docgid.ru

Жизнь сперматозоидов внутри и вне тела. Особенности строения и движения сперматозоида. Нормы и патологические изменения

Сперматозоид (от др.-греч. σπέρμα (род. п. σπέρματος) - семя, ζωή - жизнь и εἴδος - вид) - мужская половая клетка, мужская гамета, которая служит для оплодотворения женской гаметы, яйцеклетки. Термин используется для обозначения мелких, обычно подвижных гамет у организмов, которым свойственна оогамия. Обычно они значительно меньше яйцеклетки, поскольку не содержат столь значительного количества цитоплазмы и производятся организмом одновременно в значительном количестве. Понятие «сперматозоид» необходимо отличать от понятия «сперма», поскольку последняя состоит из семенной жидкости (в которой содержатся сперматозоиды), а также содержит небольшое количество эпителиальных клеток мочеиспускательного канала.

Открытие сперматозоидов

Строение и функция

Сперматозоид человека - это специализированная клетка, строение которой позволяет ей выполнить свою функцию: преодолеть половые пути женщины и проникнуть в яйцеклетку, чтобы внести в нее генетический материал мужчины. Сперматозоид, сливаясь с яйцеклеткой, оплодотворяет ее. В организме человека сперматозоид является самой маленькой клеткой тела. Общая длина сперматозоида у человека равна приблизительно 55 мкм. Головка составляет приблизительно 5,0 мкм в длину, 3,5 мкм в ширину и 2,5 мкм в высоту, средний участок и хвостик - соответственно, приблизительно 4,5 и 45 мкм в длину. Малые размеры, вероятно, необходимы для быстрого движения сперматозоида.

Для уменьшения размера сперматозоида при его созревании происходят специальные преобразования: ядро уплотняется за счет уникального механизма конденсации хроматина (из ядра удаляются гистоны, и ДНК связывается с белками-протаминами), большая часть цитоплазмы выбрасывается из сперматозоида в виде так называемой «цитоплазматической капли», остаются только самые необходимые органеллы. Сперматозоиды, содержащие Y-хромосому, называются андроспермиями, Х-хромосому - гиноспермиями. Яйцеклетку может оплодотворить, как правило, только один спермий, причём, с равной вероятностью им может быть андро - или гиноспермий, в связи с чем предварительные предсказания пола ребёнка практически невозможны. Предполагают, что мальчики чаще рождаются от мужчин, в сперме которых преобладают андроспермии. В спермограмме здорового мужчины наряду с нормальными встречаются и патологические формы спермиев, но не более 20-25%. Сперматозоид мужчины имеет типичное строение и состоит из головки, средней части и хвоста.

Головка сперматозоида человека имеет форму эллипсоида, сжатого с боков, с одной из сторон имеется небольшая ямка, поэтому иногда говорят о «ложковидной» форме головки сперматозоида у человека. В головке сперматозоида располагаются следующие клеточные структуры:

  1. Ядро , несущее одинарный набор хромосом. Такое ядро называют гаплоидным. После слияния сперматозоида и яйцеклетки (ядро которой также гаплоидно) образуется зигота - новый диплоидный организм, несущий материнские и отцовские хромосомы. Ядро сперматозоида значительно мельче ядер других клеток, это во многом связано с уникальной организацией строения хроматина сперматозоида. В связи с сильной конденсацией хроматин неактивен - в ядре сперматозоида не синтезируется РНК.
  2. Акросома - видоизмененная лизосома - мембранный пузырек, несущий литические ферменты - вещества, растворяющие оболочку яйцеклетки. Акросома занимает около половины объема головки и по своему размеру приблизительно равна ядру. Она лежит спереди от ядра и покрывает собой половину ядра (поэтому часто акросому сравнивают с шапочкой). При контакте с яйцеклеткой акросома выбрасывает свои ферменты наружу и растворяет небольшой участок оболочки яйцеклетки, благодаря чему образуется небольшой «проход» для проникновения сперматозоида. В акросоме содержится около 15 литических ферментов, основным из который является акрозин.
  3. Центросома - центр организации микротрубочек, обеспечивает движение хвоста сперматозоида, а также предположительно участвует в сближении ядер зиготы и первом клеточном делении зиготы.

Позади головки располагается так называемая «средняя часть» сперматозоида . От головки среднюю часть отделяет небольшое сужение - «шейка». Позади средней части располагается хвост. Через всю среднюю часть сперматозоида проходит цитоскелет жгутика, который состоит из микротрубочек. В средней части вокруг цитоскелета жгутика располагается митохондрион - гигантская митохондрия сперматозоида. Митохондрион имеет спиральную форму и как бы обвивает цитоскелет жгутика. Митохондрион выполняет функцию синтеза АТФ и тем самым обеспечивает движение жгутика.

Хвост , или жгутик, расположен за средней частью. Он тоньше средней части и значительно длиннее ее. Хвост - орган движения сперматозоида. Его строение типично для клеточных жгутиков эукариот.

Движение сперматозоидов

Сперматозоид человека движется при помощи жгутика. Во время движения сперматозоид обычно вращается вокруг своей оси. Скорость движения сперматозоида человека может достигать 0,1 мм в сек. или более 30 см в час. У человека приблизительно через 1-2 часа после коитуса с эякуляцией первые сперматозоиды достигают ампулярной части фаллопиевой трубы (той части, где происходит оплодотворение). В организме мужчины сперматозоиды находятся в неактивном состоянии, движения жгутиков у них незначительны. Перемещение сперматозоидов по половым путям мужчины (семенные канальцы, проток эпидидимиса, семявыносящий проток) происходит пассивно за счет перестальтических сокращений мышц протоков и биения ресничек клеток стенок протоков. Сперматозоиды приобретают активность после эякуляции за счет воздействия на них ферментов простатического сока. Движение сперматозоидов по половым путям женщины является самостоятельным и осуществляется против движения жидкости. Для осуществления оплодотворения сперматозоидам необходимо преодолеть путь длинной около 20 см (цервикальный канал - около 2 см, полость матки - около 5 см, фаллопиева труба - около 12 см). Среда влагалища является губительной для сперматозоидов, семенная жидкость нейтрализует влагалищные кислоты и частично подавляет действие иммунной системы женщины против сперматозоидов.

Из влагалища сперматозоиды движутся по направлению к шейке матки. Направление движения сперматозоид определяет, воспринимая pH окружающей среды. Он движется по направлению уменьшения кислотности; pH влагалища около 6,0 , pH шейки матки около 7,2. Как правило, большая часть сперматозоидов не способна достичь шейки матки и погибает во влагалище (по критериям ВОЗ, используемым в посткоитальном тесте, спустя 2 часа после коитуса во влагалище не остается живых сперматозоидов).

Прохождение канала шейки матки является для сперматозоидов сложным, из-за наличия в нем цервикальной слизи. После прохождения шейки матки сперматозоиды оказываются в матке, среда которой благоприятна для сперматозоидов, в матке они могут достаточно долго сохранять свою подвижность (отдельные сперматозоиды до 3-х дней). Среда матки оказывает на сперматозоиды активирующее действие, их подвижность значительно возрастает. Это явление получило название «капацитация».

Для успешного оплодотворения в матку должно проникнуть не менее 10 млн сперматозоидов. Из матки сперматозоиды направляются в фаллопиевы трубы, направление к которым и внутри которых сперматозоиды определяют по току жидкости. Показано, что сперматозоиды имеют отрицательный реотаксис, то есть стремление двигаться против течения. Ток жидкости в фаллопиевой трубе создают реснички эпителия, а также перистальтические сокращения мышечной стенки трубы.

Большая часть сперматозоидов не может достичь конца фаллопиевой трубы - так называемой «воронки», или «ампулы», где происходит оплодотворения. Из нескольких миллионов сперматозоидов, вошедших в матку, лишь несколько тысяч достигают ампулярной части фаллопиевой трубы. Каким образом сперматозоид человека разыскивает яйцеклетку в воронке фаллопиевой трубы остается неясным. Существуют предположения о наличии у сперматозоидов человека хемотаксиса - движения по направлению неким веществам, выделяемым яйцеклеткой, либо фолликулярными клетками, ее окружающими. Несмотря на то, что хемотаксис присущ сперматозоидам многих водных организмов с наружным оплодотворением, у сперматозоидов человека и млекопитающих животных его наличие пока не доказано. Наблюдения in vitro показывают, движение сперматозоидов является сложным, сперматозоиды способны обходить препятствия, осуществлять активный поиск.

Продолжительность жизни сперматозоидов После периода созревания, составляющего около 64 дней сперматозоид может сохраняться в организме мужчины до месяца. В эякуляте они способны выжить в зависимости от условий среды (свет, температура, влажность) до 24 часов. Во влагалище сперматозоиды погибают в течение нескольких часов. В шейке матки, матке и фаллопиевых трубах сперматозоиды остаются живыми до 3-х суток. В спермограмме здорового мужчины наряду с нормальными встречаются и патологические формы спермиев, но не более 20 - 25%. Превышение этого числа может приводить к бесплодию или к врождённым уродствам плода.

При патологии в эякуляте уменьшается количество сперматозоидов (олигозооспермия), может снижаться число подвижных форм (астенозооспермия). Иногда отсутствуют зрелые сперматозоиды, а встречаются лишь клетки сперматогенеза. Все сперматозоиды могут быть неподвижными или в сперме могут отсутствовать как сперматозоиды, так и клетки сперматогенеза (аспермия).

Сперматозоид - это мужская половая клетка (гамета). Он обладает способностью к движению, чем в известной мере обеспечивается возможность встречи разнополых гамет . Размеры сперматозоида микроскопические: длина этой клетки у человека составляет 50-70 мкм (самые крупные они у тритона - до 500 мкм). Все сперматозоиды несут отрицательный электрический заряд, что препятствует их склеиванию в сперме. Количество сперматозоидов, образующихся у особи мужского пола, всегда колоссально. Например, эякулят здорового мужчины содержит около 200 млн сперматозоидов (жеребец выделяет около 10 млрд сперматозоидов).

Строение сперматозоида

По морфологии сперматозоиды резко отличаются от всех других клеток, но все основные органеллы в них имеются. Каждый сперматозоид имеет головку, шейку, промежуточный отдел и хвост в виде жгутика . Почти вся головка заполнена ядром, которое несет наследственный материал в виде хроматина. На переднем конце головки (на ее вершине) располагается акросома, которая представляет собой видоизмененный комплекс Гольджи. Здесь происходит образование гиалуронидазы - фермента, который способен расщеплять мукополисахариды оболочек яйцеклетки, что делает возможным проникновение сперматозоида внутрь яйцеклетки. В шейке сперматозоида расположена митохондрия, которая имеет спиральное строение. Она необходима для выработки энергии, которая тратится на активные движения сперматозоида по направлению к яйцеклетке. Большую часть энергии сперматозоид получает в виде фруктозы, которой очень богат эякулят. На границе головки и шейки располагается центриоль. На поперечном срезе жгутика видны 9 пар микротрубочек, еще 2 пары есть в центре. Жгутик является органоидом активного движения. В семенной жидкости мужская гамета развивает скорость, равную 5 см/ч (что применительно к ее размерам примерно в 1,5 раза быстрее, чем скорость пловца-олимпийца).

При электронной микроскопии сперматозоида обнаружено, что цитоплазма головки имеет не коллоидное, а жидкокристаллическое состояние. Этим достигается устойчивость сперматозоида к неблагоприятным условиям внешней среды (например, к кислой среде женских половых путей). Установлено, что сперматозоиды более устойчивы к воздействию ионизирующей радиации, чем незрелые яйцеклетки.

Сперматозоиды некоторых видов животных имеют акросомный аппарат, который выбрасывает длинную и тонкую нить для захвата яйцеклетки.

Установлено, что оболочка сперматозоида имеет специфические рецепторы, которые узнают химические вещества, выделяемые яйцеклеткой. Поэтому сперматозоиды человека способны к направленному движению по направлению к яйцеклетке (это называется положительным хемотаксисом).



При оплодотворении в яйцеклетку проникает только головка сперматозоида, несущая наследственный аппарат, а остальные части остаются снаружи.

Яйцо или яйцеклетка – это специально дифференцированная клетка , приспособленная к оплодотворению и дальнейшему развитию. В отличие от сперматозоидов яйцеклетки не способны к активному движению и имеют однообразную форму: у большинства животных они округлые, могут быть овальные или вытянутые. Ядро, как правило, повторяет форму яйцеклетки. Для нее характерно большое количество цитоплазмы, в которой, помимо обычных органоидов, содержится большое количество желтка – запасного питательного материала для развития зародыша. Яйцеклетки с большим количеством желтка, как правило, больших размеров (рыбы, рептилии, птицы), яйцеклетки с малым количеством желтка (ланцетник) или не содержащие вообще (млекопитающие) не больших размеров, но всегда крупнее сперматозоидов. Строение яиц определяется содержанием и местоположением желтка. По этим признакам можно выделить следующие типы яйцеклеток. Алецитальные яйцеклетки вообще не содержат желтка. Такие яйцеклетки характерны для плацентарных млекопитающих. Гомолецитальные яйцеклетки содержат небольшое количество желтка, более или менее равномерно распределенного по всей цитоплазме (ланцетник). Следующий тип – телолецитальные. Они характеризуются содержанием среднего или большого количества желтка, расположенного полярно. Этот тип подразделяется на два подтипа: «средне» телолецитальный и «крайне» телолецитальный. «Средне» телолецитальные яйцеклетки содержат среднее количество желтка, распложенного в вегетативной части (земноводные). «Крайне» телолецитальный тип содержит большое количество желтка также сконцентрированного в вегетативной части (костистые рыбы, рептилии, птицы). Центролецитальный тип яйцеклетки также характеризуется наличием большого количества желтка, который расположен в центре яйцеклетки (насекомые).



Наличие большого количества желтка обуславливает полярность яиц (исключение – центролецитальные клетки). Полярность яиц хорошо выражена у земноводных, рептилий, птиц. Верхняя часть яйца, бедная желтком, называется анимальным полюсом, а нижняя, содержащая большое количество желтка, – вегетативным. Мысленная линия соединяющая анимальный и вегетативный полюсы и проходящая через центр яйцеклетки, называется осью яйца.

Характерной особенностью для строения яйцеклеток является наличие у них оболочек. Оболочки сохраняют форму и строение яйца, предохраняют его содержимое от высыхания, защищают от механических и химических воздействий внешней среды.

Оболочки яйцеклеток подразделяют на три группы: первичные, вторичные и третичные.

Первичная оболочка яйцеклетки образуется самим яйцом и представляет собой ее поверхностный уплотненный слой, ее называют желточной оболочкой и образуется она до оплодотворения в процессе оогенеза.

Вторичные оболочки вырабатываются клетками, питающими яйцо. Примером могут служить фолликулярные клетки. Часто эти оболочки могут быть плотными и тогда у них имеются микропили – отверстия для проникновения сперматозоида.

Третичные оболочки служат для защиты яйца, они образуются во время прохождения яйцеклетки по яйцеводу. Примером третичных оболочек могут служить белковая, подскорлуповые и скорлуповая у птиц.

Яйцеклетки очень чувствительны к колебаниям температуры, ультрафиолетовым лучам, лучам Рентгена и радия.

При сравнительно небольшом повышении температуры, которое животные переносят безболезненно, яйцеклетки погибают. Повышение дозировки лучей Рентгена, радия, ультрафиолетовых лучей смертельно для яйцеклеток. Установлено, что если развитие и оплодотворение половых клеток ещё молодое, то оно более чувствительно к облучению.

Ткани растений

Клетки высших растений тоже дифференцированы и организованы в ткани. Ботаники различают четыре главных типа ткани: меристематическую, защитную, основную и проводящую.

Меристематическая ткань. Меристематические ткани состоят из мелких клеток с тонкими стенками и крупными ядрами; вакуолей в этих клетках мало или нет вовсе. Основной функцией клеток меристемы является рост; эти клетки делятся, дифференцируются и дают начало тканям всех других типов . Зародыш, из которого развивается растение, целиком состоит из меристемы; по мере развития большая часть меристемы дифференцируется в другие ткани, но даже в старом дереве есть участки меристемы, обеспечивающие дальнейший рост. Меристематические ткани мы находим в быстро растущих частях растения: в кончиках корней и стеблей и в камбии. Меристема в кончике корня или стебля, называемая верхушечной меристемой, осуществляет рост этих частей в длину, а меристема камбия, называемая боковой меристемой, делает возможным увеличение толщины стебля или корня.

Защитная ткань. Защитные ткани состоят из толстостенных клеток, предохраняющих лежащие глубже тонкостенные клетки от высыхания и механических повреждений. К защитным тканям относятся, например, эпидермис листьев и пробковые слои ствола и корней. Эпидермис листа выделяет воскообразный водонепроницаемый материал, называемый кутином, который препятствует потере воды с поверхности листа.

На поверхности листьев имеются замыкающие клетки - специализированные эпидермальные клетки, расположенные по две около каждого из устьиц - крошечных отверстий, ведущих внутрь листа. Тургорное давление в замыкающих клетках регулирует величину устьичных щелей, а тем самым и скорость прохождения через них кислорода, двуокиси углерода и водяных паров.

Некоторые из эпидермальных клеток корня имеют выросты, называемые корневыми волосками; эти выросты увеличивают поверхность, всасывающую воду и растворенные минеральные вещества из почвы. Стебли и корни покрыты слоями пробковых клеток, образуемых особым пробковым камбием. Пробковые клетки очень плотно «упакованы», и стенки их содержат другое водонепроницаемое вещество - суберин. Суберин препятствует проникновению воды в пробковые клетки; поэтому они живут недолго, и зрелая пробковая ткань состоит из мертвых клеток.

Основная ткань. Эта ткань образует главную массу тела растения: мягкие части листа, цветков и плодов, кору и сердцевину стеблей и корней. Главные функции этой ткани - выработка и накопление питательных веществ. Самый простой тип основной ткани - паренхима, состоящая из тонкостенных клеток с тонким слоем протоплазмы, окружающим центральную вакуоль. Хлоренхима - видоизмененная паренхима, содержащая хлоропласты, в которых происходит фотосинтез. Клетки хлоренхимы расположены рыхло и образуют большую часть внутренней ткани листьев и некоторых стеблей. Они характеризуются тонкими клеточными стенками, крупными вакуолями и наличием хлоропластов.

В некоторых основных тканях углы клеточных стенок утолщены, чтобы обеспечить растению опору. Такая ткань, называемая колленхимой, встречается в стеблях и черешках листьев под самым эпидермисом. В другой ткани - склеренхиме - сильно утолщена вся клеточная стенка; склеренхимные клетки, обеспечивающие механическую прочность, можно найти в стеблях и корнях многих растений. Иногда они имеют форму длинных тонких волокон. Веретенообразные склеренхимные клетки, называемые лубяными волокнами, встречаются во флоэме (лубе) стеблей многих растений. Округлые склеренхимные клетки, называемые каменистыми клетками, имеются в твердой скорлупе орехов.

Проводящие ткани. У растений есть два типа проводящей ткани: ксилема (древесина), которая проводит воду и растворенные соли, и флоэма (луб), по которой перемещаются растворенные питательные вещества, например глюкоза . У всех высших растений из клеток ксилемы первыми образуются длинные клетки, называемые трахеидами, с заостренными концами и с кольцевыми или спиральными утолщениями стенок. Позднее эти клетки соединяются между собой концами, образуя сосуды древесины. В процессе развития сосудов поперечные стенки растворяются, а боковые утолщаются, так что образуется длинная целлюлозная трубка для проведения воды. Эти сосуды могут достигать 3 м в длину. Как в трахеидах, так и в сосудах цитоплазма в конце концов отмирает и остаются пустые трубки, которые продолжают функционировать. Утолщение клеточных стенок, сопровождающееся отложением лигнина (вещества, обусловливающего твердость и деревянистость стволов и корней), позволяет ксилеме выполнять не только проводящие, но и опорные функции.

Аналогичное слияние клеток, примыкающих друг к другу концами, приводит к образованию ситовидных трубок флоэмы. Концевые стенки не исчезают, а сохраняются в виде пластинок с отверстиями - ситовидных пластинок. В отличие от трахеид и сосудов древесины ситовидные трубки остаются живыми и содержат большое количество цитоплазмы, но утрачивают ядра. К ситовидным трубкам примыкают «клетки-спутники», имеющие ядра; возможно, что они служат для регулирования функции ситовидных трубок. Круговое движение цитоплазмы существенно ускоряет проведение растворенных питательных веществ по этим трубкам. Ситовидные трубки встречаются в мягкой коре деревянистых стеблей, лежащей кнаружи от камбия.

Ткани животных

Биологи несколько расходятся во мнениях по вопросу о том, как следует классифицировать различные типы тканей и сколько вообще существует таких типов. Мы будем различать шесть типов животных тканей: эпителиальную, соединительную, мышечную, кровь, нервную и репродуктивную.

Эпителиальная ткань. Эта ткань состоит из клеток, которые образуют наружные покровы тела или выстилают его внутренние полости. Эпителиальная ткань может выполнять функции защиты, всасывания, секреции и восприятия раздражений (или одновременно несколько из этих функций). Эпителий защищает нижележащие клетки от механического повреждения, от вредных химических веществ и бактерий и от высыхания. Через клетки кишечного эпителия происходит всасывание пищи и воды. Другие эпителиальные ткани служат для выделения самых разнообразных веществ; некоторые из этих веществ представляют собой ненужные продукты обмена, а другие используются организмом. Наконец, поскольку тело сплошь покрыто эпителием, очевидно, что любое раздражение, чтобы быть воспринятым, должно пройти через эпителий. К эпителиальным тканям относятся, например, наружный слой кожи и ткани, выстилающие пищеварительный тракт, трахею, почечные канальцы. Эпителиальные ткани делятся на шесть подгрупп в зависимости от формы и функции их клеток.

Плоский эпителий состоит из уплощенных клеток, имеющих форму многоугольников. Он образует поверхностный слой кожи и выстилку ротовой полости, пищевода и влагалища. У человека и высших животных плоский эпителий обычно состоит из нескольких слоев плоских клеток, накладывающихся друг на друга; такая ткань называется многослойным плоским эпителием.

Кубический эпителий состоит из кубовидных клеток. Он выстилает почечные канальцы.

Клетки цилиндрического эпителия имеют продолговатую форму и напоминают столбики или колонны; ядро обычно расположено ближе к основанию клетки. Цилиндрическим эпителием выстланы желудок и кишечник.

Ресничный эпителий. Цилиндрические клетки могут иметь на своей свободной поверхности мельчайшие протоплазматические отростки, называемые ресничками, ритмическое биение которых продвигает находящийся у поверхности клеток материал в одном направлении. Большая часть дыхательных путей выстлана цилиндрическим ресничным эпителием, реснички которого служат для удаления частиц пыли и другого постороннего материала.

Чувствительный (сенсорный) эпителий содержит клетки, специализированные для восприятия раздражений. Примером может служить выстилка носовой полости - обонятельный эпителий, с помощью которого воспринимаются запахи.

Клетки железистого эпителия специализированы для секреции различных веществ, например молока, ушной серы или пота. Они имеют цилиндрическую или кубическую форму.

Соединительные ткани. Этот тип ткани, к которому относятся костная ткань, хрящ, сухожилия, связки и волокнистая соединительная ткань, поддерживает и соединяет между собой все остальные клетки тела. Для всех этих тканей характерно наличие большого количества неживого материала, который выделяют их клетки. Это так называемое основное вещество. Природа и функция соединительной ткани того или иного типа в значительной степени зависит от характера этого межклеточного основного вещества. Таким образом, клетки выполняют свои функции косвенным путем, выделяя основное вещество, которое и служит собственно связующим и опорным материалом.

В волокнистой соединительной ткани основное вещество представляет собой густую, беспорядочно и плотно переплетенную сеть волокон, которые окружают соединительнотканные клетки и состоят из материала, выделяемого этими клетками. Такая ткань встречается в организме повсюду: она связывает кожу с мышцами, удерживает в надлежащем положении железы и соединяет многие другие образования. Специализированными видами волокнистой соединительной ткани являются сухожилия и связки. Сухожилия - не эластичные, но гибкие тяжи, прикрепляющие мышцы к костям. Связки обладают некоторой упругостью и соединяют между собой кости. Особенно густое сплетение соединительнотканных волокон находится под самой кожей (именно этот слой после химической обработки - дубления - превращается в выделанную кожу).

Волокна соединительной ткани содержат белок, который называется коллагеном. При обработке этих волокон горячей водой коллаген превращается в растворимый белок - желатину. Коллаген и желатина имеют почти одинаковый аминокислотный состав. Макромолекулы коллагена, образующие волокна, представляют собой спиральные структуры из трех пептидных цепей, соединенных между собой водородными связями. Поскольку в организме человека очень много соединительной ткани, коллаген составляет в нем около трети всех белков.

Опорный скелет позвоночных состоит из хряща или кости. У зародышей всех позвоночных скелет образован из хряща, но у всех взрослых форм, за исключением акул и скатов, хрящевой скелет в основном замещается костным. У человека хрящи можно прощупать в ушной раковине и в кончике носа. Хрящ тверд, но обладает упругостью. Хрящевые клетки выделяют вокруг себя плотное, упругое основное вещество, образующее сплошной однородный межклеточный материал, среди которого в небольших полостях поодиночке или группами (по 2 или по 4) лежат сами клетки. Эти заключенные в основное вещество клетки остаются живыми; некоторые из них выделяют волокна, которые включаются в основное вещество и укрепляют его.

Костные клетки также остаются живыми и выделяют основное вещество кости в течение всей жизни человека. Основное вещество кости содержит соли кальция (в виде гидроксилапатита) и белки, главным образом коллаген. Соли кальция обеспечивают кости твердость, а коллаген препятствует ломкости; таким образом кость приобретает прочность, позволяющую ей выполнять опорные функции. На вид кость кажется сплошной, но в действительности это не так. У большинства костей в середине имеется обширная костномозговая полость, в которой может находиться желтый костный мозг, состоящий главным образом из жира, или красный костный мозг - ткань, образующая эритроциты и некоторые виды лейкоцитов.

В основном веществе кости имеются каналы (гаверсовы каналы), по которым проходят кровеносные сосуды и нервы, снабжающие костные клетки кровью и регулирующие их деятельность. Основное вещество отлагается в виде концентрических колец (костных пластинок), образующих стенки каналов, а клетки оказываются замурованными в полостях, имеющихся в основном веществе. Костные клетки связаны между собой и с гаверсовыми каналами своими протоплазматическими отростками, лежащими в тончайших канальцах в основном веществе. Через эти канальцы костные клетки получают кислород и различные необходимые им вещества и освобождаются от продуктов обмена. В костной ткани есть также клетки, разрушающие эту ткань, так что кости постепенно изменяют свою форму под влиянием испытываемых ими нагрузок и напряжений.

Мышечная ткань. Движения большинства животных обусловлены сокращением вытянутых, цилиндрических или веретенообразных клеток, каждая из которых содержит большое число тонких продольных, параллельно расположенных сократимых волокон, называемых миофибриллами . Сокращаясь, т. е. укорачиваясь и утолщаясь, мышечные клетки производят механическую работу; они могут только тянуть, но не толкать. В организме человека есть мышечная ткань трех типов: поперечнополосатые мышцы, гладкие мышцы и сердечная мышца. Сердечная мышца образует стенку сердца, гладкие мышцы находятся в стенках пищеварительного тракта и некоторых других внутренних органов, а поперечнополосатые мышцы образуют большие массы мышечной ткани, прикрепленной к костям. Волокна поперечнополосатых и сердечной мышц обладают характерной особенностью: в отличие от всех остальных клеток, имеющих только по одному ядру, каждое их волокно содержит по многу ядер. Кроме того, в поперечнополосатых волокнах ядра занимают необычное положение: они лежат на периферии, под самой клеточной мембраной; по-видимому, это имеет значение для увеличения силы сокращения. Эти волокна достигают необычайной для клеток длины - до 2 и даже 3 см. Некоторые исследователи полагают, что мышечные волокна тянутся от одного конца мышцы до другого.

Под микроскопом в волокнах поперечнополосатых и сердечной мышц можно видеть чередование светлых и темных поперечных полос, поэтому их и называют поперечнополосатыми. Эти полосы, очевидно, имеют отношение к механизму сокращения, так как при сокращении их относительная ширина изменяется: темные полосы практически не изменяются, а светлые становятся уже. Поперечнополосатые мышцы иногда называют произвольной мускулатурой, так как их движением мы можем управлять. Сердечная и гладкая мускулатура называется непроизвольной, так как человек не может управлять их функцией.

Кровь. Кровь состоит из эритроцитов и лейкоцитов (красные и белые кровяные тельца) и жидкой неклеточной части - плазмы. Многие биологи относят кровь к соединительной ткани, так как обе эти ткани образуются из сходных клеток.

Эритроциты позвоночных животных содержат гемоглобин - пигмент, способный легко присоединять и отдавать кислород. Соединяясь с кислородом, гемоглобин образует комплекс оксигемоглобин, который может легко освобождать кислород, доставляя его таким образом всем клеткам тела. Эритроциты млекопитающих имеют форму уплощенных двояковогнутых дисков и не содержат ядра; у других позвоночных эритроциты больше похожи на клетки; они имеют овальную форму и содержат ядро.

Существует пять типов лейкоцитов - лимфоциты, моноциты, нейтрофилы, эозинофилы и базофилы. Лейкоциты не содержат гемоглобина, они очень подвижны и могут легко захватывать бактерий. Они способны выходить сквозь стенки кровеносных сосудов в ткани, уничтожая находящиеся там бактерии. Жидкая часть крови, плазма, переносит разнообразные вещества из одних частей тела в другие. Одни вещества переносятся в растворенном состоянии, другие могут быть связаны каким-либо из белков плазмы. У некоторых беспозвоночных пигмент, переносящий кислород, находится не внутри клеток, а растворен в плазме, окрашивая ее в красноватый или голубоватый цвет. Кровяные пластинки (тромбоциты) представляют собой фрагменты особых крупных клеток находящихся в костном мозге; они участвуют в процессе свертывания крови.

Нервная ткань. Нервная ткань состоит из клеток, специализированных для проведения электрохимических импульсов и называемых нейронами. Каждый нейрон имеет тело - расширенную часть, содержащую ядро, - и два или большее число тонких нитевидных отростков, отходящих от тела клетки. Отростки состоят из цитоплазмы и покрыты клеточной мембраной; толщина их варьирует в пределах от нескольких микрометров до 30-40 мкм, а длина - от 1 или 2 мм до метра и более. Нервные волокна, идущие от спинного мозга к руке или ноге, могут достигать 1 м в длину. Нейроны связаны между собой в цепи для передачи в организме импульсов на большие расстояния.

В зависимости от направления, в котором отростки в нормальных условиях проводят нервный импульс, они делятся на два типа: аксоны и дендриты. Аксоны проводят импульсы от тела клетки к периферии, а дендриты - по направлению к телу клетки. Соединение между аксоном одного нейрона и дендритом следующего называется синапсом. В синапсе аксон и дендрит фактически не соприкасаются, между ними остается небольшой промежуток. Импульс может проходить через синапс только с аксона на дендрит, так что синапс служит как бы клапаном, препятствующим проведению импульсов в обратном направлении. Нейроны имеют весьма различные размеры и форму, но все они построены по одному основному плану.

Репродуктивная ткань. Эта ткань состоит из клеток, служащих для размножения, а именно из яйцеклеток у особей женского пола и сперматозоидов, или спермиев, у особей мужского пола. Яйцеклетки обычно имеют шаровидную или овальную форму и неподвижны. У большинства животных, за исключением высших млекопитающих, цитоплазма яйца содержит большое количество желтка, который служит для питания развивающегося организма с момента оплодотворения и до тех пор, пока он не становится способным добывать пищу каким-нибудь другим способом. Сперматозоиды гораздо мельче яйцеклеток; они утратили большую часть цитоплазмы и приобрели хвост, при помощи которого они двигаются. Типичный сперматозоид состоит из головки (в которой находится ядро), шейки и хвоста. Форма сперматозоидов у разных животных различна. Поскольку яйцеклетки и сперматозоиды развиваются из ткани яичников и семенников, имеющей эктодермальное происхождение, некоторые биологи относят их к эпителиальным тканям.

Сперматозоид — мужская половая клетка способная к передвижению, функцией которой является оплодотворение яйцеклетки.

Его строение, размеры и способность к передвижению напрямую связаны с условиями участия в процессе оогамии. Так называют оплодотворение, при котором половые клетки самца и самки резко отличаются по форме, размеру и функциям.

Строение сперматозоида соответствует его функциональному предназначению, которое состоит в преодолении половых путей женщины и передаче генетической информации в яйцеклетку.

Сперматозоид состоит из:

  • головки
  • шейки
  • средней части
  • хвоста.

Эллипсоидной формы головка состоит из:

  • акросомы
  • центросомы.

Акросома находится в передней части головки и представляет собой модифицированный комплекс Гольджи. Она содержит пятнадцать литических ферментов.

Наиболее важные из них гиалуронидаза и трипсиноподобный акрозин.

Во время контакта с яйцеклеткой происходит выброс этих ферментов на оболочку яйцеклетки и образование отверстия для проникновения сперматозоида.

За акросомой находится ядро , в котором находится генетический материал. В нём содержится 23 хромосомы, которые при оплодотворении сливаются 23 хромосомами яйцеклетки и дают начало новому организму.

Одна из 23 хромосом сперматозоида является половой, от неё зависит пол будущей особи. Если сперматозоид содержит Х-хромосому, то рождается особь женского пола, а если Y мужского.

Центросома находится в задней части головки, ближе к средней части сперматозоида. Она является центром системы микротрубочек и обеспечивает двигательную функцию хвоста. Гипотетически она задействована в соединении ядер зиготы и первом делении её клеток.

Шейка сперматозоида — это сужающаяся область за головкой, в котором она соединяется с телом сперматозоида. Она имеет гибкую структуру, что позволяет головке совершать колебательные движения.

За шейкой сперматозоида расположена средняя часть, иногда называемая телом. В ней находится митохондрион спиралевидной формы с 28 митохондриями. Накопленная им АТФ, задействуется для движения сперматозоида. Внутри спирали митохондриона расположен скелет жгутика, состоящий из микротрубочек.

Хвост сперматозоида находится за средней частью. Он значительно длиннее и уже неё. Сперматозоид перемещается благодаря кнутоообразным движениям хвоста, в котором находится две центральных и девять периферических пар микротрубочек.

Открытие сперматозоида

Первым, кто открыл сперматозоид, был друг известного голландского натуралиста Антони ван Левенгука Иоганн Гамм. Именно он сообщил Левенгуку о «семенных зверьках» в 1677 году.

Не можете справиться с простатитом?

Популярные препараты зачастую снимают лишь симптомы простатита на время. Болезнь не уходит, а продолжает прогрессировать и снижать половое влечение и вызывать ускоренное семяизвержение!

Средство поможет не только улучшить мочевыведение, уменьшить отек простаты, но и вернуть потенцию и укрепить иммунитет.

Он обладает следующими свойствами:

  • Устраняет воспаление и боль
  • Устраняет жжение при мочеиспускании
  • Снимает отек предстательной железы
  • Возвращается потенция
  • Вы снова почувствуете мужскую силу и прилив энергии!

Как всегда доводить девушку до оргазма?

Остальные секреты незабываемого секса вы можете узнать на страницах нашего портала.

Но заслуга Левенгука состоит в том, что он первым детально описал их, задокументировал наблюдения и отослал результаты в Лондонское Королевское общество.

Особенно удивительно то, что Левенгук работал, не используя микроскопа и не имея высшего образования. У него был талант к изготовлению линз, одна из которых обладала способностью к увеличению в 270 раз, и очень хорошее зрение.

Линзы тогда были размером с горошину, и прикладывать их приходилось прямо к глазу.

Самого Левенгука открыл для мира другой известный учёный Грааф, написавший в 1673 году секретарю Лондонского Королевского общества об удивительном изобретателе, увеличительные приборы которого превосходили известные на то время.

В том же году Грааф умер, не дожив и до 33 лет. Если бы не он, то Левенгук мог и не получить нужной ему поддержки, и мир узнал о сперматозоидах значительно позже.

В знак признания его заслуг, Левенгук всё-таки был принят в Лондонское Королевское общество, несмотря на то, что многие его члены сначала высокомерно относились к учёному.

Левенгук придерживался другого мнения, считая их будущей особью в зародышевом состоянии. Оплодотворяющая функция сперматозоида была позже доказана итальянским учёным Ладзаро Спалланцани. Сам же термин «сперматозоид» впервые был введён Карлом Эрнстом фон Бэром.

Особенности строения сперматозоида

Строение сперматозоида, как половой клетки, являющейся высокоспециализированной, имеет ряд отличительных особенностей, в сравнении с соматическими клетками.

Главные особенности таковы:

  • в сперматозоиде намного меньше цитоплазмы, т. к. она менее значима, чем ядро;
  • ядро содержит гаплоидный набор хромосом, то есть хромосомы без пары;
  • обмен веществ находится на низком уровне, потребление энергии минимально;
  • имеет жгутикообразный хвост для передвижения.

Истории наших читателей!
"Появились проблемы с «мужским» здоровьем из-за работы и навалившихся проблем. Классические таблетки для потенции врач запрещает пить, потому что они влияют на сердце и давление.

Узнал о шипучих таблетках, состав которых полностью натурален, а значит и полностью безопасен даже при гипертонии. После того как начал их принимать, все нормализовалось и улучшилось в разы!"

Размеры сперматозоида

Сперматозоид одна из самых мелких клеток в человеческом организме.

Его размеры составляют:

  • длина 55 мкм;
  • ширина 3,5 мкм;
  • высота 2,5 мкм

Длина головы составляет 5 мкм, средняя часть 4,5 мкм, хвост 45 мкм.

Особенности мужских сперматозоидов

Некоторые важные особенности мужских гамет обеспечивают их эффективное функционирование в жёстких условиях. Это:

  • отрицательный электрический заряд, не позволяющий протекать процессу в эякуляте;
  • способность активно передвигаться со скоростью до 5 см в час, благодаря движениям жгутикоообразного хвостика;
  • жидкокристаллическое состояние цитоплазмы, позволяющее выдерживать нахождение в неблагоприятной среде.

Свойства мужских гамет

Сперматозоид резко отличается от яйцеклетки по многим параметрам. Фактически они сходны лишь гаплоидным набором хромосом.

Основными свойствами гамет мужчины являются:

  • способность к активному движению;
  • небольшие размеры;
  • наличие ферментов, способных расщепить мукополисахаридную оболочку яйцеклетки;
  • отсутствие запаса питательных веществ;
  • выработка в большом количестве.

Срок жизни сперматозоида

После 64 дней созревания сперматозоиды остаются в придатках яичек примерно 30 дней, после чего гибнут. До 24 часов они могут в сперме, в зависимости от параметров среды.

При попадании в агрессивную для них кислую среду влагалища, сперматозоиды быстро гибнут.

По данным ВОЗ через два часа после полового акта во влагалище уже не остаётся живых сперматозоидов.

Если они попадают в матку, шейку матки или фаллопиевы трубы, они могут быть живыми до трёх суток.

Важность процесса движения

Кислотность агрессивной для сперматозоидов среды влагалища неоднородна, и их движение направлено в сторону уменьшения кислотности.

Именно поэтому так важна скорость перемещения мужской гаметы, ведь чем дольше нахождение в более агрессивной среде, тем больше вероятность её гибели.

Важно также, что сперматозоиды способны воспринимать аттрактанты, особые химические вещества, способные стимулировать движение к источнику их выделения. Доказано их выделение яйцеклеткой, что и способствует направленному движению сперматозоидов.

Мобильность сперматозоидов имеет большее значение, чем их количество в . Об этом хорошо известно врачам-андрологам. Заболевание, при котором половые клетки мужчины живы, но не способны перемещаться, называется акиноспермией.

Процесс оплодотворения

Попав во влагалище с эякулятом, сперматозоиды начинают движение к шейке матки, а затем в матку. Большая часть их гибнет в неблагоприятной среде влагалища спустя два часа. В шейке матки выделяется слизь, которая также препятствует их дальнейшему движению.

Для успешного осуществления процесса, дальнейшее движение должно продолжать не мене 10000000 сперматозоидов.

Оплодотворение яйцеклетки происходит в расширяющейся около яичника части маточной трубы.

Следующим препятствием для доступа к яйцеклетке становится лучистый венец пласт фолликулярных клеток вокруг неё.

Этот слой должен быть разрушен ферментами акросом сперматозоидов. Большое количество сперматозоидов, стремящихся достигнуть яйцеклетки, разрушают структуру, лучистого венца.

Первый сперматозоид, достигнувший блестящей оболочки яйцеклетки, имеет больше всего шансов оплодотворить яйцеклетку.

Затем, сперматозоид с помощью ферментов акросомы растворяет мукополисахаридную оболочку яйцеклетки, создавая отверстие для головки. После этого его головка проникает внутрь яйцеклетки. При этом тело и хвост остаются за её пределами. Во время слияния гаплоидных яйцеклетки и сперматозоида образуется диплоидная зигота, содержащая 46 хромосом.

СПЕРМАТОЗОИД (сперма + зоо... + греч. eidos — вид; синонимы — спермий, сперматозоон, живчик), зрелая гаплоидная мужская половая клетка. Открыл студент-медик Й. Гам (1680), позднее описан А. Левенгуком. Термин введён К. М. Бэром в 1827 г. Сперматозоиды образуются в результате сперматогенеза и участвуют в оплодотворении. Зрелый нормальный сперматозоид человека состоит из головки, шейки, тела и хвоста, или жгутика, который заканчивается тонкой концевой нитью.

Общая длина сперматозоида составляет около 50 — 60 мкм (головка 5 — 6 мкм, шейка и тело 6 — 7 и хвост 40 — 50 мкм). В головке находится ядро, несущее отцовский наследственный материал. На переднем её конце находится акросома, обеспечивающая проникновение сперматозоида через оболочки женской яйцеклетки. В шейке и теле расположены митохондрии и спиральные нити, являющиеся генератором двигательной активности сперматозоида. От шейки через тело и хвост отходит осевая нить (аксонема), окружённая оболочкой. Под нею вокруг осевой нити расположены 8 — 10 ещё более мелких нитей — фибрилл, выполняющих в клетке двигательную или скелетную функции.

Подвижность является наиболее характерным свойством сперматозоида и осуществляется с помощью равномерных ударов хвоста путём вращения вокруг собственной оси по направлению часовой стрелки. Продолжительность существования сперматозоида во влагалище достигает 2,5 часа, в шейке матки — 48 часов и более. В норме сперматозоид движется всегда против тока жидкости, что и позволяет ему передвигаться вверх по женскому половому тракту до встречи с яйцеклеткой со скоростью 3 мм/мин.

Известно, что в определении пола ведущую роль играют 2 половые хромосомы — Х и Y. Сперматозоиды, содержащие Y-хромосому, называются андроспермиями, Х-хромосому — гиноспермиями. Яйцеклетку может оплодотворить, как правило, только один спермий, причём, с равной вероятностью им может быть андро- или гиноспермий, в связи с чем предварительные предсказания пола ребёнка практически невозможны. Предполагают, что мальчики чаще рождаются от мужчин, в сперме которых преобладают андроспермии.

В спермограмме здорового мужчины наряду с нормальными встречаются и патологические формы спермиев, но не более 20 — 25%. Превышение этого числа может приводить к бесплодию или к врождённым уродствам плода. При патологии в эякуляте уменьшается количество сперматозоидов (олигозооспермия), может снижаться число подвижных форм (астенозооспермия). Иногда отсутствуют зрелые сперматозоиды, а встречаются лишь клетки сперматогенеза. Все сперматозоиды могут быть неподвижными или в сперме могут отсутствовать как сперматозоиды, так и клетки сперматогенеза (аспермия).

Строение и функция сперматозоида

Сперматозоид человека - это специализированная клетка, строение которой позволяет ей выполнить свою функцию: преодолеть половые пути женщины и проникнуть в яйцеклетку, чтобы внести в неё генетический материал мужчины. Сперматозоид, сливаясь с яйцеклеткой, оплодотворяет её.

В организме человека сперматозоид является самой маленькой клеткой тела (если учитывать только саму головку без хвостика). Общая длина сперматозоида у человека равна приблизительно 55 мкм. Головка составляет приблизительно 5,0 мкм в длину, 3,5 мкм в ширину и 2,5 мкм в высоту, средний участок и хвостик - соответственно, приблизительно 4,5 и 45 мкм в длину.

Малые размеры, вероятно, необходимы для быстрого движения сперматозоида. Для уменьшения размера сперматозоида при его созревании происходят специальные преобразования: ядро уплотняется за счет уникального механизма конденсации хроматина (из ядра удаляются гистоны, и ДНК связывается с белками-протаминами), большая часть цитоплазмы выбрасывается из сперматозоида в виде так называемой «цитоплазматической капли», остаются только самые необходимые органеллы.

Сперматозоид мужчины имеет типичное строение и состоит из головки, средней части и хвоста.

Головка сперматозоида человека имеет форму эллипсоида, сжатого с боков, с одной из сторон имеется небольшая ямка, поэтому иногда говорят о «ложковидной» форме головки сперматозоида у человека. В головке сперматозоида располагаются следующие клеточные структуры:

  • Ядро , несущее одинарный набор хромосом. Такое ядро называют гаплоидным. После слияния сперматозоида и яйцеклетки (ядро которой также гаплоидно) образуется зигота - новый диплоидный организм, несущий материнские и отцовские хромосомы. При сперматогенезе (развитии сперматозоидов) образуются сперматозоиды двух типов: несущие X-хромосому и несущие Y-хромосому. При оплодотворении яйцеклетки X-несущим сперматозоидом формируется эмбрион женского пола. При оплодотворении яйцеклетки Y-несущим сперматозоидом формируется эмбрион мужского пола. Ядро сперматозоида значительно мельче ядер других клеток, это во многом связано с уникальной организацией строения хроматина сперматозоида (см. протамины). В связи с сильной конденсацией хроматин неактивен - в ядре сперматозоида не синтезируется РНК.
  • Акросома - видоизмененная лизосома - мембранный пузырек, несущий литические ферменты - вещества, растворяющие оболочку яйцеклетки. Акросома занимает около половины объёма головки и по своему размеру приблизительно равна ядру. Она лежит спереди от ядра и покрывает собой половину ядра (поэтому часто акросому сравнивают с шапочкой). При контакте с яйцеклеткой акросома выбрасывает свои ферменты наружу и растворяет небольшой участок оболочки яйцеклетки, благодаря чему образуется небольшой «проход» для проникновения сперматозоида. В акросоме содержится около 15 литических ферментов, основным из которых является акрозин.
  • Центросома - центр организации микротрубочек, обеспечивает движение хвоста сперматозоида, а также предположительно участвует в сближении ядер зиготы и первом клеточном делении зиготы.

Позади головки располагается так называемая «средняя часть » сперматозоида. От головки среднюю часть отделяет небольшое сужение - «шейка». Позади средней части располагается хвост. Через всю среднюю часть сперматозоида проходит цитоскелет жгутика, который состоит из микротрубочек. В средней части вокруг цитоскелета жгутика располагается митохондрион - гигантская митохондрия сперматозоида. Митохондрион имеет спиральную форму и как бы обвивает цитоскелет жгутика. Митохондрион выполняет функцию синтеза АТФ и тем самым обеспечивает движение жгутика.

Хвост , или жгутик, расположен за средней частью. Он тоньше средней части и значительно длиннее её. Хвост - орган движения сперматозоида. Его строение типично для клеточных жгутиков эукариот.

Движение сперматозоидов человека

Сперматозоид человека движется при помощи жгутика. Во время движения сперматозоид обычно вращается вокруг своей оси. Скорость движения сперматозоида человека может достигать 0,1 мм в сек. или более 30 см в час. У женщины приблизительно через 1-2 часа после коитуса с эякуляцией первые сперматозоиды достигают ампулярной части фаллопиевой трубы (той части, где происходит оплодотворение).

В организме мужчины сперматозоиды находятся в неактивном состоянии, движения жгутиков у них незначительны. Перемещение сперматозоидов по половым путям мужчины (семенные канальцы, проток эпидидимиса, семявыносящий проток) происходит пассивно за счет перистальтических сокращений мышц протоков и биения ресничек клеток стенок протоков. Сперматозоиды приобретают активность после эякуляции за счет воздействия на них ферментов простатического сока.

Движение сперматозоидов по половым путям женщины является самостоятельным и осуществляется против движения жидкости. Для осуществления оплодотворения сперматозоидам необходимо преодолеть путь длиной около 20 см (цервикальный канал - около 2 см, полость матки - около 5 см, фаллопиева труба - около 12 см).

Нужны мужская и женская клетки: сперматозоид и яйцеклетка. Яйцеклетка находится в своей естественной среде весь цикл жизни, а носителю мужских генов предстоит путь длиной до нескольких дней. Рассмотрим, сколько живет спермик в различных условиях и от каких факторов зависит вероятность

Количество сперматозоидов и беременность

Во время полового акта в женский организм попадает несколько миллионов сперматозоидов, но для оплодотворения достаточно, чтобы до яйцеклетки добрался лишь один. Чтобы быстрее всех доплыть до главной цели, он должен быть живучим и быстрым, а далеко не каждый спермик обладает такими качествами.

Знаете ли вы? Мужчины выделяют примерно столовую ложку спермы (2–5 мл). Это не так много для млекопитающего: жеребец выделяет до 100 мл семенной жидкости, а кабан - полный стакан.

Ученые пришли к выводу, что наиболее высокая вероятность к зачатию наблюдается при количестве в 4 млн сперматозоидов и больше, выпускаемых за эякуляцию. За каждый последующий акт с небольшим временным промежутком спермы выделяется меньше. Но для наступления хватит даже количества сперматозоидов после пятого семяизвержения подряд.

Необходимое число «головастиков» зависит также от внутренней среды женщины и ее . Так, во время у женщины жизнеспособность сперматозоидов выше и количество «бойцов» почти не имеет значения. В остальной период густой секрет создает неблагоприятную среду, которая препятствует наступлению зачатия.

От чего зависит сохранность?

Сперма человека содержит большое количество простого сахарида - фруктозы. Благодаря ей спермики получают необходимый заряд энергии, чтобы добраться до яйцеклетки быстро и с наименьшими усилиями.

Сахароза немного увеличивает шансы сперматозоидов, которые несут Х-хромосому. Клетка будущей девочки - более крупная и выносливая, а благодаря дополнительной сахарозе она увеличивает свою скорость и плывет на равных с «головастиками» c Y-хромосомой. Поэтому пары, которые хотят стараются есть больше сладкого.


Сахароза является частью медицинской поддержки спермы при обращении в клинику с проблемами зачатия. Немного продлить жизнь и скорость носителей своих генов мужчина может и самостоятельно, употребляя сахаросодержащие продукты, среди которых - виноград и другие сладкие фрукты.

Как долго может храниться сперма

В своей естественной среде, в половых органах мужчины, сперматозоиды находятся в полной безопасности. Но после эякуляции они попадают во враждебный для них мир. С этого мгновения срок их жизни начинает исчисляться днями, часами, минутами или даже секундами, в зависимости от того, куда они попали.

Важно! Цикл сперматогенеза у человека длится около 74 дней, поэтому то, сколько живут сперматозоиды конкретного мужчины, зависит от образа его жизни за 3 месяца до полового акта.

Срок хранения спермы зависит от температуры, уровня pH и других условий окружающей среды. Ученые хранят ее замороженной со специальным раствором. В таком состоянии она полностью сохраняет свои свойства.


В организме женщины

На пути к яйцеклетке «головастики» проходят долгий путь от влагалища к . Сколько живут сперматозоиды в женском теле - зависит от места, где они находятся:

  1. Во рту. При занятии оральным сексом носители мужских генов сразу погибают в полости рта, так как среда для них слишком кислая. Кислотность слюны составляет 6,8–7,4 pH.
  2. Во влагалище. У среднестатистической женщины кислотность среды составляет 3,8–4,4 pH. В такой среде спермики способны прожить около 2 часов.
  3. В шейке матки. Цервикальная слизь шейки является благоприятной средой для сперматозоидов. Особо живучие представители могут провести в ней от 3 до 8 дней. Слизь меняет свою густоту в зависимости от овуляции: в это время она более жидкая, а после становится густой. Сперма, попавшая сюда до овуляции, с большей вероятностью станет причиной беременности.

Важно! Уровень pH зависит от физиологических особенностей каждой женщины. Показатель может меняться в течение менструального цикла и во время болезни.

Вне тела

Попав во внешнюю среду, сперматозоиды живут недолго. Особое значение имеет температура окружения. Идеальным значением для «головастиков» является 34–37 °С. Это значит, что, попав на тело или оставаясь на половом органе снаружи, они могут продолжать жить еще несколько часов.


Сколько живут сперматозоиды на воздухе, зависит от многих факторов. В среднем, при подходящей для них температуре они сохраняют свою жизнеспособность до 1 часа. Такой же срок жизни ждет спермиков в презервативе, если он не покрыт специальной спермицидной смазкой, которая убивает их сразу.

Мужское семя практически сразу погибает от холодной температуры, но при мгновенной заморозке азотом может храниться неограниченное количество времени.

Жизнеспособность и возможность оплодотворения

Высокая продолжительность жизни сперматозоида - это не гарантия зачатия. Кроме жизнеспособности, на возможность оплодотворения влияют:

  1. Активность. Живучий, но медленный спермик не сможет достичь цели вовремя. Нормальной скоростью «головастика» считается 0,1 мм в секунду или 30 см/час.
  2. Период оплодотворяющей способности, который длится меньше времени, чем длительность жизни сперматозоида и составляет 1–2 суток, даже если ему удастся прожить дольше.
  3. Наличие патологий у сперматозоида. На способность каждого «живчика» к оплодотворению влияет наличие у него
Загрузка...