировочный рефлекс. Вначале он проявляется общим вздрагиванием тела и торможением двигательной активности с задержкой дыхания, в последующем на внешние сигналы возникает двигательная реакция рук, ног, головы, туловища. В конце первой недели жизни ребенок реагирует на сигналы ориентировочной реакцией с наличием некоторых вегетативных и исследовательской компонент.

Существенным переломным этапом развития нервной системы является этап возникновения и закрепления антигравитационных реакций и приобретения способности осуществлять целенаправленные локомоторные акты. Начиная с этого этапа характер и степень интенсивности осуществления двигательных поведенческих реакций определяют особенности роста и развития данного ребенка. В этом периоде выделяется фаза до 2,5-3 месяцев, когда ребенок впервые закрепляет первую антигравитационную реакцию , характеризующуюся способностью удерживать головку в вертикальном положении. Вторая фаза длится с 2,5-3 до 5-6 месяцев, когда ребенок делает первые попытки реализовать вторую антигравитационную реакцию – позу сидения. Непосредственно-эмоциональное общение ребенка с матерью повышает его активность, становится необходимой основой для развития его движений, восприятия, мышления. Недостаточное общение отрицательно сказывается на его развитии. Дети, оказавшиеся в детском доме отстают в психическом развитии (даже при хорошем гигиеническом уходе), речь у них появляется поздно.

Гормоны материнского молока необходимы ребенку для нормального созревания механизмов его мозга. Так, например, более половины женщин, получавших в раннем детстве искусственное вскармливание, страдают бесплодием вследствие недополучения пролактина. Дефицит пролактина в материнском молоке нарушает развитие дофаминергической системы мозга ребенка, что приводит к недоразвитию тормозных систем его мозга. В постнатальный период высока потребность развивающегося мозга в анаболических и тиреоидных гормонах, так как в это время осуществляется синтез белков нервной ткани и идет процесс ее миелинизации.

Развитию центральной нервной системы ребенка в значительной мере способствуют гормоны щитовидной железы. У новорожденных и в течение первого года жизни уровень тиреоидных гормонов максимален. Снижение выработки тиреоидных гормонов в фетальном или раннем постнатальном периодах приводит к кретинизму в связи с уменьшением числа и размеров нейронов и их отростков, торможением развития синапсов, перехода их из потенциальных в активные. Процесс миелинизации обеспечивают не только тиреоидные гормоны, но и стероидные, что является проявлением резервных возможностей организма в регуляции созревания мозга.

Для нормального развития различных центров мозга необходима их стимуляция сигналами, несущими информацию о внешних воздействиях. Активность нейронов головного мозга является обязательным условием развития и функционирования центральной нервной системы. В процессе онтогенеза не смогут функционировать те нейроны, которые вследствие дефицита афферентного притока не установили достаточного количества эффективных синаптических контактов. Интенсивность сенсорного притока предопределяет онтогенез поведения и психического развития. Так, в результате воспитания детей в сенсорно обогащенной среде наблюдается ускорение психического развития. Адаптация к внешней среде и обучение слепоглухонемых детей возможны только при усиленном притоке в ЦНС афферентных импульсов от сохранившихся рецепторов кожи.

Любые дозированные воздействия на органы чувств, двигательную систему, на речевые центры выполняют многоцелевые функции. Во-первых, они оказывают общесистемное действие, регулируя функциональное состояние мозга, улучшая его работу; во-вторых, способствуют изменению скорости процессов созревания мозга; в-третьих, обеспечивают развертывание сложных программ индивидуального и социального поведения; в-четвертых, облегчают процессы ассоциации при ментальной деятельности.

Таким образом, высокая активность сенсорных систем ускоряет созревание ЦНС и обеспечивает реализацию ее функций в целом.

В возрасте около 1-го года у ребенка закрепляется третья антигравитационная реакция – реализация позы стояния. До ее реализации физиологические отправления организма в основном обеспечивают рост и преимущественное развитие. После реализации позы стояния у ребенка появляются новые возможности в координации движений. Поза стояния способствует развитию моторики, формированию речи. Критическим фактором для развития соответствующих корковых структур в данном возрастном периоде является сохранение общения ребенка с себе подобными. Изоляция ребенка (от людей) или неадекватные условия воспитания, например среди животных, несмотря на генетически обусловленное созревание структур мозга к данному переломному этапу онтогенеза, организм не начинает взаимодействовать со специфическими для человека условиями среды, которые стабилизировали бы и способствовали развитию созревших структур. Поэтому возникновение новых человеческих физиологических функций и поведенческих реакций не реализуется. У детей, выросших в условиях изоляции функция речи не реализуется, даже когда изоляция от людей заканчивается.

Помимо критических возрастных периодов, выделяют сенситивные периоды развития нервной системы. Под этим термином понимаются периоды наибольшей чувствительности к определенным специфическим воздействиям. Сенситивный период развития речи длится от года до 3 лет, и если этот этап упущен (с ребенком не было речевого общения), компенсировать потери в дальнейшем практически невозможно.

В возрастном периоде 1 года до 2,5-3 лет . В этом возрастном периоде происходит освоение локомоторных актов в среде (ходьбы и бега) в связи с совершенствованием реципрокных форм торможения мышц антагонистов. На развитие ЦНС ребенка большое влияние оказывают афферентные импульсы с проприоцепторов, возникающие при сокращении скелетных мышц. Существует прямая связь между уровнем развития опорно-двигательного аппарата, двигательного анализатора ребенка и его общим физическим и психическим развитием. Влияния двигательной активности на развитие функций мозга ребенка проявляются в специфической и неспецифической формах. Первая связана с тем, что двигательные области головного мозга являются необходимым элементом его деятельности как центра организации и совершенствования движений. Вторая форма связана с влиянием движений на активность корковых клеток всех структур мозга, повышение которой способствует формированию новых условно-рефлекторных связей и реализации старых. Ведущее значение в этом имеют тонкие движения пальцев детей. В частности, на формирование моторной речи влияют координированные движения пальцев рук: при тренировке точных движений голосовые реакции у детей 12-13 месяцев развиваются не только интенсивнее, но и оказываются более совершенными, речь становится четче, легче воспроизводятся сложные словосочетания. Дети в результате тренировки тонких движений пальцев очень быстро овладевают речью, значительно опережая группу детей, в которой эти упражнения не проводились. Влияние проприоцептивной импульсации с мышц руки на развитие коры больших полушарий наиболее выражено в детском возрасте, пока идет формирование речевой моторной зоны мозга, однако оно сохраняется и в более старших возрастах.

Таким образом, движения ребенка представляют собой не только важный фактор физического развития, но и являются необходимыми для нормального психического развития. Ограничение подвижности или мышечные перегрузки нарушают гармоничность функционирования организма и могут быть патогенетическим фактором в развитии ряда заболеваний.

3 года - 7 лет. 2,5–3 года - очередной переломный этап в развитии ребенка. Интенсивное физическое и психическое развитие ребенка приводит к напряженной работе физиологических систем его организма, а в случае слишком высоких требований – к их “поломке”. Особенно ранимой оказывается нервная система, ее перенапряжение приводит к появлению синдрома малых мозговых дисфункций, торможению развития ассоциативного мышления и т.д.

Нервная система ребенка дошкольного возраста чрезвычайно пластична и чувствительна к различным внешним воздействиям. Ранний дошкольный возраст наиболее благоприятен для совершенствования деятельности органов чувств, накопления представлений об окружающем мире. Многие связи между нервными клетками неокортекса, даже имеющиеся при рождении и обусловленные наследственными механизмами роста, должны быть подкреплены в период общения организма со средой, т.е. эти связи должны быть востребованы вовремя. В противном случае эти связи уже не смогут функционировать.

Одним из объективных показателей степени функциональной зрелости головного мозга ребенка, может служить функциональная межполушарная асимметрия. Первый этап становления межполушарного взаимодействия продолжается от 2 до 7 лет и соответствует периоду интенсивного структурного созревания мозолистого тела. До 4-х летнего возраста полушария относительно разобщены, однако, к концу первого периода существенно увеличиваются возможности передачи информации из одного полушария в другое.

Предпочтение правой или левой руки четко выявляется уже в 3-х летнем возрасте. Степень асимметрии прогрессивно увеличивается от 3 до 7 лет, дальнейшее нарастание асимметрии незначительно. Скорость прогрессивного нарастания асимметрии в интервале 3-7 лет выше у левшей, чем у правшей. С возрастом, при сравнении дошкольников и младших школьников, увеличивается степень предпочтения использования правой руки и ноги. В возрасте 2-4 года правши составляют 38%, а к 5-6 годам – уже 75%. У аномальных детей развитие левого полушария значительно задерживается и функциональная асимметрия выражена слабо.

Среди экзогенных факторов, обуславливающих возникновение признаков нарушения развития ЦНС, существенное значение имеет окружающая среда. Нейропсихологическое обследование детей в возрасте 6-7 лет в городах с неблагоприятной экологической ситуацией выявляют дефицит двигательной координации, слухомоторной координации, стереогноза, зрительной памяти, речевых функций. Отмечены моторная неловкость, снижение слухового восприятия, замедленность мышления, ослабление внимания, недостаточная сформированность навыков интеллектуальной деятельности. При неврологическом обследовании выявляется микросимптоматика: анизорефлексия, мышечная дистония, нарушение координации. Установлена связь между частотой нарушений нейропсихологического развития детей с патологией их перинатального периода и отклонениями в здоровье в это время родителей, занятых на экологически неблагоприятных производствах.

7 – 12 лет. Следующий этап развития – 7 лет (второй критический период постнатального онтогенеза) - совпадает с началом школьного обучения и вызван необходимостью физиологической и социальной адаптации ребенка к школе. Распространение практики начального обучения по расширенным и углубленным программам в погоне за ростом учебно-педагогических показателей детей, приводят к существенному срыву нервно-психического статуса ребенка, что проявляется снижением работоспособности, ухудшением памяти и внимания, изменениями функционального состояния сердечно-сосудистой и нервной систем, нарушениями зрения у первоклассников.

У большинства детей дошкольного возраста в норме отмечается правополушарное доминирование, даже в реализации речи, что, по-видимому, свидетельствует о преобладании у них образного, конкретного восприятия внешнего мира, осуществляемого в основном правым полушарием. У детей младшего школьного возраста (7-8 лет) наиболее распространенным является смешанный вид асимметрии, т.е. по одним функциям преобладала активность правого полушария, по другим – левого. Однако, усложнение и неуклонное развитие второсигнальных условных связей с возрастом, видимо, обуславливает увеличение степени межполушарной асимметрии, а также увеличение количества случаев левополушарной асимметрии у 7-ми и в особенности у 8-ми летних детей. Таким образом, на данном отрезке онтогенеза четко прослеживается смена фазных отношений между полушариями и становление, развитие доминантности левого полушария. Электроэнцефалографические (ЭЭГ) исследования леворуких детей указывают на меньшую степень зрелости их нейрофизиологических механизмов по сравнению с праворукими.

В 7-10 лет, мозолистое тело увеличивается в объеме за счет продолжающейся миелинизации, усложняются взаимоотношения каллозальных волокон с нейронным аппаратом коры, что расширяет компенсаторные взаимодействия симметричных мозговых структур. К 9-10-летнему возрасту значительно усложняется структура интернейрональных связей коры, обеспечивающих взаимодействие нейронов как в пределах одного ансамбля, так и между нейронными ансамблями. Если в первые годы жизни развитие межполушарных отношений определяется структурным созреванием мозолистого тела, т.е. межполушарным взаимодействием, то после 10 лет доминирующим фактором является формирование внутри- и межполушарной организации мозга.

12 – 16 лет. Период – полового созревания, или подростковый, или старший школьный возраст. Его принято характеризовать как возрастной кризис, при котором имеет место быстрое и бурное морфофизиологическое преобразование организма. Данный период соответствует активному созреванию нейронного аппарата коры больших полушарий, интенсивному формированию ансамблевой функциональной организации нейронов. На этом этапе онтогенеза завершается развитие ассоциативных внутриполушарных связей различных корковых полей. Совершенствование с возрастом морфологических внутриполушарных связей создает условия для становления специализации в осуществлении различных видов деятельности. Возрастающая специализация полушарий приводит к усложнению функциональных межполушарных связей.

В возрасте между 13 и 14 годами имеет место выраженная дивергенция в особенностях развития между мальчиками и девочками.

17 лет – 22 года (ювенильный период). Юношеский возраст у девочек начинается в 16, а у мальчиков в 17 лет и заканчивается у юношей в 22-23 года, а у девушек в 19-20 лет. В этот период стабилизируется наступившая половая зрелость.

22 года – 60 лет. Период половой зрелости, или детородный период, в пределах которого установившиеся до него морфофизиологические характеристики сохраняются более или менее однозначными является относительно стабильным периодом. Поражения нервной системы в этом возрасте могут быть вызваны инфекционными заболеваниями, инсультами, опухолями, травмами и другими факторами риска.

Старше 60 лет. Стационарный детородный период сменяется регрессивным периодом индивидуального развития, который включает следующие стадии: 1-я стадия – период пожилого возраста, с 60 до 70-75 лет; 2-я стадия – период старческого возраста с 75 до 90 лет; 3-я стадия – долгожители – старше 90 лет. Принято считать в общей форме, что изменения морфологических, физиологических и биохимических показателей статистически коррелируют с увеличением хронологического возраста. Термин “старение” означает прогрессирующую утрату восстановительных и адаптивных реакций, которые служат для поддержания нормальных функциональных возможностей. Для ЦНС старение характеризуется асинхронным изменением физиологического состояния различных структур мозга.

При старении происходят количественные и качественные изменения в структурах центральной нервной системы. Нарастающее уменьшение количества нейронов начинается с 50-60 лет. К 70 годам кора мозга теряет 20%, а к 90 годам – 44-49% своего клеточного состава. Наибольшие потери нейронов происходят в лобной, нижневисочной, ассоциативных областях коры.

В связи со специализацией нейронных структур мозга уменьшение его клеточного состава в одной из них сказывается на деятельности центральной нервной системы в целом.

Одновременно с дегенеративно-атрофическими процессами при старении развиваются механизмы, способствующие поддержанию функциональных возможностей ЦНС: увеличиваются поверхность нейрона, органелл, объем ядра, количество ядрышек, число контактов между нейронами.

Наряду с гибелью нейронов происходит нарастание глиоза, это приводит к увеличению соотношения количества глиальных клеток к нервным, что благоприятно сказывается для трофики нейрона.

Следует обратить внимание, что отсутствует прямая связь между числом погибших нейронов и степенью функциональных изменений в деятельности той или иной структуры мозга.

При старении ослабляются нисходящие влияния головного мозга на спинной мозг. В пожилом возрасте повреждения спинного мозга оказывают менее продолжительное угнетающее влияние на рефлексы спинного мозга. Ослабление центрального влияния на рефлексы ствола мозга показаны относительно сердечно-сосудистой, дыхательной и других систем.

Межцентральные отношения структур головного мозга при старении сказываются на ослаблении реципрокных взаимотормозных влияний. Распространение синхронизированной, судорожной активности вызывается меньшими дозами коразола, кордиамина и т.д., чем у молодых. В то же время судорожные припадки у стариков не сопровождаются бурными вегетативными реакциями, как это имеет место у молодых.

Старение сопровождается увеличением в мозжечке соотношения глиоциты – нейрон с 3,6+0,2 до 5,9+0,4. К 50 годам у человека, сравнительно с 20 летними активность холин-ацетилтрансферазы уменьшается на 50%. Уменьшается с возрастом количество глутаминовой кислоты. Наиболее выражены при старении не функциональные изменения в самом мозжечке. Изменения в основном касаются мозжечково-лобных отношений. Это затрудняет или полностью нивелирует у пожилых возможности взаимокомпенсации нарушений функций одной из этих структур.

В лимбической системе мозга при старении снижается общее число нейронов, в сохранившихся нейронах увеличивается количество липофусцина, ухудшаются межклеточные контакты. Астроглия разрастается, значительно уменьшается на нейронах количество аксосоматических и аксодендритических синапсов, уменьшается шипиковый аппарат.

При деструкции тканей мозга реиннервация клеток в пожилом возрасте идет медленно. Медиаторный обмен в лимбической системе нарушается при старении значительно больше, чем в том же возрасте в других структурах мозга.

Длительность циркуляции возбуждения по структурам лимбической системы с возрастом уменьшается, а это сказывается на кратковременной памяти и формировании долговременной памяти, на поведении, мотивации.

Стриопаллидарная система мозга, при ее дисфункциях, вызывает различные двигательные нарушения, амнезии, вегетативные расстройства. При старении, после 60 лет, возникают дисфункции стриопаллидарной системы, что сопровождается гиперкинезами, тремором, гипомимией. Причиной таких нарушений являются два процесса: морфологический и функциональный. При старении объем стриопаллидарных ядер уменьшается. Количество интернейронов в неостриатуме становится меньше. Вследствие морфологических деструкций нарушаются функциональные связи стриарных систем через таламус с экстрапирамидной корой. Но это не единственная причина функциональных нарушений. К ним следует отнести изменения медиаторного обмена и рецепторных процессов. Стриарные ядра имеют отношение к синтезу дофамина, одного из тормозных медиаторов. При старении накопление дофамина в стриарных образованиях уменьшается. Старение приводит к нарушениям регуляции со стороны стриопаллидума тонких, точных движений конечностей, пальцев рук, нарушениям мышечной силы, возможности длительного сохранения высокого тонуса мышцы.

Ствол мозга является наиболее устойчивым образованием в возрастном аспекте. Это видимо обусловлено значимостью его структур, широким дублированием и резервированием их функций. Количество нейронов к старости в стволе мозга изменяется мало.

Наиболее важное значение в регуляции вегетативных функций имеет гипоталамо-гипофизарный комплекс.

Структурные и ультраструктурные изменения в гипоталамо-гипофизарных образованиях заключаются в следующем. Ядра гипоталамуса стареют не синхронно. Признаки старения выражаются в накоплении липофусцина. Наиболее рано выраженное старение появляется в переднем гипоталамусе. Нейросекреция в гипоталамусе уменьшается. Скорость обмена катехоламинов уменьшается вдвое. Гипофиз усиливает к старости выделение вазопрессина, что соответственно стимулирует повышение артериального давления

Функции спинного мозга существенно изменяются при старении. Основной причиной этого является снижение его кровоснабжения.

При старении в первую очередь изменяются длинноаксонные нейроны спинного мозга. К 70 годам число аксонов в корешках спинного мозга уменьшается на 30%, в нейронах накапливается липофусцин, появляются различного рода включения, падает активность холин-ацетилтрансферазы, нарушается трансмембранный транспорт K + и Na + , включение аминокислот в нейроны затрудняется, содержание РНК в нейронах уменьшается особенно активно после 60 лет. В этом же возрасте замедляется аксоплазматический ток белков, аминокислот. Все эти изменения в нейроне снижают его лабильность, в 3 раза уменьшается частота генерируемых импульсов, увеличивается длительность потенциала действия.

Моносинаптические рефлексы спинного мозга с латентными периодами (ЛП) 1,05 мс составляют 1%. ЛП этих рефлексов удлиняется к старости вдвое. Такое удлинение времени рефлекса обусловлено замедлением образования и выброса медиатора в синапсах данной рефлекторной дуги.

В многонейронной рефлекторной дуге спинного мозга время реакции увеличивается за счет замедления медиаторных процессов в синапсах. Указанные изменения в синаптической передаче приводят к снижению силы сухожильных рефлексов, увеличению их ЛП. У лиц 80 лет резко снижаются или даже исчезают ахилловы рефлексы. Например, ЛП ахиллова рефлекса у молодых составляет 30-32 мс, а у стариков – 40-41 мс. Такие замедления характерны и для других рефлексов, что сказывается замедлением моторных реакций у пожилого человека.

Нервная система начинает развиваться на 3-й неделе внутриутробного развития из эктодермы (наружного зародышевого листка).

На дорсальной (спинной) стороне зародыша исходит утолщение эктодермы. Это формируется нервная пластинка . Затем нервная пластинка изгибается вглубь зародыша и образуется нервная бороздка . Края нервной бороздки смыкаются, формируя нервную трубку . Длинная полая нервная трубка, лежащая сначала на поверхности эктодермы, отделяется от нее и погружается внутрь, под эктодерму. Нервная трубка расширяется на переднем конце, из которого позднее формируется головной мозг. Остальная часть нервной трубки преобразуется в спинной мозг (рис.) .

Из клеток, мигрирующих из боковых стенок нервной трубки, закладываются два нервных гребня- нервные тяжи . В дальнейшем из нервных тяжей образуются спинальные и автономные ганглии и шванновские клетки , которые формируют миелиновые оболочки нервных волокон. Кроме того, клетки нервного гребня участвуют в образовании мягкой и паутинной оболочек мозга. Во внутреннем слое нервной трубки происходит усиленное деление клеток. Эти клетки дифференцируются на два типа: нейробласты (предшественники нейронов) и спонгиобласты (предшественники глиальных клеток). Одновременно с делением клеток головной конец нервной трубки подразделяется на три отдела - первичные мозговые пузыри. Соответственно они называются передний (I пузырь), средний (II пузырь) и задний (III пузырь) мозг. Передний мозговой пузырь является родоначальником боль­ших полушарий головного мозга. Средний мозговой пузырь форми­рует подкорковые образования, включая такие крупные, как таламус, гипоталамус, а также средний мозг, который представляет собой ножки мозга, соединяющие большие полушария со стволом. Задний мозговой пузырь является предшественником ствола го­ловного и спинного мозга.

К концу 4-й недели стенка нервной трубки состоит из трех слоев: наружного, мантийного (среднего) и эпендимного (внутреннего). Нарастание клеточной массы в нервной трубке происходит за счет внутреннего эпендимного слоя, содержащего нейробласты и спонгиобласты. Размножение и созревание вновь образованных нейробластов и глиоцитов происходит в мантийном слое, а в тонком наружном слое располагаются волокна и верхушечные дендриты созревающих нейронов.

Нервные узлы черепных нервов, так же, как и сенсорные узлы спинно­мозговых нервов, образуются из нервного гребня - длинного тяжа, располо­женного по обеим сторонам крыльных пластинок нервной трубки и состоя­щего из клеток нейроэктодермы. Нервный гребень, доходящий в краниаль­ном отделе нервной трубки до среднего мозга, дает начало периферическим постганглионарным нейронам ресничного, крылонебного, подчелюстного и подъязычного вегетативных узлов и их нервным сплетениям, а также сенсор­ным нейронам в составе узлов сенсорного (VIII пара) и бранхиогенных (V, VII, IX, X пары) черепных нервов.

Соматомоторные (III, IV, VI, XII пары) черепные нервы, а также двига­тельные волокна в составе бранхиогенных черепных нервов (V, VII, IX, X, XI пары), иннервирующих мышцы жаберного происхождения, формируются аксонами нейронов, развивающихся из клеток базальной пластинки средне­го и заднего мозговых пузырей. Парасимпатические преганглионарные нейроны вегетативных ядер III, VII, IX и X пар черепных нервов развиваются из межуточной зоны, расположенной между крыльной и базальной частями стенок среднего и заднего мозговых пузырей.

К концу 3-й недели эмбриогенеза, еще до завершения нейруляции и фор­мирования мозговых пузырей в результате быстрого роста краниального отдела нервной трубки происходит ее изгиб вперед и вверх. Затем формиру­ются и другие изгибы нервной трубки.

В последующем развитии передний мозг делится на конечный (большие полушария) и промежуточный мозг. Средний мозг сохраняется как единое целое, а задний мозг делится на два отдела, включающих мозжечок с мостом и продолговатый мозг. Это 5-пузырная стадия развития мозга.

Рис. . Стадии эмбриогенеза нервной системы в поперечном схематическом разрезе:

a - медулярная пластина; б, г - медулярная бороздка; в, д - мозговая трубка;

1 - роговой листок (эпидермис); 2- ганглиозный валик.

Схема развития головного мозга

Наименование отделов Трехпузырная стадия Пятипузырная стадия Наименование отделов

Структуры, составляющие данные отделы

Передний мозг

1-й мозговой пузырь (передний)

1-й мозговой пузырь Конечный мозг Большие полушария головного мозга Кора больших полушарий, белое вещество больших полушарий, базальные ганглии, боковые желудочки

2-й мозговой пузырь

Промежуточный мозг

Зрительные бугры, надбугорная область, забугорная область, подбугорная область

Глазные пузыри

Глазные бокалы, сетчатка глаза, зрительный нерв

Средний мозг 2-й мозговой пузырь (средний) 3-й мозговой пузырь Средний мозг

Ножки мозга (из вентральной части), четверохолмия (из дорсальной части)

Ромбовидный мозг

3-й мозговой пузырь (задний или ромбовидный)

4-й мозговой пузырь Задний мозг

Верхние ножки мозжечка (из передней части), мост (из вентральной части), мозжечок (из дорсальной части)

5-й мозговой пузырь Продолговатый мозг

Продолговатый мозг

Последующее развитие мозговых пузырей имеет свои особенности. В начале 5-й недели продолговатый мозг почти не отличается от спинно­мозгового отдела нервной трубки: он имеет крыльную и базальную пла­стинки. В толще базальной и крыльной пластинок происходит закладка ядер V-XII пар черепных нервов, причем моторные ядра формируются из материала базальной пластинки, поэтому располагаются медиальнее по отношению к сенсорным ядрам - производным крыльной пластинки. Формирующиеся вегетативные ядра черепных нервов занимают промежу-

Развитие отделов головного мозга

Первичный отдел Вторичный отдел Полости мозга Нервы Области иннервации
Нервная трубка Спинной мозг Центральный канал Спинно­мозговые (31 пара) Туловище: кожный покров, мышцы, внутренние органы

Ромбовид­ный мозг

Продолговатый мозг

IV желудочек

Черепные XII ,X, XI, IX пары Глотка, язык и его мышцы, гортань, другие органы

Задний мозг Мост

Мозжечок

VIII, VII, VI, V пары Кожный покров лица и головы, жевательные мышцы, мимические мышцы, орган слуха
- -
Средний мозг Средний мозг Водопровод мозга III, IV пары Мышцы глазного яблока

Передний мозг

Промежу­точный мозг III желудочек II пара Орган зрения
Конечный мозг Боковые желудочки I пара Орган обоняния

точное положение между моторными и сенсорными. Одновременно с закладкой ядер, а также дифференцировкой клеток нервного гребня проис­ходит развитие самих черепных нервов.

В развитии заднего мозга прослеживаются те же изменения в расположе­нии пластинок нервной трубки, что и в продолговатом мозге. Вследствие расхождения крыльных пластинок в стороны здесь также происходит истон­чение крыши нервной трубки.

Миграция клеток крыльной пластинки в область крыши заднего мозга приводит к формированию на 12-16-й неделях червя и полушарий мозжеч­ка. Под мозжечком просматривается полость будущего IV желудочка, дно которой образует ромбовидная ямка.

Средний мозг обособляется относительно рано, на 4-й неделе развития. Клетки крыльной пластинки в области среднего мозга мигрируют в дорсаль­ном и вентральном направлениях. На дорсальной поверхности они дают начало ядрам верхних и нижних холмиков пластинки будущего четверохол­мия. Клетки, смещающиеся вентрально, формируют красные ядра и ретику­лярные ядра среднего мозга. Из базальной пластинки образуется также ядро

глазодвигательного нерва (III пара), хорошо выраженное на 12-й неделе внутриутробного развития.

Промежуточный мозг обособляется от переднего мозгового пузыря на 5-й неделе. В ростральной (передней) части нервной трубки, дающей начало конечному и промежуточному мозгу, идет интенсивное увеличение числа нервных клеток. Здесь отсутствует деление на крыльную и базальную пла­стинки, не происходит формирования черепных нервов, а вся масса нервных клеток идет на развитие многочисленных ядер и коры головного мозга.

В промежуточном мозге на 5-й неделе наблюдается начало интенсивного роста мантийного (пролиферативного) слоя, что приводит к значительному утолщению его латеральных стенок; здесь образуются закладки правого и ле­вого таламусов. Еще до обособления промежуточного мозга в задней части переднего мозгового пузыря на его вентролатеральной поверхности появля­ются парные глазные пузыри, которые растут в сторону эктодермы в форме бокалов. Из стенки глазного бокала сформируются светочувствительные и нервные элементы сетчатки глаза, а из эктодермы в области глазных плакод и окружающей мезенхимы - все остальные структуры глаза. В силу этого зрительный нерв (II пара) не является типичным черепным нервом, а пред­ставляет собой специальное образование, связывающее сетчатку с головным мозгом, а сама сетчатка фактически является частью стенки нервной трубки, отделившейся от нее в процессе развития и выселившейся на периферию.

Одновременно с развитием конечного мозга начинают формироваться их ростральные выросты, из которых впоследствии образуются обонятельные луковицы и обонятельные тракты (I пара черепных нервов). Они также не являются типичными черепными нервами, а представляют собой проводни­ковый отдел обонятельного анализатора.

Конечный мозг с самого начала развития закладывается как парное обра­зование в виде двух будущих полушарий. Внутри полушарий образуются парные полости - боковые желудочки мозга.

В период с 6-й до 12-й недели эмбриогенеза полушария головного мозга интенсивно растут, значительно опережая в росте все другие отделы головно­го мозга. В результате полушария, как плащ, покрывают эти другие отделы. Часть нейробластов мигрирует к поверхности стенки переднего мозгового пузыря, образуя в дальнейшем кору мозга.

К началу 4-го месяца внутриутробной жизни (т. е. чуть более, чем через 100 дней с момента начала развития организма) интенсивное деление ней­робластов внутреннего плаща (коры большого мозга) приводит к тому, что у зародыша человека чис­ло нервных клеток уже приближается к их числу в коре у новорожденного.

Слой, в котором происходит размножение нейробластов, располагается наиболее глубоко, поэтому в процессе развития вновь образованные ней-робласты мигрируют наружу в мантийный слой, где они постепенно приоб­ретают типичную для себя форму и занимают определенное положение в формирующейся коре мозга. Миграцию нейробластов направляют клетки радиальной глии, образующиеся из спонгиобластов эпендимы. Ней­роны в процессе миграции как бы «скользят» вдоль отростков этих глиальных клеток из глубины мантийного слоя по направлению к поверхности моз­гового пузыря. Нейробласты, мигрировавшие первыми, заполняют сначала

глубинные слои будущей коры, а клетки, образовавшиеся позднее, распола­гаются в более верхних слоях. Таким образом, кора головного мозга форми­руется как бы «изнутри кнаружи». При этом время образования нейрона определяет его принадлежность к определенным слоям коры, а значит и его

Созревание нейробластов происходит гораздо медленнее, чем их проли­ферация (накопление количества), и продолжается после рождения в тече­ние первых лет жизни. В коре мозга раньше всего созревают крупные пира­мидные клетки ее нижнего этажа (проекционные нейроны), связывающие кору с нижележащими отделами головного и спинного мозга. Их можно наблюдать уже на 8-й неделе эмбриогенеза.

К 25-й неделе внутриутробного развития в корковой пластинке плаща (коры) можно различить цитоархитектонические слои. Рост и развитие плаща при­водит к образованию борозд и извилин (складок) на поверхности конечного мозга, которые формируются на 28-30-й неделях. Окончательное заверше­ние формирования рельефа полушарий наблюдается в постнатальном пери­оде примерно к 7-8 годам жизни ребенка. Последовательность и степень раз­вития рельефа полушарий (борозд и извилин) программируется генетически, однако его строение в значительной степени зависит также от внешних вли­яний окружающей среды (соотношения благоприятных и неблагоприятных факторов существования, степени защищенности от влияния неблагоприят­ных условий, степени вынужденной активности индивидуума, информаци­онной обогащенности среды и т. д.) и от состояния внутренней среды орга­низма (уровня энергетического обмена, соотношения и уровня гормонов в крови и т. д.). Это обусловливает существенные индивидуальные различия в величине площади коры в разных долях и извилинах мозга.

Вначале поверхность больших полушарий гладкая. Первыми на 11 -12 неделе внутриутробного развития закладывается боковая борозда (Сильвиева), затем центральная (Ролландова) борозда. Довольно быстро происходит закладка борозд в пределах долей полуша­рий, за счет образования борозд и извилин увеличива­ется площадь коры.

Нейробласты путем миграции образуют скопле­ния - ядра, формирующие серое вещество спинно­го мозга, а в стволе мозга - некоторые ядра череп­но-мозговых нервов.

Сомы нейробластов имеют округлую форму. Развитие нейрона проявляется в появлении, росте и вет­влении отростков. На мембране нейрона об­разуется небольшое короткое выпячивание на месте будущего аксона - конус роста. Аксон вытягивает­ся, и по нему доставляются питательные вещества к конусу роста. В начале развития у нейрона образует­ся большее число отростков по сравнению с конеч­ным числом отростков зрелого нейрона. Часть отро­стков втягивается в сому нейрона, а оставшиеся растут в сторону других нейронов, с которыми они образуют синапсы.

В спинном мозге аксоны имеют небольшую длину и формируют межсегментарные связи. Более длинные проекционные волокна формируются позднее. Не­сколько позже аксона начинается рост дендритов. Все разветвления каждого дендрита образуются из одного ствола. Количество ветвей и длина дендритов не завер­шаются во внутриутробном периоде.

Увеличение массы мозга в пренатальный период происходит в основном за счет увеличения количества нейронов и количества глиальных клеток.

Развитие коры связано с образованием клеточных слоев (в коре мозжечка - три слоя, а в коре полушарий большого мозга - шесть слоев).

В формировании корковых слоев большую роль играют так называемые глиальные клетки. Эти клет­ки принимают радиальное положение и образуют два вертикально ориентированных длинных отрос­тка. По отросткам этих радиальных глиальных кле­ток происходит миграция нейронов. Вначале обра­зуются более поверхностные слои коры. Глиальные клетки принимают также участие в образовании миелиновой оболочки. Иногда одна глиальная клетка участвует в образовании миелиновых оболочек не­скольких аксонов.

Таким образом, развитие головного мозга в пренатальный период происходит непрерывно и параллельно, однако характеризуется гетерохронией: скорость роста и развития филогенетически более древних образований больше, чем филогенетически более молодых образований.

Ведущую роль в росте и развитии нервной системы во внутриутробный период играют генетические факторы. Морфо-функциональное созревание нервной системы продолжается в постнатальный период.

Основное прибавление массы моз­га приходится на первый год жизни ребенка. Увеличение массы мозга в постнатальный период происходит в основном за счет увеличения количества глиальных клеток. Количество нейронов не увеличи­вается, так как они теряют способность делиться уже в пренатальном периоде. Общая плотность нейронов (количество клеток в единице объема) уменьшается за счет роста сомы и отростков. У дендритов увеличива­ется количество ветвлений.

В постнатальном периоде продолжается также миелинизация нервных волокон как в центральной нервной системе, так и нервных волокон, входящих в состав периферических нервов (черепно-мозговых и спинномозговых).

Рост спинномозговых нервов связан с развитием опорно-двигательного аппарата и формированием нервно-мышечных синапсов, а рост черепно-мозговых нервов с созреванием органов чувств.

Таким образом, если в пренатальном периоде раз­витие нервной системы происходит под контролем генотипа и практически не зависит от влияния внеш­ней окружающей среды, то в постнатальном периоде все большую роль играют внешние стимулы. Раздра­жение рецепторов вызывает афферентные потоки им­пульсов, которые стимулируют морфо-функциональное созревание мозга.

Под влиянием афферентных импульсов на дендритах корковых нейронов образуются шипики - вы­росты, представляющие собой особые постсинаптические мембраны. Чем больше шипиков, тем больше си­напсов и тем большее участие принимает нейрон в обработке информации.

На протяжении всего постнатального онтогенеза вплоть до пубертатного периода, так же как и в пренатальный период, развитие мозга происходит гетерохронно. Так, окончательное созревание спинного моз­га происходит раньше, чем головного мозга. Развитие стволовых и подкорковых структур раньше, чем кор­ковых, рост и развитие возбудительных нейронов об­гоняет рост и развитие тормозных нейронов. Это об­щие биологические закономерности роста и развития нервной системы.

Морфологическое созревание нервной системы коррелирует с особенностями ее функционирования на каждом этапе онтогенеза. Так, более раннее дифферен­цирование возбудительных нейронов по сравнению с тормозными нейронами обеспечивает преобладание мышечного тонуса сгибателей над тонусом разгибателей. Руки и ноги плода находятся в согнутом положении - это обусловливает позу, обеспечивающую ми­нимальный объем, благодаря чему плод занимает мень­шее место в матке.

Совершенствование координации движений, связанных с формированием нервных волокон, происхо­дит на протяжении всего дошкольного и школьного периодов, что проявляется в. последовательном освоении позы сидения, стояния, ходьбы, письма и т.д.

Увеличение скорости движений обусловливается в основном процессами миелинизации периферичес­ких нервных волокон и увеличения скорости проведе­ния возбуждения нервных импульсов. Более раннее созревание подкорковых структур по сравнению с корковыми, многие из которых входят в состав лимбической структуры, обусловливают особенности эмоци­онального развития детей (большая интенсивность эмоций, неумение их сдерживать связаны с незрелостью коры и ее слабым тормозным влиянием).

В пожилом и старческом возрасте происходят ана­томические и гистологические изменения мозга. Часто происходит атрофия коры лобной и верхней теменной долей. Борозды становятся шире, желудочки мозга уве­личиваются, объем белого вещества уменьшается. Происходит утолщение мозговых оболочек.

С возрастом нейроны уменьшаются в размерах, при этом количество ядер в клетках может увеличить­ся. В нейронах уменьшается также содержание РНК, необходимой для синтеза белков и ферментов. Это ухудшает трофические функции нейронов. Высказыва­ется предположение, что такие нейроны быстрее утом­ляются.

В старческом возрасте нарушается также крово­снабжение мозга, стенки кровеносных сосудов утол­щаются и на них откладываются холестериновые бляшки (атеросклероз). Это ухудшает деятельность нервной системы.

Органогенез головного мозга представ­лен на рис. . Антенатальное развитие ЦНС разделяется на три процесса: органогенез - формирование макроструктурных отде­лов мозга; гистогенез - развитие мозга от зарождения клеток; миграции дифференции. Конечным этапом является созревание ЦНС. Последнее характеризуется формированием синаптических контактов, нейронных сетей и миелинизацией, начинается на 36-й неделе внутриутробного развития и продолжается наиболее интенсивно до 5 лет. Созревание различных отделов ЦНС идет неравномерно. К концу антенатального периода лишь нервные клетки спинного мозга и глиальная ткань морфологически впол­не развиты. Что касается полного структурного и функционально­го развития ЦНС, то оно завершается в постнатальном периоде. Для функциональной зрелости ЦНС большое значение имеет ми-елинизация проводящих путей, от степени развития которой за­висят изолированное проведение в нервных волокнах и скорость проведения возбуждения. Именно миелинизация способствует уве­личению объема головы с 37 см в окружности у новорожденного до 58-60 см - у взрослого.

Миелинизация различных путей в ЦНС обычно происходит в таком же порядке, в каком они развиваются в филогенезе. Например, миелинизация вестибулоспинального пути, являющегося наиболее примитивным, начинается с 4-го месяца, а руброспинального- с 5-8-го месяца внутриутробного развития. В спинном мозге и стволе мозга к моменту рождения основные проводящие пути миелинизированы. Исключение составляют пирамидный и оливоспинальный пути. В период внутриутробного развития начинается синтез большинства медиаторов, выделяемых в синапсах в ответ на раздражение клеток.

Рис. . Органогенез мозга:

а - нервная пластинка: 1 - эктодерма; 2 - мезодерма; 3 - энтодерма; 4 - нервная пластинка; б - нервный желобок: 1 - хорда; 2 - эктодер­ма; 3 - нервный желобок; в - нервная трубка: 1 - хорда; 2 - цент­ральный канал; 3 - нервная трубка; г - образование мозговых пузы­рей; д - образование желудочков мозга: 1 - четвертый желудочек; е - формирование полушарий мозга; ж - увеличение массы и объема моз­га: 1 - большие полушария; 2 - мозжечок; 3 - мост; 4 - продолго­ватый мозг

Наиболее интенсивное образование структур центральной нервной системы у плода происходит на 15-25-й день (табл.). Структурное оформление отделов мозга тесно связано с происходящими в них процессами дифференцировки нервных элементов и установлением между ними морфологических и функциональных связей, а также с развитием периферических нервных аппаратов (рецепторов, афферентных и эфферентных путей и др.). К концу эмбрионального периода у плода обнаруживаются первые проявления нервной деятельности, которые выражаются в элементарных формах двигательной активности.

Функциональное созревание ЦНС происходит в этот период в каудо-краниальном направлении, т. е. от спинного мозга к коре головного мозга. В связи с этим функции организма плода регулируются преимущественно структурами спинного мозга.

К 7-10-й неделе внутриутробного периода функциональный контроль над более зрелым спинным мозгом начинает осуществлять продолговатый мозг. С 13-14-й недели появляются признаки контроля нижележащих отделов ЦНС со стороны среднего мозга.

Мозговые пузыри образуют полушария головного мозга. До четырехмесячного возраста плода их поверхность гладкая, затем появляются первичные борозды сенсорных полей коры, на шестом месяце - вторичные, а третичные продолжают формироваться и после рождения. В ответ на стимуляцию коры больших полушарий плода до 7 месяцев его развития никаких реакций не возникает. Следовательно, на этом этапе кора больших полушарий не определяет поведение плода.

На протяжении эмбрионального и фетального периодов онтогенеза строение и дифференцировка нейронов и глиальных постепенно усложняются.

Развитие мозга в антенатальном периоде

Зародыш/плод

Особенности развития мозга

Возраст, нед. Длина,мм
2,5 1,5 Намечается нервная бороздка
3,5 2,5 Хорошо выраженная нервная бороздка быстро закрывается; нервный гребень имеет вид сплошной ленты
4,0 5,0 Нервная трубка замкнута; образовались 3 первичных мозговых пузыря; формируются нервы и ганглии; закончилось образование эпендимного, мантийного и краевого слоев
5,0 8,0 Формируются 5 мозговых пузырей; намечаются полушария большого мозга; нервы и ганглии выражены отчетливее (обособляется кора надпочечника)
6,0 12,0 Образуются 3 первичных изгиба нервной трубки; нервные сплетения сформированы; виден эпифиз (шишковидное тело); симпатические узлы образуют сегментарные скопления; наме­чаются мозговые оболочки
7,0 17,0 Полушария мозга достигают большого размера; хорошо выра­жены полосатое тело и зрительный бугор; воронка и карман Ратке смыкаются; появляются сосудистые сплетения (мозговое вещество надпочечника начинает проникать в кору)
8,0 23,0 В коре мозга появляются типичные нервные клетки; заметны обонятельные доли; отчетливо выражены твердая, мягкая и паутинная оболочки мозга; возникают хромаффинные тельца
10,0 40,0 Формируется дефинитивная внутренняя структура спинного мозга
12,0 56,0 Появляются общие структурные черты головного мозга; в спинном мозге видны шейное и поясничное утолщения; форми­руются конский хвост и концевая нить спинного мозга, начи­нается дифференцировка клеток нейроглии
16,0 112,0 Полушария покрывают большую часть мозгового ствола; ста­новятся различимыми доли головного мозга; появляются бугорки четверохолмия; более выраженным становится мозжечок
20-40 160-530 Завершается формирование комиссур мозга (20 нед.); начинается миелинизация спинного мозга (20 нед.); появляются типичные слои коры головного мозга (25 нед.); быстро развиваются борозды и извилины головного мозга (28 - 30 нед.); происходит миелинизация головного мозга (36 - 40 нед.)

Неокортекс уже у 7-8-месячного плода разделен на слои, но наибольшие темпы роста и дифференцировки клеточных элементов коры отмечаются в последние два месяца созревания плода и в пер­вые месяцы после рождения ребенка. Пирамидная система, обеспе­чивающая произвольные движения, созревает позже, чем экстрапи­рамидная система, контролирующая непроизвольные движения. Показателем степени зрелости нервных структур является уровень миелинизации ее проводников ЦНС. Этот процесс в мозге эмбрио­на начинается на четвертом месяце внутриутробной жизни с пере­дних корешков спинного мозга, подготавливая моторную активность плода; затем миелинизируются задние корешки, проводящие пути спинного мозга, афференты акустической и лабиринтной систем. В головном мозге основная часть проводниковых структур миелинизируется в первые 2 года жизни ребенка. Процесс миелинизации нервных волокон продолжается и в более старшем- даже зрелом возрасте.

Из рефлексов наиболее рано (7,5 недель) у плода появляется рефлекс на раздражение губ. Он хорошо выражен и локален. Рефлексогенная зона сосательного рефлекса к 24-й неделе внутриутробного развития значительно расширяется и вызывается со всей поверхности лица, кистей, предплечий. В постнатальном онтогенезе она вновь уменьшается до зоны поверхности губ.

На 8-й неделе раздражение периоральной области лица вызывает элементарную защитную реак­цию - контралатеральное сгибание шеи, ведущее к отстранению стимулируемой поверхности головы от раздражителя (элементар­ный защитный рефлекс). При раздражении кожи можно наблю­дать быстрое движение рук и туловища плода. При более сильном раздражении кожи часто возникает генерализованная реакция, в основе которой лежит одновременное сокращение мышц - сги­бателей и разгибателей.

В возрасте 9,5 недель возможны двигательные реакции плода при раздражении проприорецепторов, т.е. при растяжении мышц и сухожилий.

Хватательная реакция обнаружена у плода в возрасте 11,5 недель. В поздние сроки внутриутробного развития плод способен реаги­ровать мимическими движениями на вкусовые и обонятельные раздражители, что можно наблюдать у недоношенных детей. Кро­ме названных двигательных реакций наблюдается и спонтанная активность скелетной мускулатуры плода.

Рефлексы на тактильную стимуляцию кожи верхних конечностей появляются у плода к 11-й неделе. Наиболее четко кожный рефлекс в этот период вызывается с ладонной поверхности, проявляется он изолированными движениями пальцев. К этому же времени движения пальцев сопровождаются сгибанием запястья, предплечья, пронацией руки. К 15-й неделе стимуляция ладони приводит к сгибанию и фиксированию в этом положении пальцев, ранее генерализованная реакция исчезает. К 23-й неделе хватательный рефлекс усиливается, становится строго локальным. К 25-й неделе все сухожильные рефлексы рук становятся отчетливыми.

Рефлексы при стимулировании нижних конечностей появляются к 10-11-й неделе развития плода. Первым появляется флексорный рефлекс пальцев ног на раздражение подошвы. К 12- 13-й неделе флексорный рефлекс на это же раздражение сменяется веерообразным разведением пальцев. После 13 недель это же движение на раздражение подошвы сопровождается движениями стопы, голени, бедра. В более зрелом возрасте плода (22-23 недели) раздражение подошвы вызывает преимущественно флексию пальцев стопы.

К 18-й неделе появляется рефлекс сгибания туловища при раздражении нижней части живота. К 20-24-й неделе появляются рефлексы мышц брюшной стенки. К 23-й неделе у плода раздражением различных участков кожной поверхности можно вызвать дыхательные движения. К 25-й неделе плод может самостоятельно дышать, однако дыхательные движения, обеспечивающие выживание плода, устанавливаются только после 27 недель его развития.

Спонтанная активность мускулатуры плода характеризуется тремя основными формами:

1) тоническим сокращением мышц-сгибателей, обеспечиваю­щим ортотоническую позу плода (согнутая шея, туловище и ко­нечности), благодаря чему плод занимает в матке минимальный объем. Циркулирующие в полости амниона околоплодные воды и афферентная импульсация с проприорецепторов скелетных мышц поддерживают такое положение раздражением кожных рецепторов;

2) периодическими фазными (относительно короткими) со­кращениями мышц-разгибателей, имеющими генерализованный характер. Шевеление плода начинается в 4,5 -5 месяцев беременности, и мать ощущает эти движения. Шевеления наблюдаются обычно 4-8 раз в течение часа. Их частота увеличивается при обеднении крови матери питательными веществами и при физических на­грузках беременной;

3) дыхательными движениями. Они начинаются на 14-й неде­ле внутриутробного развития и в конце беременности занимают 40-60 % всего времени. Частота дыхания очень высока: 40-70 в минуту. На 6-м месяце внутриутробного развития все основные части центральной регуляции дыхания уже достаточно зрелы, что­бы поддерживать ритмическое дыхание в течение 2-3 дней, а начиная с 6,5 -7-го месяца плод может дышать неопределенно долгое время.

Таким образом, рефлексы кожного, двигательного и вестибулярного анализаторов проявляются уже на ранних этапах внутриутробного развития. В поздние сроки внутриутробного развития плод способен реагировать мимическими движениями на вкусовые и обонятельные раздражения.

В течение трех последних месяцев внутриутробного развития у плода созревают рефлексы, необходимые для выживания новорож­денного ребенка: начинает реализовываться корковая регуляция ориентировочных, защитных, пищевых и других рефлексов (у новорожденного эти рефлексы уже имеются); рефлексы с мышц и кожи становятся более локализованными и целенаправленными. У плода и новорожденного в связи с малым количеством тормозных медиа­торов в ЦНС легко возникает генерализованное возбуждение - даже при очень небольших раздражениях. Сила тормозных процес­сов нарастает по мере созревания мозга.

Стадия генерализации ответных реакций и распространения воз­буждения по структурам мозга сохраняется вплоть до рождения и некоторое время после него, но она не препятствует развитию слож­ных жизненно важных рефлексов. Например, к 21-24-й неделе хо­рошо развиты сосательный и хватательный рефлексы.

У плода уже на четвертом месяце хорошо развита проприоцептивная мышечная система, четко вызываются сухожильные и вес­тибулярные рефлексы, с этого же времени появляются лабиринт­ные и шейные тонические рефлексы положения: наклон и поворот головы сопровождается разгибанием конечностей той стороны, в которую повернута голова.

Рефлекторная функция у плода обеспечивается преимуществен­но механизмами спинного мозга и ствола головного мозга. Однако сенсомоторная кора уже реагирует возбуждением на раздражения рецепторов тройничного нерва на лице, рецепторов кожной поверх­ности конечностей; у 7-8-месячного плода в зрительной коре воз­никают реакции на световые стимулы, но в этот период кора, вос­принимая сигналы, возбуждается локально и не передает значимые сигналы на другие (кроме двигательной коры) структуры мозга.

В последние недели внутриутробного развития у плода появля­ется цикличность сна: происходит чередование быстрого и медлен­ного сна, причем быстрый сон занимает от 30 до 60% общего време­ни сна.

Загрузка...