docgid.ru

Каков хромосомный механизм определения пола. Лекция (2ч.). Тема: Генетика пола. Механизм хромосомного определения пола. Патология по половым хромосомам. Что такое гомогаметный и гетерогаметный пол


Пол организмов, совокупность морфологических и физиологических особенностей организма, обеспечивающих половое размножение, сущность которого сводится в конечном итоге к оплодотворению. При этом мужские и женские половые клетки - гаметы сливаются зиготу, из которой развивается новый организм. В зиготе объединяются 2 гаплоидных (одинарных) набора хромосом материнской и отцовской гамет. В половых клетках нового организма образуются гаплоидные наборы уже перекомбинированных отцовских и материнских хромосом (в результате обмена участками гомологичных родительских хромосом - кроссинговера - и случайного их расхождения по дочерним клеткам во время мейоза). Поэтому в обоеполой популяции постоянно возникает множество генетически разных особей, что создаёт благоприятные условия для естественного отбора более приспособленных форм. В этом заключается основное преимущество полового размножения перед бесполым. Половое размножение преобладает у животных и высших растений; оно встречается и у многих микроорганизмов (конъюгация у бактерий сопровождается частичным обменом наследственным материалом - нитями ДНК). Половой процесс у одноклеточных организмов не требует значительной дифференциации П. (одна и та же клетка может быть и клеткой тела, и половой). У многоклеточных диплоидных организмов возникли специальные гаплоидные половые клетки: крупные и малоподвижные или неподвижные у женского, мелкие и обычно подвижные - у мужского. У большинства растений и лишь у некоторых животных оба типа гамет производятся одной особью, у большинства животных - разными особями, которые в связи с этим строго разделяются соответственно на самок и самцов. Помимо продуцирования клеток различного пола., самцы и самки различаются рядом морфологических и физиологических признаков, а также половым поведением, которые обеспечивают слияние половых клеток.

Определение пола

Все организмы, в том числе и раздельнополые, в генетическом отношении бисексуальны (двуполы), т.к. зиготы их получают генетическую информацию, потенциально дающую возможность развивать признаки мужского и женского пола. У обоеполых растений и некоторых гермафродитных животных женские и мужские репродуктивные органы и половые клетки развиваются из генетически одинаковых клеток под влиянием внутренних условий (по отношению к отдельным клеткам их можно рассматривать как внешние). Механизм переключения клеток на развитие в одном случае женских, в другом мужских репродуктивных органов полностью не раскрыт. В редких случаях у раздельнополых видов потенциально бисексуальные зиготы развиваются в самок или самцов под влиянием внешних условий. Например, у морского кольчатого червя бонеллия личинка, поселяясь на хоботке самки, развивается в самца, а на дне моря - в самку. У растения Arisaema japonica из крупных клубней, богатых питательными веществами, развиваются растения с женским цветками, а из мелких клубней - с мужскими. Определение пола под влиянием внешних условий называется фенотипическим, или модификационным.

Шире распространено генетическое определение пола. В этом случае зигота во время оплодотворения также получает потенциальные возможности для развития признаков обоих полов. Однако под влиянием генетических факторов в одной половине зигот пересиливает тенденция развития мужского пола, а в другой - женского. Специальный хромосомный механизм обеспечивает передачу одной половине потомства генов женского пола, а другой - генов мужского пола. В начале 20 в. было установлено, что у самцов некоторых видов насекомых в диплоидных (с двойным набором хромосом) клетках наряду с парами гомологичных хромосом имеется одна непарная хромосома. Самка же имеет две такие хромосомы. У самцов насекомых др. видов все хромосомы парные, но в одной из пар они морфологически несходные. Эти хромосомы, причастные к определению пола., назвали половыми а остальные - аутосомами. Половые хромосомы были обнаружены у многих раздельнополых организмов. Половую хромосому самца, повторяющуюся у самок, назвали Х-хромосомой, а не повторяющуюся - Y-хромосомой. Сочетание половых хромосом самца обозначают формулой X0 или XY, а самки - XX. Самцы с одной половой хромосомой продуцируют в равном количестве гаметы с Х-хромосомой и гаметы, лишённые её, т. е. с одним лишь гаплоидным набором аутосом (А); самки - гаметы только с Х-хромосомой. После случайного слияния мужских и женских гамет половина образовавшихся зигот будет иметь две Х-хромосомы (XX), а др. половина - только одну Х-хромосому. Первые станут самками, вторые - самцами.

Самцы с разными половыми хромосомами продуцируют в равном количестве гаметы, имеющие Х-хромосому, и гаметы, имеющие Y-хромосому. Женские гаметы этого вида генетически одинаковы - все они несут по одной Х-хромосоме. В результате половина яйцеклеток будет оплодотворена сперматозоидами с Y-хромосомой, а др. половина - с Х-хромосомой. Первые зиготы, имеющие структуру XY, разовьются в особей мужского пола, вторые - с XX - в особей женского пола. Самцы с одной Х-хромосомой или с двумя разными (XY) хромосомами имеют гетерогаметный пол, самки с ХХ-хромосомами - гомогаметный пол. У многих животных, наоборот, самки имеют гетерогаметный пол. Их половые хромосомы обозначают буквами Z и W или XY, а половые хромосомы гомогаметных самцов - ZZ или XX. У млекопитающих, нематод, моллюсков, иглокожих и у большинства членистоногих гетерогаметен мужской пол. У насекомых и рыб гетерогаметность наблюдается как у мужского, так и у женского пол. Гетерогаметность женского пола свойственна птицам, пресмыкающимся и некоторым земноводным.

Бисексуальные потенции, свойственные зиготе, обусловлены генами, локализованными в аутосомах и проявляющимися только под контролем др. генов - реализаторов пола. Именно эти гены открывают путь в одном случае генам, способствующим образованию женского пола, в другом - генам, обусловливающим развитие мужского пола. При генетическом определении пола по типу X0, XX реализаторы женского пола локализованы в Х-хромосомах, а мужского - в аутосомах. При сочетании одной дозы реализаторов женского П., локализованных в одной Х-хромосоме, с диплоидным набором реализаторов мужского П., локализованных в аутосомах, развивается мужской пол И только 2 дозы реализаторов женского пола, локализованные в 2 Х-хромосомах, пересиливают потенцию развития мужского пола и тем самым обусловливают женский пол. У человека полоопределяющую роль играет Y-хромосома. В аномальных случаях она сочетается с 2, 3 и даже 4 Х-хромосомами при нормальном наборе аутосом. Хотя это и приводит к патологическим отклонениям, однако все особи с такими наборами хромосом бывают мужского пола. Полоопределяющая роль Y-хромосом отмечена у многих видов животных, а среди растений - у дрёмы луговой. У дрозофилы Y-хромосома почти не содержит генов, т. е. наследственно инертна; реализаторы женского пола. локализованы в Х-хромосоме, реализаторы мужского П. - в аутосомах. Развитие пола контролируется отношением Х-хромосом к набору аутосом (Х: А), условно принятым у самки за единицу (2Х:2А = 1): это отношение у самца равно 0,5 (Х:2А = 0,5). Увеличение этого отношения (полового индекса) свыше единицы приводит к чрезмерному развитию женских половых признаков («сверхсамки»), уменьшение же ниже 0,5 способствует появлению самцов с более выраженными мужскими признаками («сверхсамцы»). Особи с половым индексом 0,67 и 0,75 имеют промежуточное развитие признаков обоих полов и называют интерсексами. Явление интерсексуальности демонстрирует бисексуальную потенцию наследственной информации, передаваемой всем потомкам.

Механизм генетического контроля над развитием половых признаков может быть внутри- и межклеточным. Внутриклеточное определение П. не связано с образованием половых гормонов (например, у насекомых), и действие генов, определяющих П., ограничено клетками, в которых эти гены функционируют. При этом в одном организме могут нормально развиваться, не влияя друг на друга, участки тела с женскими и мужскими признаками При межклеточном определении пола., характерном для млекопитающих и птиц, под контролем генов вырабатываются половые гормоны , которые, проникая во все клетки организма, обусловливают фенотипическое развитие признаков соответствующего пола. Различают прогамное, сингамное и эпигамное определение пола. Прогамное определение пола происходит до оплодотворения яйца, например дифференцировка яйцеклеток на быстро и медленно растущие. Первые становятся крупными, и из них после оплодотворения развиваются самки, вторые отличаются меньшими размерами и дают самцов, хотя оба вида яйцеклеток генетически одинаковы. Сингамное определение пола происходит во время оплодотворения, но на разных стадиях этого процесса. У некоторых видов с мужской гетерогаметией и физиологической полиспермией (оплодотворение яйцеклетки несколькими сперматозоидами) пол определяется в момент слияния ядер половых клеток (кариогамия). Если с ядром яйцеклетки сливается мужское ядро с Y-хромосомой, разовьётся мужская особь, если с Х-хромосомой - женская. При женской гетерогаметии пол потомства зависит от того, какая из половых хромосом попадает в ядро яйцеклетки во время мейоза. Если в ядре окажется Z-хромосома, разовьётся особь мужского пол., если W-хромосома - женского. Т. о., в данном случае пол зиготы устанавливается до кариогамии. Эпигамное определение пола наблюдается у разнополых видов с фенотипическим определением пола, когда направленность развития в сторону мужского или женского пола обусловливается влиянием внешних условий после оплодотворения.

Зависимость признаков от пола

Зависят от пола признаки, ограниченные и контролируемые им. Ограниченные полом признаки в силу половой дифференциации могут проявиться только у одного из полов (продукция молока или яиц свойственна только женскому полу), хотя полимерные гены этих признаков локализованы в аутосомах обоих полов. Признаки, контролируемые полом, проявляются или у обоих полов (с разной степенью выраженности), или (чаще) только у одного из полов (более мощное развитие рогов у баранов, бороды - у козлов), хотя оба в равной мере содержат в аутосомах гены этих признаков. Несходное их развитие обусловлено значительным различием физиологических процессов в организмах разного пола.

Гены, детерминирующие признаки, сцепленные с полом, локализованы как в парных, так и непарных половых хромосомах и поэтому наследуются иначе, чем признаки, обусловленные парными генами, локализованными в аутосомах обоих полов. Если гены локализованы в непарной Y-хромосоме гетерогаметного самца, то обусловливаемые ими признаки наследуются лишь сыновьями, а при локализации генов в хромосоме гетерогаметной самки - только дочерьми. Наследуемые т. о. признаки называются голандрическими. Этот тип наследования обнаружен у некоторых видов рыб и насекомых. У др. видов животных он с полной достоверностью не доказан. При локализации генов в гомологичных Х- или Z- хромосомах обусловленные ими признаки передаются сцепленно с полом по типу, получившему название наследования крест-накрест, когда рецессивный признак матери проявится у сыновей, а доминантный - у дочерей (Т. X. Морган), что встречается у многих видов животных (например, трёхцветность кошек, полосатость окраски оперения и скорость его роста у кур). Много сцепленных с полом мутаций обнаружено у дрозофилы и тутового шелкопряда.

Сцепленными с П. могут быть и летали - гены, обусловливающие смертельный исход при развитии организма. Если гомогаметный родитель гетерозиготен по летали, локализованной в одной из гомологичных половых хромосом (X или Z), то половина его гетерогаметных потомков погибнет, получив деталь, губительному действию которой в генотипе не будет противопоставлен нормальный аллель. При гетерогаметии женского пола от леталей гибнет половина дочерей, а при гетерогаметии мужского пола - половина сыновей. Иногда мутантные гены в Х- и Z- хромосомах лишь частично снижают жизнеспособность потомства или вызывают различные заболевания, наиболее часто проявляющиеся у гетерогаметного пола. У человека обнаружено свыше 50 сцепленных с полом мутаций, приводящих большей частью к нарушению нормальной жизнедеятельности организма.

Соотношение полов

При фенотипическом определении П. оно зависит от количества развивающихся организмов, которые попадают под влияние внешних факторов, детерминирующих тот или иной пол. При генетическом определении пола соотношение полов у большинства видов, как правило, очень близко к 100♀: 100♂ (100 самок: 100 самцов). Однако и при таком определении пола есть отклонения. Так, у некоторых видов млекопитающих с мужской гетерогаметией статистически достоверно рождается на 1-2% больше потомков мужского пола.

Регуляция пола

Существенный сдвиг соотношения организмов в сторону одного из полов имеет как теоретическое, так и практическое значение, т.к. один из полов обычно более продуктивен. Методы регуляции пола, сведённые к 4 основным направлениям, применяются в зависимости от типа определения пола и биологических и хозяйственных особенностей вида.

Фенотипическое переопределение пола. Если действие генов пола реализуется посредством гормонов, половые признаки изменяются при пересадке половых органов одного пола другому или при введении в организм гормонов противоположного пола, а также некоторых аминокислот. Степень фенотипических изменений пола зависит от особенностей вида и дозы введённого препарата. Однако лишь в редких случаях (у некоторых рыб и земноводных) особи с фенотипически переопределённым пола продуцируют гаметы, противоположные их генотипическому полу. В следующем поколении, если действие гормонов прекращается, снова вступает в силу генетический механизм определения пола.

Управление генетическим механизмом определения пола или искусственное сочетание в яйцеклетке половых хромосом. Направленное изменение соотношения полов достигнуто в экспериментах с тутовым шелкопрядом, у которого пол строго определяется сочетанием половых хромосом (ZW - ♀; ZZ - ♂). Неоплодотворённые яйца после прогрева развиваются партеногенетически за счёт диплоидного ядра, не завершившего редукционного деления. Все клетки партеногенетического эмбриона сохраняют материнскую структуру, в частности и в отношении половых хромосом ZW, и, следовательно, развиваются только в самок (Б. Л. Астауров). Воздействием ионизирующих излучений и прогревом удалось подавить в свежеотложенном осеменённом яйце женское ядро и переключить развитие на мужское начало. Диплоидное ядро мужской зиготы образуется путём слияния двух мужских ядер и поэтому имеет структуру мужского П. ZZ. Из таких зигот развиваются гусеницы всегда мужского пола (X. Хасимото; Б. Л. Астауров). Этими методами впервые у с.-х. вида шелкопряда решена проблема произвольной регуляции пола. У млекопитающих учёные пытаются разделить по морфологическим и физиологическим особенностям Х- и Y-сперматозоиды с целью последующего осеменения одной категорией сперматозоидов. Однако этим способом пока не удалось достоверно сместить соотношение полов.

Раннее распознавание пола используется для сортировки вылупившихся цыплят на петушков и курочек по окраске оперения, сцепленной с полом, а также для «сверхранней» сортировки по полу тутового шелкопряда. Под действием ионизирующего облучения у шелкопряда пересажена аутосома с доминантным геном, обусловливающим тёмную окраску яиц тутового шелкопряда, на половую W- хромосому. Сцепление хромосом стойко передаётся по наследству. Те яйца, в которые попадает W- хромосома с пересаженным доминантным геном, приобретают тёмный цвет и развиваются в самок, в то время как яйца мужского пола, не получив доминантного гена, остаются непигментированными. Фотоэлектрические автоматы с большой скоростью разделяют разноокрашенные яйца по полам. Выведенные таким способом (В. А. Струнников и Л. М. Гуламова) меченые по полу породы шелкопряда находят практическое применение в советском шелководстве. В 60-х гг. 20 в. в опытах английских учёных Р. Эдуардса и

Р. Гарднера зафиксировано рождение потомства только одного пола и у млекопитающих. У кроликов извлекали из тела матери ранних зародышей, цитологическим методом определяли их пол и затем зародышей нежелательного пола выбраковывали, а зародышей нужного пола возвращали в матку. Около 20% возвращенных зародышей прижилось и развивалось в крольчат предсказанного учёными пола.

Изменение соотношения полов может быть почти у всех животных с генетическим определением пола результатом гибели половины зародышей гетерогаметного пола под действием сцепленных с полом деталей. Однако для многих с.-х. животных такой подход к регуляции пола экономически не оправдан. Исключение составляет тутовый шелкопряд. В СССР радиационным методом выведена (В. А. Струнников) генетически особая порода тутового шелкопряда, у которой в обоих Z- хромосомах самцов всегда имеется по одной негомологичной друг другу летали (сбалансированные летали). Если этих самцов скрестить с самками обычных пород, на стадии яйца одна половина самок погибнет от первой, а другая - от второй летали. Из яиц мужского пола вылупляются нормальные гусеницы. Этот способ позволяет в неограниченных количествах получать у тутового шелкопряда только один более продуктивный мужской пол.



Тема: Генетика пола.

1. Механизм хромосомного определения пола.

2. Патология по половым хромосомам.

3. Наследование признаков, сцепленных с полом.


Половое размножение свойственно как растениям, так и животным и обусловлено формированием гамет - мужских и женских гаплоидных клеток, которые, соединяясь в процессе оплодотворения, дают начало диплоидным клеткам - зиготам. При скрещивании в результате процесса расщепления и комбинации генов в потомстве возможно выявление новых приспособительных сочетаний признаков. За счет полового размножения под контролем естественного отбора в наследственном фонде вида накапливаются сочетания генов, способствующие выживанию вида в данных условиях.

У диплоидных организмов наследственно обусловлена способность к формированию признаков и свойств как женского, так и мужского пола, но одна из этих тенденций преобладает, в то время как другая подавляется и проявляется только при условиях, исключающих возможность проявления основной тенденции. Так, у старых самок жаб после отмирания женских половых желез начинается вторичное развитие зачаточных мужских половых желез и самки приобретают способность функционировать в качестве самцов, но потомство, возникающее от скрещивания их с нормальными самками, состоит только из самок. В этом случае выявление подавленной мужской половой тенденции происходит после разрушения женских половых желез, сформировавшихся под влиянием основной половой тенденции.

Пол организма зависит от взаимодействия наследственной основы, полученной им от родителей, с условиями внешней среды, в которой происходит его развитие. Определение пола осуществляется у разных живых организмов на различных ступенях индивидуального развития.

1. Механизм хромосомного определения пола. Определение пола может происходить на разных фазах цикла размножения. Пол зиготы может предопределяться еще в процессе созревания женских гамет - яйцеклеток. Такое определение пола называют програмным. Оно обнаружено у коловраток, или у первичных кольчецов. Яйцеклетки этих животных в результате неравномерного распределения цитоплазмы в процессе оогенеза становятся различными по размеру еще до оплодотворения. Например, в яйцевой капсуле первичных кольчецов содержатся два сорта яиц - крупные и мелкие. Из крупных после оплодотворения развиваются только самки, из мелких - только самцы!

Если определение пола нового организма обеспечивается при оплодотворении в результате соответствующего сочетания гамет, то есть при образовании зиготы, то такой тип детерминации пола называют сингамным . Сингамное определение пола типично для млекопитающих, птиц, рыб, двукрылых насекомых, двудомных растений.

Позднее цитологи, изучая мейоз у некоторых насекомых, обнаружили явление неравного распределения хромосом. Так, у самцов клопа наблюдали в одних сперматоцитах второго порядка семь хромосом, а в других - шесть, следовательно, одна хромосома оказалась непарной. Непарную хромосому назвали Х -хромосомой, а все остальные хромосомы в клетке - аутосомами. В соматических клетках самца клопа насчитывается 13 хромосом, одна из которых является Х -хромосомой. В соматических клетках самок клопа насчитывается 14 хромосом, из которых две Х -хромосомы (такие же, как у самца) и 12 аутосом. Все ооциты у самок этого вида имеют 7 хромосом. Таким образом, у клопа все яйцеклетки имеют Х +6 аутосом, а сперматозоиды оказываются двух сортов, одна часть имеет набор хромосом Х + 6, а другая 0 + 6.

Впоследствии были обнаружены организмы, у которых в сперматогониях одна из пар хромосом представлена неодинаковыми по размеру или форме хромосомами. Одна такая хромосома была сходна с парными хромосомами женского пола, за ней сохранилось название «Х -хромосома», другая - иной формы или размера - была названа Y -хромосомой. Например, в соматических клетках коровы содержатся 60 хромосом, из которых 58 являются аутосомами и две - половыми Х -хромосомами. Соматические клетки быка также содержат 60 хромо­сом, среди которых 58 аутосом и одна пара половых хромосом: Х и Y .

Таким образом, у особей женского пола многих видов животных все хромосомы парные, и в гаметогенезе в результате редукционного деления у них образуется только один сорт гамет; в гаметогенезе у мужского пола образуются два сорта гамет - либо X и 0, либо X и Y - при равном числе остальных хромосом - аутосом. Соотношение различных сортов мужских гамет в обоих случаях будет равно 1:1, так как это определяется мейозом.

Пол, образующий гаметы одного сорта по половым хромосомам (X и X ), назвали гомогаметным ; образующий два сорта гамет (X и 0 или X и Y ), - гетерогаметным .

В случае, когда яйцеклетки содержат, кроме аутосом, Х -хромосому, при соединении со спермием, несущим также Х -хромосому, образуется зигота с парными хромосомами XX , то есть женского пола. Если же такая яйцеклетка соединится со спермием, несущим Y -хромосому, то образуется зигота с набором половых хромосом XY , то есть мужского пола.

Исследования показали, что гетерогаметность по мужскому полу присуща млекопитающим, рыбам, двукрылым насекомым, а также двудомным растениям. В то же время у бабочек, птиц, рептилий гетерогаметным полом является женский, а гомогаметным - мужской.

Балансовая теория определения пола. Исследования на дрозофиле показали, что простой на первый взгляд механизм определения пола в действительности сложнее. Несомненно, что Х -хромосома направляет развитие особи в сторону женского пола, однако Y -хромосома у плодовой мушки никак не влияет на пол. Например, можно получить особей типа Х0 , то есть имеющих одну лишь Х -хромосому, но лишенных Y -хромосомы. Такие особи представляют собой типичных самцов, но они совершенно стерильны. Следовательно, наличие Y –хромосомы обеспечивает плодовитость самцов, но не влияет на определение пола как таковое; в данном случае роль Y -хромосомы сводится к тому, что она служит партнером Х -хромосомы в мейозе.

О том, что Y -хромосома не оказывает никакого влияния на развитие пола у дрозофил, свидетельствует следующий факт. Можно получить мух с набором половых хромосом ХХ Y ; такие мухи будут настоящими плодовитыми самками, несмотря на наличие Y -хромосомы. Было установлено, что пол определяется генами женского пола, расположенными в Х -хромосоме, и генами мужского пола, расположенными в аутосомах.

В 1919 г. К. Бриджес нашел триплоидных самок дрозофил, которые были плодовиты. От скрещивания триплоидных мух с нормальными получается весьма разнообразное потомство, среди которого могут быть мухи с нормальным комплексом хромосом (XY +2A и ХХ +2 A ) и могут встретиться особи с комплексом хромосом ЗХ +2 A или 2Х + З A . Особей, имеющих комплекс хромосом ЗХ +2A , называют сверхсамками; они отличаются от нормальных самок стерильностью и аномальными крыльями и глазами. Мухи типа 2Х A представляют собой интерсексов , то есть нечто промежуточное между самцами и самками. Могут возникнуть также особи с комплексом хромосом Х Y A ; их называют сверхсамцами .

На основании опытов Бриджес пришел к выводу, что пол определяет не присутствие двух Х -хромосом или Х Y , а соотношение числа половых хромосом и числа наборов аутосом. Это следует из того, что все особи с балансом хромосом (или половым индексом) Х : A = 1 представляют собой самок, соотношение Х :2A = 0,5 определяет самцов; баланс хромосом в соотношении от 1 до 0,5 определяет промежуточное развитие пола, то есть интерсексуальность. Соотношение ЗХ :2A = 1,5 ведет к развитию сверхсамок. Напротив, увеличение количества наборов аутосом на одну Х -хромосому Х + Y A =0,33 определяет развитие сверхсамцов. В табл. 1 показаны различные половые типы дрозофил и соответствующие им половые индексы.

У дрозофилы и у некоторых других насекомых иногда развиваются так называемые гинандроморфы, у которых одни участки тела женского, а другие - мужского типов (рис. 22). Иногда одна сторона тела особи несет мужские признаки, а другая - женские. Причины такой мозаичности легко объяснить. В начале своего развития животное обладает двумя Х -хромосомами и начинает развиваться как самка, однако при первом дроблении оплодотворенного яйца по тем или иным причинам происходит утрата одной из Х -хромосом. В результате образуются клетки, содержащие только одну Х -хромосому. Если эти клетки продолжают делиться, то формируются ткани, характеризующиеся чисто мужскими признаками. Из клеток же, содержащих обе Х -хромосомы, развиваются ткани, обладающие женскими признаками.

У всех насекомых, принадлежащих к отряду перепончатокрылых (к которому принадлежит и медоносная пчела), пол определяется иным путем. В этой группе, а также у некоторых других насекомых самки диплоидны, тогда как самцы первично гаплоидны. Иными словами, самцы имеют вдвое Меньше хромосом, чем самки. Хромосомный комплекс самок нормальный, то есть у них имеется по паре хромосом каждого типа, однако гаплоидность присуща лишь клеткам так называемого зародышевого пути - клеткам, из которых развиваются гаметы. Во всех других частях тела самцов, например в кишечнике, мышцах и сосудистой системе, число хромосом вторично удваивается, становясь диплоидным. В результате самцы имеют нормальные размеры тела и жизнеспособны. У самцов в мейозе не происходит редукции числа хромосом, и поэтому половые клетки самцов имеют такое же число хромосом, как и клетки зародышевого пути. Поскольку клетки зародышевого пути уже несут половинный набор хромосом, вторичная редукция была бы просто излишней. У самок, напротив, мейоз протекает нормально, то есть сопровождается редукцией хромосом. Первичная гаплоидность самцов связана с тем, что они развиваются из неоплодотворенных яиц, которые содержат половинное число хромосом. У других организмов такие яйца обычно неспособны к развитию, но у перепончатокрылых развитие неоплодотворенных яиц представляет собой, как это ни удивительно, обычное явление.

У медоносной пчелы известны самки двух типов: многочисленные стерильные рабочие пчелы и одна плодовитая пчелиная матка. Различия между рабочими пчелами и матками обусловлены кормлением во время их роста. Непосредственная причина стерильности рабочих пчел заключается, по-видимому, в отсутствии некоторых витаминов Рабочие пчелы, как и матки, диплоидны. Те и другие содержат в своих соматических клетках по 32 хромосомы.

Самцы - трутни - развиваются из неоплодотворенных яиц, и их клетки вначале содержат 16 хромосом. Неоплодотворенные яйца откладываются в специальные ячейки сот, которые крупнее тех ячеек, где воспитываются рабочие пчелы. При спаривании матки с трутнем сперма попадает в специальный семяприемник, где она и хранится. Таким образом, пчелиная матка обладает фантастической способностью: откладывая яйца, пропускать часть их через резервуар с семенем так, что они остаются неоплодотворенными, а в других случаях обеспечивать оплодотворение яиц. В большие ячейки сот, приготовленные для трутней, матка безошибочно откладывает только неоплодотворенные яйца. Оплодотворенные же яйца, из которых должны развиваться рабочие пчелы или, возможно, новая матка.

2. Патология по половым хромосомам. У ряда животных различных видов обнаружена патология по половым хромосомам, часто аналогичная таковой у человека. Основной причиной таких аномалий является нерасхождение половых хромосом в процессе митоза дробящейся зиготы и нерасхождение половых хромосом в бластомеры на ранних этапах развития особи. Нерасхождение половых хромосом при мейозе и митозе сопровождается появлением в фенотипе особей аномалий, затрагивающих морфологические и физиологические системы. Существенно снижается или полностью утрачивается воспроизводительная функция, нарушается общее развитие, проявляется патология нервной и гормональной систем, меняется габитус тела.

Если речь идет о двух Х -хромосомах самки млекопитающих, то в результате нерасхождения возникают женские гаметы, одна из которых имеет две X -хромосомы, а вторая ни одной, тогда как в норме каждая из них должна нести по одной Х -xpoмосоме и обладать одинаковой возможностью определения пола. Если обозначить эти гаметы через XX и 0 , то в результате их соединения с нормальными мужскими гаметами (половина которых несет Х -, а другая половина Y -хромосому) возникнут анеуплоидные зиготы, как это и представлено на рис. 24. Возникающие в данном случае четыре типа зигот и количество хромосом в них представляют собой четыре типа аномалий. При рассмотренных аномалиях число аутосом не отклоняется от нормы.

Синдром Тернера (ХО ) наблюдается у женских особей. Эта аномалия описана у домашней мыши и козы. Синдром Клайнфельтера (XXY ) наблюдается у мужских особей.


Такой тип половых хромосом описан у собак, котов с черепаховой окраской шерсти, свиней. Во всех случаях особи, обладающие этим синдромом, имели ряд физиологических и анатомических аномалий и были бесплодны.

Зиготы типа Y О не были обнаружены. Возможно, что такие зиготы нежизнеспособны.

Особи с набором XXX - самки, внешне почти ничем не отличаются от нормальных, и некоторые из них даже плодовиты.

В первое время при исследовании интерсексов и гермафродитов серьезные трудности возникли при определении генетического пола аномальных особей. Не зная, была ли зигота первоначально мужской или женской, трудно было установить, какие отклонения от нормы произошли в ней в процессе развития. Эта проблема была разрешена М. Барром, который начал свои исследования в 1949 г. и в дальнейшем установил, что нормальные соматические клетки мужских и женских особей характеризуются наличием или отсутствием в них небольшого хроматинового тельца, обнаруживаемого при слабом окрашивании. Эти включения получили название полового хроматина, телец Барра или ядерного хроматина. Обычно для анализа используют клетки препаратов, приготовленных из мазков слизистой оболочки рта.

Поиски полового хроматина у интерсексов показали, что у особей, страдающих синдромом Тернера (ХО), как и у нормальных мужских особей, он отсутствует. Страдающие синдромом Клайнфельтера (ХХУ), имеют, как у нормальных женских особей, одно тельце Барра, а у тех редких индивидов, у которых встречаются три или четыре Х-хромосомы, число телец Барра всегда на единицу меньше числа Х-хромосом. В соответствии с этим у нормальных мужских особей не должно быть телец Барра, а нормальные женские особи должны иметь одно такое тельце. Если наблюдается какое-либо отклонение от этого правила, то оно указывает на некое нарушение численности Х-хромосом, и число телец Барра дает нам ключ к выяснению природы подобного отклонения.

Тельца Барра образуются из Х-хромосомы в результате ее инактивации на стадии гаструляции. Хроматин этих хромосом неадекватен, поэтому присутствие в женском организме двух Х-хромосом не удваивает дозу гена, а соответствует генетической дозе одной Х-хромосомы, так как другая Х-хромосома инактивирована. Таким образом, все лишние Х-хромосомы инактивируются на ранней стадии развития и каждая из них превращается в хроматиновое тельце.

Проблема регулирования пола. Регулирование пола имеет важное практическое значение. Так, в яичном птицеводстве желательно получать больше курочек, а в мясном птицеводстве - петушков. У тутового шелкопряда самцы дают на 25-30% больше шелка, чем самки, поэтому их преимущество очевидно. В мясном скотоводстве желательно получать больше бычков и т. д.

В результате исследований установлено, что типичное для многих видов соотношение полов 1:1 нарушается под влиянием различных факторов, действующих на разных этапах онтогенеза особи.

Известно, что в благоприятных для размножения тли условиях божьи коровки откладывают, как правило, яйца с набором хромосом женского типа (XX ). Благодаря этому быстро увеличивается поголовье самок божьих коровок, а затем резко возрастает численность популяции. Когда большое количество тли уничтожено, соотношение самцов и самок божьих коровок вновь становится близким 1:1.

Исследования Г. В. Паршутина, В. И. Михайлова и др. (1967) показали, что избыток аминокислот в рационе кур приводит к существенному изменению в соотношении полов. Установлено, что метионин и глицин содействуют формированию курочек, а аспарагин - петушков.

Длительное время с животными разных видов проводят опыты, цель которых - получить особей желательного пола. Разработано несколько методов направленного регулирования соотношения полов. Один из них состоит в изменении рН среды женских половых путей, что может способствовать преимущественному участию в оплодотворении яйцеклетки спермиев, несущих ту или иную половую хромосому. Другой метод основан на разделении спермы на две фракции путем электрофореза. Предполагают, что при этом спермин с разными половыми хромосомами отойдут к разным полюсам. Впервые такой опыт был проведен на кроликах В. Н. Шредер (1943). Оказалось, что при температуре среды, в которой проводился электрофорез, 25ºС в случае использования для осеменения животных спермы, накопившейся на аноде, получали в приплоде 75% самцов и 25% самок, а при использовании спермы, собравшейся на катоде,-20% самцов и 80% самок. При снижении температуры до 10°С результаты были обратными: осеменяя крольчих «анодной» спермой, получали 17% самцов и 83% самок, а при использовании «катодной» - 83% самцов и 17% самок. Однако следует отметить, что многократное повторение этих опытов не дало стабильных и ожидаемых результатов.

Иную методику для направленного регулирования соотношения полов применял в опытах с тутовым шелкопрядом В. Л. Астауров. Он подвергал бабочку тутового шелкопряда воздействию высокой температуры и рентгеновских лучей, что приводило к партеногенетическому размножению шелкопряда, при котором можно было получать только самцов (андрогенез) или только самок (гиногенез). Увеличение числа коконов самцов имеет практическое значение, так как выход шелковой нити из них больше, чем из коконов самок. Подвергая самку шелкопряда воздействию высокой температуры в период мейоза, задерживали редукционное деление ооцитов, в результате чего формирующиеся яйцеклетки самки становились не гаплоидными как это должно быть при нормальных условиях, а диплоидными. Диплоидные яйцеклетки не требуют оплодотворения, поэтому яйца, отложенные самкой, подвергнутой температурной обработке, развивались партеногенетически и из всех яиц образовывались только самки.

Для получения самцов самок шелкопряда подвергали действию рентгеновских лучей, что приводило к разрушению ядер яйцеклеток. Облученных самок спаривали с нормальными самцами, в их безъядерные яйца проникало несколько спермиев, привнося в зиготу свои Х-хромосомы. В результате зигота имела две Х -хромосомы, и в этом случае развивались только самцы с ХХ -половыми хромосомами, типичными для мужского пола бабочек.

В дальнейшем В. А. Струнниковым и Л. М. Гуламовой в СССР и В. Тадзимой в Японии была разработана методика разделения яиц (грены) тутового шелкопряда по полу. Схема наследования сцепленных с полом признаков окраски яиц у шелкопряда приведена на рис. 25.

На соотношение полов у потомства оказывает влияние возраст спариваемых особей, так как он обусловливает определенные физиологические изменения в организме родителей и в их гаметах. Так, при спаривании одновозрастных хряков и свиноматок было получено следующее количество особей женского пола (%):

от животных в возрасте до года -45,7;

двухлетних - 50,8;

трехлетних - 50,4;

четырехлетних - 49,2;

пятилетних- 37,5

и от шестилетних и старше - 41,1.

Следовательно, с возрастом родителей заметно снижается рождение самок, их было мало получено и от годовалых животных. При спаривании кур шестимесячного возраста выход самок был низким (27- 33%), в потомстве же десятимесячных родителей он составил 47,5%, а двенадцатимесячных - 49,7%.

Таким образом, установлено, что на соотношение полов при рождении млекопитающих и птицы оказывают влияние разнообразные факторы: возрастной подбор родительских пар, качество половых клеток самцов и самок, физиологическое состояние родителей, уровень их основного обмена и характер рациона.

Из этого видно, что пол животного обусловлен не только генетически, поэтому при создании соответствующих условий, обеспечивающих благоприятное формирование гамет, зигот и зародышей, появляется возможность изменять численность рождения особей того или иного пола в желательном для практики животноводства направлении. Однако эта проблема еще требует тщательной разработки.

3. Наследование признаков, сцепленных с полом. Половые хромосомы, так же как и аутосомы, несут в себе гены, контролирующие те или иные признаки. Признаки, которые обусловлены генами, расположенными в половых хромосомах, называют сцепленными с полом.

При изучении менделевских закономерностей наследования признаков подчеркивалось, что направление скрещивания, то есть то, от какого пола привносятся доминантные или рецессивные признаки, не имеет значения для расщепления по данным признакам в потомстве гибрида. Это правильно для всех случаев, когда гены находятся в аутосомах, одинаково представленных у обоих полов.

В том же случае, когда гены находятся в половых хромосомах характер наследования и расщепления обусловлен поведением половых хромосом в мейозе и их сочетанием при оплодотворении. В процессе исследований установлено, что У -хромосома гетерогаметного пола в отличие от Х -хромосомы почти не содержит генов, то есть наследственно инертна, поэтому гены, находящиеся в Х -хромосоме, за некоторым исключением, не имеют своих аллельных партнеров в У -хромосоме. Следовательно, признаки, гены которых находятся в половых хромосомах, должны наследоваться своеобразно: их распределение должно соответствовать поведению половых хромосом в мейозе. В силу этого рецессивные гены в Х -хромосоме гетерогаметного пола могут проявляться, так как им не противостоят доминантные аллели в У -хромосоме.

Явление сцепленного с полом наследования было впервые открыто Т. Морганом в опытах на дрозофиле.

У плодовой мушки нормальный цвет глаз темно-красный но встречаются и белоглазые формы. Гены, определяющие красный или белый цвет глаз, локализованы в Х-хромосоме и, следовательно, сцеплены с полом. Красный цвет глаз (А) доминирует над белым (а). При скрещивании гомозиготной красноглазой самки с белоглазым самцом (X A X A XX a Y ) все потомство оказывается красноглазым. В F 2 происходит расщепление в соотношении 3 красноглазых к 1 белоглазой, но при этом оказывается, что белоглазыми бывают только самцы (рис. 26).

В случае реципрокного скрещивания, когда самка, гомозиготная по гену белых глаз, скрещивается с красноглазым самцом (X a X a xX A Y ), расщепление наблюдается в первом же поколении в соотношении белоглазых к красноглазым 1: 1 (рис. 27). При этом белоглазыми оказываются только самцы, а все самки - красноглазыми. В F 2 появляются мухи с обоими признаками в соотношении 1: 1 как среди самок, так и среди самцов.

Описанный тип наследования окраски глаз у дрозофилы оказался закономерным для всех организмов в отношении признаков, которые определяются генами, находящимися в Х -хромосомах. Половые хромосомы гомогаметного материнского организма передаются как сыновьям, так и дочерям, а единственная Х -хромосома гетерогаметного мужского пола - дочерям, следовательно, при определенном направлении скрещивания признаки, определяемые генами, находящимися в Х - хромосоме, наследуются крест-накрест, то есть от матери к сыновьям, а от отца к дочерям.

Рассмотрим, как осуществляется наследование признаков, сцепленных с полом, в том случае, когда гетерогаметным полом является женский. Так, например, у кур самки несут XY , а самцы - ХХ -хромосомы. Если верна теория сцепленного с полом наследования, то, очевидно, в этом случае все гены Х -хромосомы будут находиться в гемизиготном состоянии не у самцов, а у самок.


На рис. 28 приведена схема наследования поперечнополосатой окраски у кур. Здесь отмечается сходная, но обратная в смысле признаков родителей особенность: если носителем рецессивного признака была самка, а доминирующего - самец, то во втором поколении все самцы приобретают поперечнополосатый рисунок оперения; среди же самок происходит расщепление на поперечнополосатых и черных в соотношении 1:1. Если доминирующий признак был у матери, а рецессивный - у Отца, то во втором поколении расщепление по окраске пера 1 . 1 наблюдается среди самок и самцов.

С полом сцеплена рецессивная золотистая окраска кур породы род-айланд (X S X S у петухов и X S Y у курочек). При скрещивании петухов род-айланд с курами породы Суссекс, несущими доминантный ген S, как и в опытах на дрозофиле и курах породы плимутрок, происходит передача признака пигментации от матери к сыну и от отца к дочери, то есть все петушки будут серебристыми, а курочки - с золотистыми перьями.

Сцепленное с полом наследование обнаружено и у других видов животных. Так, у собак обнаружено заболевание гемофилией. Явление гемофилии заключается в утрате кровью нормальной способности к свертыванию. Симптомы гемофилии обычно проявляются впервые у щенят в возрасте от шести недель до трех месяцев. В число обычных симптомов входят: хромота (вследствие кровоизлияний в суставы), сильная подкожная


припухлость и в конечном итоге паралич одной или нескольких конечностей. Небольшие царапины могут оказаться для щенят-гемофиликов смертельными.

Гемофилия у собак обусловлена, как и у человека, сцепленным с Х -хромосомой рецессивным геном. Щенята-гемофилики редко доживают до половой зрелости, поэтому обычно гемофилики рождаются от скрещивания гетерозиготной самки с нормальным самцом. Если обозначить ген, обусловливающий гемофилию, буквой h , а его доминантный аллель - Н , то поведение этих генов и выщепление гемофиликов, наблюдаемое при таком типе скрещивания, можно понять из схемы, представленной на рис. 29.

Из схемы видно, что в пометах от самок, являющихся носителями гемофилии, половина самцов нормальны, а половина - гемофилики (h ), но действие его не проявляется, так как у них имеется еще доминантный аллель Н. У остальных сестер ген h отсутствует.

У свиней обнаружен факт сцепленного с полом доминантного признака «вывороченные конечности» с полулетальным действием.

Передача через половые хромосомы признаков, сцепленных с Х- и У -хромосомами, указывает на то, что на особь мужского пола большее влияние оказывает наследственность матери и ее предков, передавших Х-хромосому, которая является носителем генов для ряда признаков. Наследственность же отца, передавшего сыну У -хромосому, генетически малоактивна.

От признаков, сцепленных с полом, следует отличать признаки, ограниченные полом, которые развиваются только у особей одного пола, например молочная продуктивность коров, яйценоскость кур и т.д. Гены подобных признаков могут быть локализованы в любой паре хромосом, самцы и самки в одинаковой степени передают их как дочерям, так и сыновьям,

В практике животноводства ограниченные полом признаки могут подвергаться селекции как по линии самцов, так и через самок. Например, повышение молочности, многоплодия, яйценоскости осуществляется путем селекции обоих родителей, хотя эти признаки проявляются в фенотипе только одного из них.

Контрольные вопросы:

1. Опишите механизмы определения пола.

2. В чем различия между половыми хромосомами и аутосомами?

3. Каков состав хромосом у самок-интерсексов плодовой мушки и как возникают подобные особи?

4. Назовите причину фримартинизма.

5. Как вы понимаете бисексуальность организмов?

6. Каковы причины возникновения патологии по половым хромосомам?

7. Приведите примеры регуляции, пола.

8. Приведите примеры практического использования сцепленного с полом наследования,

Хромосомный механизм определения пола

Фенотипические различия между особями разного пола обусловлены генотипом. Гены находятся в хромосомах. Есть правила индивидуальности, постоянства, парности хромосом. Диплоидный набор хромосом называют кариотипом . В женском и мужском кариотипе 23 пары (46) хромосом (рис. 78).

22 пары хромосом одинаковы. Их называют аутосомами . 23-я пара хромосом - половые хромосомы . В женском кариотипе одинаковые

Рис. 78. Кариотипы разных организмов. 1 - человека; 2 - комара; 3 - растения скерды.

половые хромосомы XX. В мужском кариотипе половые хромосомы XY. Y-хромосома очень мала и содержит мало генов. Сочетание половых хромосом в зиготе определяет пол будущего организма.

При созревании половых клеток в результате мейоза гаметы получают гаплоидный набор хромосом. В каждой яйцеклетке есть 22 аутосомы + Х-хромосома. Пол, образующий гаметы, одинаковые по половой хромосоме, называют гомогаметным полом. Половина сперматозоидов содержит - 22 аутосомы + Х-хромосома, а половина 22 аутосомы + Y. Пол, образующий гаметы, различные по половой хромосоме, называют гетерогаметным. Пол будущего ребенка определяется в момент оплодотворения. Если яйцеклетка оплодотворена сперматозоидом, имеющим Х-хромосому, развивается женский организм, если Y-хромосому - мужской (рис. 79).


Рис. 79. Хромосомный механизм образования пола.

Вероятность рождения мальчика или девочки равна 1:1 или 50%:50%. Такое определение пола характерно для человека и млекопитающих. У некоторых насекомых (кузнечики и тараканы) нет Y-хромосомы. Самцы имеют одну X - хромосому (Х0), а самки - две (XX). У пчел самки имеют 2n набор хромосом (32 хромосомы), а самцы - n (16 хромосом). У женщин в соматических клетках две половые Х-хромосомы. Одна из них образует глыбку хроматина, которая бывает заметна в интерфазных ядрах при обработке реактивом. Эта глыбка - тельце Барра. У мужчин тельце Барра отсутствует, потому что у них всего одна Х-хромосома. Если при мейозе в яйцеклетку попадает сразу две XX-хромосомы и такая яйцеклетка будет оплодотворена сперматозоидом, то зигота будет иметь большее число хромосом.


Например, организм с набором хромосом ХХХ (трисомия по X-хромосоме) по фенотипу - девочка. У нее недоразвиты половые железы. В ядрах соматических клеток выделяются два тельца Барра.

Организм с набором хромосом XXY(синдром Клайнфелътера) по фенотипу - мальчик. У него недоразвиты семенники, отмечается физическая и умственная отсталость. Есть тельце Барра.

Хромосомы ХО (моносомия по Х-хромосоме) - определяют синдром Шерешевского-Тернера . Организм с таким набором - девочка. У нее недоразвиты половые железы, малый рост. Нет тельца Барра. Организм, не имеющий Х-хромосомы, а содержащий только Y- хромосому - нежизнеспособен.

Наследование признаков, гены которых находятся в Х- или Y-хромосомах, называют наследованием, сцепленным с полом. Если гены находятся в половых хромосомах, они наследуются сцепленно с полом.

У человека в Х-хромосомах есть ген, определяющий признак свертывания крови. Рецессивный ген вызывает развитие гемофилии. В Х-хромосоме есть ген (рецессивный), который отвечает за проявление дальтонизма. У женщин две Х-хромосомы. Рецессивный признак (гемофилия, дальтонизм) проявляется только в том случае, если гены, отвечающие за него, будут находиться в двух Х-хромосомах: X h X h ; X d X d . Если в одной Х-хромосоме будет доминантный ген Н или D, а в другой - рецессивный h или d, то гемофилии или дальтонизма не будет. У мужчин одна Х-хромосома. Если в ней есть ген Н или h, то эти гены обязательно проявят свое действие, потому что Y-хромосома не несет этих генов.

Женщина может быть гомозиготна или гетерозиготна по генам, локализованным в Х-хромосоме, но рецессивные гены проявляются только в гомозиготном состоянии.


Если мать - носитель гена


Если гены находятся в Y-хромосоме (голандрическое наследование ), то признаки, ими обусловленные, передаются от отца сыну. Например, через Y-хромосому наследуется волосатость ушей. У мужчин одна Х-хромосома. Все гены, находящиеся в ней, в том числе и рецессивные, проявляются в фенотипе. У гетерогаметного пола (мужского) большинство генов, локализованных в Х-хромосоме, находятся в гемизиготном состоянии, т. е. не имеют аллельной пары.

Y-хромосома содержит некоторые гены, гомологичные генам Х-хромосомы, например, гены геморрагического диатеза, общей цветной слепоты и др. Эти гены наследуются как через Х-, так и через Y-хромосому.

Вопросы для самоконтроля

  1. Какие правила хромосом имеются?
  2. Что такое кариотип?
  3. Сколько аутосом у человека?
  4. Какие хромосомы у человека отвечают за развитие пола?
  5. Какова вероятность рождения мальчика или девочки?
  6. Как определяют пол у кузнечиков и тараканов?
  7. Как определяют пол у пчел?
  8. Как определяют пол у бабочек и птиц?
  9. Что такое тельце Барра?
  10. Как можно определить наличие тельца Барра?
  11. Чем можно объяснить появление большего или меньшего числа хромосом в кариотипе?
  12. Что такое сцепленное с полом наследование?
  13. Какие гены у человека наследуются сцепленно с полом?
  14. Как и почему проявляют свое действие рецессивные гены, сцепленные с полом у женщин?
  15. Как и почему проявляют свое действие рецессивные гены, сцепленные с Х-хромосомой у мужчин?

Ключевые слова темы "Хромосомное определение пола"

  • аутосомы
  • бабочки
  • вероятность
  • волосатость ушей
  • гаметы
  • генотип
  • гетерогаметный пол
  • глыбка хроматина
  • гомогаметный пол
  • дальтонизм
  • девочка
  • действие
  • женщина
  • зигота
  • индивидуальность
  • кариотип
  • кузнечики
  • мальчик
  • мейоз
  • млекопитающее
  • момент
  • моносомия
  • мужчина
  • набор
  • насекомые
  • наследование
  • носитель
  • обработка реактивом
  • оплодотворение
  • организм
  • особь
  • парность
  • половые клетки
  • потомство
  • правила
  • признак
  • птицы
  • пчелы
  • развитие
  • различия
  • рождение
  • свертывание крови
  • семенники
  • синдром Дауна
  • синдром Клайнфельтера
  • синдром Шершевского-Тернера
  • слепота
  • созревание
  • состояние
  • сочетание
  • сперматозоиды
  • тараканы
  • тельце Барра
  • трисомия
  • Y-хромосома
  • фенотип
  • хромосома
  • Х-хромосома
  • человек
  • яйцеклетка

Y-хромосома человека

У растений и животных наиболее распространён хромосомный механизм определения пола. В зависимости от того, какой пол является гетерогаметным, выделяют следующие типы хромосомного определения пола:

самки гомогаметны, самцы гетерогаметны

самки XX; самцы XY

самки XX; самцы X0

самки гетерогаметны, самцы гомогаметны

самки ZW; самцы ZZ

самки Z0; самцы ZZ

У особей гомогаметного пола ядра всех соматических клеток содержат диплоидный набор аутосом и две одинаковые половые хромосомы, которые обозначаются как XX (ZZ). Организмы такого пола продуцируют гаметы только одного класса - содержащие по одной X (Z) хромосоме. У особей гетерогаметного пола в каждой соматической клетке, помимо диплоидного набора аутосом, содержатся либо две разнокачественные половые хромосомы, обозначаемые как Х и Y (Z и W), либо только одна - X (Z) (тогда количество хромосом получается нечётным). Соответственно у особей такого пола образуются два класса гамет: либо несущие X/Z-хромосомы и Y/W-хромосомы, либо несущие X/Z-хромосомы и не несущие никаких половых хромосом.

У многих видов животных и растений гомогаметен женский пол, а гетерогаметен мужской. К ним относятся млекопитающие, некоторые насекомые, некоторые рыбы и некоторые растения и др.

Гомогаметный мужской пол и гетерогаметный женский имеют птицы, бабочки и некоторые рептилии.

В результате неправильного расхождения хромосом в мейозе иногда возникают гаметы с необычным числом половых хромосом. Например, при образовании гамет самками дрозофил в одну из гамет могут попасть обе X-хромосомы, а в другую ни одной. Такие самки при скрещивании с обычными самцами дают потомков с необычными генотипами XXX и XXY. Какой же пол имеют эти мухи и мухи с другими необычными генотипами? Изучая этот вопрос, К.Бриджес в 1921 г. показал, что особи с генотипом XXY - самки, а особи с генотипами XXX - "сверхсамки" с необычно сильно развитыми яичниками. Бриджэс предположил, что у дрозофил пол определяется соотношением (балансом; почему эта теория и получила название балансовой теории определения пола) числа половых хромосом и аутосом. По предположению Бриджэса, Y-хромосома у дрозофил фактически не играет роли в определении пола. Например, если мухи имеют генотип 2A+2Х (диплоидный набор аутосом и две Х-хромосомы), так что одна Х-хромосома приходится на один гаплоидный набор аутосом, то это самка. Бриджэс получил также мух с генотипом ЗA+X, у которых отношение числа половых хромосом к числу аутосом равно 1/3, т.е. еще меньше, чем у нормальных самцов. Из таких зигот развивались сверхсамцы.

21.Классическими эмбриогенетическими исследованиями установлены два правила определения пола у млекопитающих. Первое из них сформулировано в 1960-х годах Альфредом Жостом на основе экспериментов по удалению зачатка будущих гонад (гонадный валик) у ранних эмбрионов кроликов: удаление валиков до формирования гонады приводило к развитию всех эмбрионов как самок. Было высказано предположение о секреции гонадами самцов эффекторного гормона тестостерона, ответственного за маскулинизацию плодов, и предсказано наличие второго эффектора антимюллеровского гормона (MIS), непосредственно контролирующего такие анатомические преобразования. Результаты наблюдений были сформулированы в виде правила: специализация развивающихся гонад в яички или яичник определяет последующую половую дифференцировку эмбриона.

До 1959 года предполагалось, что количество Х-хромосом является важнейшим фактором контроля пола у млекопитающих. Однако обнаружение организмов с единственной X-хромосомой, развивающихся как самки, а особей с одной Y-хромосомой и множественными X-хромосомами, которые развивались, как самцы, заставило отказаться от таких представлений. Было сформулировано второе правило определения пола у млекопитающих: Y-хромосома несет генетическую информацию, требуемую для определения пола у самцов.

Комбинация приведённых выше двух правил иногда называется принципом роста: Хромосомный пол, связанный с присутствием или отсутствием Y-хромосомы, определяет дифференцировку эмбриональной гонады, которая, в свою очередь, контролирует фенотипический пол организма. Подобный механизм определения пола называют генетическим (англ. GSD) и противопоставляют таковому, основанному на контролирующей роли факторов внешней среды (англ. ESD) или соотношению половых хромосом и аутосом (англ. CSD).

Тельце Барра (X-половой хроматин) - свёрнутая в пло́тную (гетерохроматиновую) структуру неактивная X-хромосома, наблюдаемая в интерфазных ядрах соматических клеток самок плацентарных млекопитающих, включая человека. Хорошо прокрашивается осно́вными красителями.

Из двух X-хромосом генома любая в начале эмбрионального развития может инактивироваться, выбор осуществляется случайно. У мыши исключением являются клетки зародышевых оболочек, также образующихся из ткани зародыша, в которых инактивируется исключительно отцовская X-хромосома.

Таким образом, у самки млекопитающего, гетерозиготной по какому-либо признаку, определяемому геном X-хромосомы, в разных клетках работают разные аллели этого гена (мозаицизм). Классическим видимым примером такого мозаицизма является окраска черепаховых кошек - в половине клеток активна X-хромосома с «рыжим», а в половине - с «чёрным» аллелем гена, участвующего в формировании меланина. Коты черепаховой окраски встречаются крайне редко и имеют две X-хромосомы (анеуплоидия).

У людей и животных с анеуплоидией, имеющих в геноме 3 и более X-хромосом (см., напр., синдром Клайнфельтера), число телец Барра в ядре соматической клетки на единицу меньше числа X-хромосом.

22 .Наследование, сцепленное с полом - наследование какого-либо гена, находящегося в половых хромосомах. Наследование признаков, проявляющихся только у особей одного пола, но не определяемых генами, находящимися в половых хромосомах, называется наследованием, ограниченным полом.

Наследованием, сцепленным с X-хромосомой, называют наследование генов в случае, когда мужской пол гетерогаметен и характеризуется наличием Y-хромосомы (XY), а особи женского пола гомогаметны и имеют две X-хромосомы (XX). Таким типом наследования обладают все млекопитающие (в том числе человек), большинство насекомых и пресмыкающихся.

Наследованием, сцепленным с Z-хромосомой, называют наследование генов в случае, когда женский пол гетерогаметен и характеризуется наличием W-хромосомы (ZW), а особи мужского пола гомогаметны и имеют две Z-хромосомы (ZZ). Таким типом наследования обладают все представители класса птиц.

Если аллель сцепленного с полом гена, находящегося в X-хромосоме или Z-хромосоме, является рецессивным, то признак, определяемый этим геном, проявляется у всех особей гетерогаметного пола, которые получили этот аллель вместе с половой хромосомой, и у гомозиготных по этому аллелю особей гомогаметного пола. Это объясняется тем, что вторая половая хромосома (Y или W) у гетерогаметного пола не несет аллелей большинства или всех генов, находящихся в парной хромосоме.

Таким признаком гораздо чаще будут обладать особи гетерогаметного пола. Поэтому заболеваниями, которые вызываются рецессивными аллелями сцепленных с полом генов, гораздо чаще болеют мужчины, а женщины часто являются носителями таких аллелей.

Наследование признаков ограниченных полом - Наследование признаков, контролируемых генами, локализованными в аутосомах, но фенотипически продолжающихся исключительно или преимущественно у одного пола, называется наследованием, ограниченным полом.К ограниченным полом признаками относят, например, различия полов по размерам, более яркая окраска самцов, шпоры у петухов, признаки молочности у коров, кобыл, яйценоскость у кур.

Проблема регуляции пола вытекает из необходимости увеличения продукции животноводства за счет преимущественного получения особей одного пола, дающих более высокий выход молока, мяса, шерсти, яиц и т.д. так, например, в молочном скотоводстве более желательным является рождение телочек, а в мясном – бычков, так как они быстрее растут. От высокоценных племенных быков и коров целесообразнее получать мужских потомков для более быстрого размножения их генотипов. В яичном птицеводстве экономически более выгодно получение курочек.

В связи с этими практическими потребностями исследователи не только стремятся познать механизмы распределения пола, но и изучают возможности искусственного регулирования пола. Были проведены опыты по анрогенезу тутового шелкопряда. В связи с тем, что мужские особи тутового шелкопряда дают более крупные коконы, содержащие на 25-30% больше шелка, чем коконы гусениц-самок, советские ученые при помощи партеногенеза (развитие организма без оплодотворения) смогли искусственно создать мужскую особь. Неоплодотворенные яйца шелкопряда подвергали тепловому шелку и облучали рентгеном, тем самым разрушали их ядра, не повреждая цитоплазму. Зигота формировалась путем слияния ядер двух проникших в яйцо спермиев. Развившиеся из нее особи имели признаки только отцовского вида. Так же для раннего определения пола цыплят использовали сцепленную с полом окраску.

Признаки, зависящие от пола . Гены этих признаков содержатся в ауто сомах и могут проявляться у представителей обоих полов, но тип наследования (рецессивный или доминантный) зависит от пола. Например, признаком, зависит от пола у человека, есть облысение. Аллель, который отвечает за частичное облысение у мужчин, является доминантным и, соответственно, признак проявляется при наличии одного его копии. У женщин Фенотиповий проявление этого признака требует присутствия в генотипе двух копий аллеля, т.е. тот самый аллель ведет себя как рецессивный. Экспрессия генов зависимых от пола признаков определяется гормональным статусом, и в результате гетерозиготы разных полов имеют различные фенотипы. Аналогично наследуются признаки рогатости и комолости у овец.

Следует заметить, что большинство генов, которые определяют характерное для данного пола фенотип, находятся не в половых хромосомах, а в аутосомах. Признаки, которые они вызывают (первичные и вторичные половые признаки), и являются признаками, ограниченными статью или зависимыми от него. Их проявление контролируется соответствующим балансом мужских и женских половых гормонов.

Большинство животных являются раздельнополыми организмами. Пол можно рассматривать как совокупность признаков и структур, обеспечивающих способ воспроизводства потомства и передачу наследственной информации. Пол чаще всего определяется в момент оплодотворения, то есть в определении пола главную роль играет кариотип зиготы. Кариотип каждого организма содержит хромосомы, одинаковые у обоих полов, — аутосомы, и хромосомы, по которым женский и мужской пол отличаются друг от друга, — половые хромосомы. У человека «женскими» половыми хромосомами являются две Х -хромосомы. При образовании гамет каждая яйцеклетка получает одну из Х -хромосом. Пол, у которого образуются гаметы одного типа, несущие Х -хромосому, называется гомогаметным. У человека женский пол является гомогаметным. «Мужские» половые хромосомы у человека — Х -хромосома и Y -хромосома. При образовании гамет половина сперматозоидов получает Х -хромосому, другая половина — Y -хромосому. Пол, у которого образуются гаметы разного типа, называется гетерогаметным. У человека мужской пол — гетерогаметный. Если образуется зигота, несущая две Х -хромосомы, то из нее будет формироваться женский организм, если Х -хромосому и Y -хромосому — мужской.

У животных можно выделить следующие четыре типа хромосомного определения пола .

  1. Женский пол — гомогаметен (ХХ ), мужской — гетерогаметен (ХY ) (млекопитающие, в частности, человек, дрозофила).

    Генетическая схема хромосомного определения пола у человека:

    Р ♀46, XX × ♂46, XY
    Типы гамет 23, X 23, X 23, Y
    F 46, XX
    женские особи, 50%
    46, XY
    мужские особи, 50%

    Генетическая схема хромосомного определения пола у дрозофилы:

    Р ♀8, XX × ♂8, XY
    Типы гамет 4, X 4, X 4, Y
    F 8, XX
    женские особи, 50%
    8, XY
    мужские особи, 50%
  2. Женский пол — гомогаметен (ХХ ), мужской — гетерогаметен (Х0 ) (прямокрылые).

    Генетическая схема хромосомного определения пола у пустынной саранчи:

    Р ♀24, XX × ♂23, X0
    Типы гамет 12, X 12, X 11, 0
    F 24, XX
    женские особи, 50%
    23, X0
    мужские особи, 50%
  3. Женский пол — гетерогаметен (ХY ), мужской — гомогаметен (ХХ ) (птицы, пресмыкающиеся).

    Генетическая схема хромосомного определения пола у голубя:

    Р ♀80, XY × ♂80, XX
    Типы гамет 40, X 40, Y 40, X
    F 80, XY
    женские особи, 50%
    80, XX
    мужские особи, 50%
  4. Женский пол — гетерогаметен (Х0 ), мужской — гомогаметен (ХХ ) (некоторые виды насекомых).

    Генетическая схема хромосомного определения пола у моли:

    Р ♀61, X0 × ♂62, XX
    Типы гамет 31, X 30, Y 31, X
    F 61, X0
    женские особи, 50%
    62, XX
    мужские особи, 50%

Наследование признаков, сцепленных с полом

Установлено, что в половых хромосомах находятся гены, отвечающие не только за развитие половых, но и за формирование неполовых признаков (свертываемость крови, цвет зубной эмали, чувствительность к красному и зеленому цвету и т.д.). Наследование неполовых признаков, гены которых локализованы в Х - или Y -хромосомах, называют наследованием, сцепленным с полом .

Изучением наследования генов, локализованных в половых хромосомах, занимался Т. Морган.

У дрозофилы красный цвет глаз доминирует над белым. Реципрокное скрещивание — два скрещивания, которые характеризуются взаимно противоположным сочетанием анализируемого признака и пола у форм, принимающих участие в этом скрещивании. Например, если в первом скрещивании самка имела доминантный признак, а самец — рецессивный, то во втором скрещивании самка должна иметь рецессивный признак, а самец — доминантный. Проводя реципрокное скрещивание, Т. Морган получил следующие результаты. При скрещивании красноглазых самок с белоглазыми самцами в первом поколении все потомство оказывалось красноглазым. Если скрестить между собой гибридов F 1 , то во втором поколении все самки оказываются красноглазыми, а среди самцов — половина белоглазых и половина красноглазых. Если же скрестить между собой белоглазых самок и красноглазых самцов, то в первом поколении все самки оказываются красноглазыми, а самцы белоглазыми. В F 2 половина самок и самцов — красноглазые, половина — белоглазые.

Объяснить полученные результаты наблюдаемого расщепления по окраске глаз Т. Морган смог, только предположив, что ген, отвечающий за окраску глаз, локализован в Х -хромосоме (Х А — красный цвет глаз, Х а — белый цвет глаз), а Y -хромосома таких генов не содержит.

Р ♀X A X A
красноглазые
× ♂X a Y
белоглазые
Типы гамет X A X a Y
F 1 X A X a
♀ красноглазые
50%
X А Y
♂ красноглазые
50%
Р ♀X A X a
красноглазые
× ♂X A Y
красноглазые
Типы гамет X A X a X A Y
F 2 X A X A X A X a
♀ красноглазые
50%
X А Y
♂ красноглазые
25%
X a Y
♂ белоглазые
25%
Р ♀X a X a
белоглазые
× ♂X A Y
красноглазые
Типы гамет X a X A Y
F 1 X A X a
♀ красноглазые
50%
X a Y
♂ белоглазые
50%
Р ♀X A X a
красноглазые
× ♂X a Y
белоглазые
Типы гамет X A X a X a Y
F 2 X A X A
♀ красноглазые
25%
X a X a
♀ белоглазые
25%
X А Y
♂ красноглазые
25%
X a Y
♂ белоглазые
25%

Схема половых хромосом человека и сцепленных с ними генов:
1 — Х-хромосома; 2 — Y-хромосома.

У людей мужчина получает Х -хромосому от матери, Y -хромосому — от отца. Женщина получает одну Х -хромосому от матери, другую Х -хромосому от отца. Х -хромосома — средняя субметацентрическая, Y -хромосома — мелкая акроцентрическая; Х -хромосома и Y -хромосома имеют не только разные размеры, строение, но и по большей части несут разные наборы генов. В зависимости от генного состава в половых хромосомах человека можно выделить следующие участки: 1) негомологичный участок Х -хромосомы (с генами, имеющимися только в Х -хромосоме); 2) гомологичный участок Х -хромосомы и Y -хромосомы (с генами, имеющимися как в Х -хромосоме, так и в Y -хромосоме); 3) негомологичный участок Y -хромосомы (с генами, имеющимися только в Y -хромосоме). В зависимости от локализации гена в свою очередь выделяют следующие типы наследования.

Тип наследования Локализация генов Примеры
Х -сцепленный рецессивный Гемофилия, разные формы цветовой слепоты (протанопия, дейтеронопия), отсутствие потовых желез, некоторые формы мышечной дистрофии и пр.
Х -сцепленный доминантный Негомологичный участок Х -хромосомы Коричневый цвет зубной эмали, витамин D устойчивый рахит и пр.
Х-Y -сцепленный (частично сцепленный с полом) Гомологичный участок Х - и Y -хромосом Синдром Альпорта, общая цветовая слепота
Y -сцепленный Негомологичный участок Y -хромосомы Перепончатость пальцев ног, гипертрихоз края ушной раковины

Большинство генов, сцепленных с Х -хромосомой, отсутствуют в Y -хромосоме, поэтому эти гены (даже рецессивные) будут проявляться фенотипически, так как они представлены в генотипе в единственном числе. Такие гены получили название гемизиготных. Х -хромосома человека содержит ряд генов, рецессивные аллели которых определяют развитие тяжелых аномалий (гемофилия, дальтонизм и пр.). Эти аномалии чаще встречаются у мужчин (так как они гемизиготны), хотя носителем генов, обусловливающих эти аномалии, чаще бывает женщина. Например, если Х А — нормальная свертываемость крови, Х а — гемофилия и если женщина является носительницей гена гемофилии, то у фенотипически здоровых родителей может родиться сын-гемофилик:

Р ♀X A X a «Взаимодействие генов»
Загрузка...