docgid.ru

Связи между эндокринной и нервной системой. Классификация и механизм действия катехоламинов

Катехоламины – физиологически активные вещества, которые могут быть представлены и как медиаторы, и как гормоны. Они очень важны в управлении и молекулярном взаимодействии между клетками в организме человека и животных. Катехоламины производятся методом синтеза в надпочечниках, точнее, в их мозговом веществе.

Вся высшая деятельность человека, связанная с функционированием и деятельностью нервных клеток, осуществляется с помощью этих веществ, так как нейроны используют их в качестве посредников (нейромедиаторов), передающих нервный импульс. Не только физическая, но и умственная выносливость, зависят от обмена катехоламина в организме. Например, от качества обменных процессов этих веществ зависит не только скорость мышления, но и его качество.

От того, насколько активно синтезируется и используется катехоламин в организме, зависит настроение человека, скорость и качество запоминания, реакция агрессии, эмоции и общий энергетический тонус организма. Также катехоламины запускают процессы окисления и восстановления в организме (углеводов, белков и жиров), при которых освобождается энергия, необходимая для питания нервных клеток.

В достаточно больших количествах катехоламины содержаться у детей. Именно поэтому, они более подвижны, эмоционально насыщенны и обучаемы. Однако, с возрастом их количество значительно снижается, что связано с уменьшением синтеза катехоламинов как в центральной нервной системе, так и в периферической. С этим связано замедление мыслительных процессов, ухудшение памяти и понижение настроения.

Сейчас катехоламины включают в себя четыре вещества, три из которых приходятся нейромедиаторами мозга. Первое вещество является гормоном, но не медиатором и называется — серотонин. Содержится в тромбоцитах. Синтез и хранение этого вещества происходит в клеточных структурах желудочно-кишечного тракта. Именно оттуда он транспортируется в кровь и далее, под его контролем, происходит синтезирование биологически активных веществ.

Если его показатели в крови повышены в 5 – 10 раз, то это может свидетельствовать об образованиях опухолей лёгких, кишечника или желудка. При этом в анализе мочи, будут значительно повышены показатели продуктов распада серотонина. После хирургического вмешательства и устранения опухоли, эти показатели в плазме крови и моче, приходят в норму. Их дальнейшее исследование помогает исключить возможный рецидив или образование метастаз.

Менее возможные причины возрастания концентрации серотонина в крови и моче – острый инфаркт миокарда, рак щитовидной железы, острая кишечная непроходимость и др. Также возможно и снижение концентрации серотонина, что свидетельствует о синдроме Дауна, лейкозе, гиповитаминозе В6 и др.

Дофамин — второй гормон из группы катехоламинов. Нейромедиатор мозга, синтезирующийся в специальных нейронах мозга, которые несут ответственность за регуляцию его основных функций. Он стимулирует выброс крови из сердца, улучшает поток крови, расширяет сосуды и пр. С помощью дофамина повышается содержание глюкозы в крови человека, за счёт того, что он предотвращает её утилизацию, одновременно стимулируя процесс распада гликогена.

Немаловажной является регулятивная функция в образовании гормона роста человека. Если при анализе мочи наблюдается повышенное содержание дофамина, то это может указывать на наличие гормонально-активной опухоли в организме. Если же показатели понижены, то нарушается двигательная функция организма (синдром Паркинсона).

Не менее важным гормоном, является — норадреналин. В организме человека он является и нейромедиатором. Синтезируется клетками надпочечников, окончаниями синоптической нервной системы и клетками ЦНС из дофамина. Его количество в крови увеличивается в состоянии стресса, больших физ. нагрузок, при кровотечениях и пр. ситуациях, требующих немедленного реагирования и адаптации к новым условиям.

Он обладает сосудосуживающим эффектом и главным образом влияет на интенсивность (скорость, объём) потока крови. Очень часто этот гормон связывают с яростью, так как при его выбросе в кровь возникает реакция агрессии и повышается мышечная сила. Лицо агрессивно настроенного человека краснеет именно благодаря выбросу норадреналина.

Адреналин – очень важный нейромедиатор организма. Основной гормон, содержащийся в надпочечниках (их мозговом веществе) и синтезирующийся там же из норадреналина.

Связан с реакцией страха, так как при резком испуге его концентрация резко увеличивается. Вследствие этого, учащается частота сердечного ритма, увеличивается артериальное давление, увеличивается коронарный поток крови, повышается концентрация глюкозы.

Также вызывает сужение сосудов кожи, слизистых и органов брюшной полости. При этом лицо человека может заметно побледнеть. Адреналин повышает выносливость человека, находящегося в состоянии волнения или страха. Это вещество как важный допинг для организма и поэтому, чем больше его количество в надпочечниках, тем человек активнее физически и умственно.

Исследование уровня катехоламинов

В настоящее время, результат исследования на катехоламины, является важным показателем наличия опухолей или других серьёзных заболеваний организма. Для исследования концентрации катехоламинов в организме человека используют два основных метода:

  1. Катехоламины в плазме крови. Данный метод исследования является наименее популярным, так как удаление этих гормонов из крови происходит мгновенно, и точное исследование возможно только при её заборе в момент острых осложнений (например, гипертонический криз). Вследствие чего, на практике осуществить такое исследование крайне сложно.
  2. Анализ мочи на катехоламины. В анализе мочи, исследуют 2, 3 и 4 гормоны в нашем списке, представленном ранее. Как правило, исследуется суточная моча, а не разовая сдача, так как в течение одних суток человек может быть подвержен возникновению стрессовых ситуаций, усталости, жаре, холоду, физ. нагрузкам и т. д., что провоцирует выброс гормонов и способствует получению более подробной информации.В исследование входит не только определение уровня катехоламинов, но и их метаболитов, что значительно повышает точность результатов. Следует серьёзно относиться к данному исследованию и исключить все факторы, искажающие результаты (кофеин, адреналин, физические нагрузки и стресс, этанол, никотин, различные лекарственные препараты, шоколад, бананы, молочные продукты).

На данные результатов исследования способны влиять многие внешние факторы. Поэтому в комплексе с анализами важное место занимают физическое и эмоциональное состояние больного, какие лекарственные средства он принимает и что употребляет в пищу. При устранении нежелательных факторов исследование повторяют, с целью точности диагноза.

Хоть и анализы на концентрацию катехоламинов в организме человека могут помочь в обнаружении опухоли, но показать точное место возникновения и её характер (доброкачественная или злокачественная) они, к сожалению, неспособны. Также они не показывают количество образовавшихся опухолей.

Катехоламины – незаменимые вещества для нашего организма. Благодаря их наличию, мы можем справляться со стрессами, физическими перегрузками, повышать свою физическую, умственную и эмоциональную активность. Их показатели всегда предупредят нас об опасных опухолях или заболеваниях. В ответ необходимо лишь уделять им достаточно внимания и своевременно и ответственно исследовать их концентрацию в организме.

поиск специалиста или услуги: Аборты Акушер Аллерголог Анализы Андролог БРТ Ведение беременности Вызов врача на дом Гастроэнтеролог Гематолог Генная диагностика Гепатолог Гинеколог Гирудотерапевт Гомеопат Дерматолог Детский врач Диагностика организма Диетолог Диспансеризация Дневной стационар Забор анализов на дому Забор биоматериала Иглорефлексотерапевт Иммунолог Инфекционист Кардиолог Кинезитерапевт Косметолог Логопед Маммолог Мануальный терапевт Массажист Медицинские книжки Медицинские справки Миколог МРТ Нарколог Невролог Нейрофизиолог Нейрохирург Нетрадиционная медицина Нефролог Онколог Ортопед Остеопат Отоларинголог, ЛОР Офтальмолог, Окулист Очищение организма Паразитолог Педиатр Перевозка больных Пластический хирург Прививки, вакцинация Проктолог Профосмотры Процедурный кабинет Психиатр Психолог Психотерапевт Пульмонолог Реабилитолог Реаниматолог Ревматолог Рентген Репродуктолог Рефлексотерапевт Сексолог Скорая помощь Справка для ГИБДД Срочные исследования Стационар Стоматолог Суррогатное материнство Терапевт Травматолог Травмпункт Трихолог УЗДГ УЗИ Уролог Физиотерапевт Флеболог Флюорография Функциональная диагностика Хирург ЭКГ ЭКО Эндокринолог Эпиляция

Поиск по станции метро Москвы: Авиамоторная Автозаводская Академическая Александровский сад Алексеевская Алтуфьево Аннино Арбатская Аэропорт Бабушкинская Багратионовская Баррикадная Бауманская Беговая Белорусская Беляево Бибирево Библиотека имени Ленина Битцевский парк Борисово Боровицкая Ботанический сад Братиславская Бульвар Адмирала Ушакова Бульвар Дмитрия Донского Бунинская аллея Варшавская ВДНХ Владыкино Водный стадион Войковская Волгоградский проспект Волжская Волоколамская Воробьёвы горы Выставочный центр Выхино Деловой центр Динамо Дмитровская Добрынинская Домодедовская Достоевская Дубровка Зябликово Измайловская Калужская Кантемировская Каховская Каширская Киевская Китай-город Кожуховская Коломенская Комсомольская Коньково Красногвардейская Краснопресненская Красносельская Красные ворота Крестьянская застава Кропоткинская Крылатское Кузнецкий мост Кузьминки Кунцевская Курская Кутузовская Ленинский проспект Лубянка Люблино Марксистская Марьина роща Марьино Маяковская Медведково Международная Менделеевская Митино Молодёжная Мякинино Нагатинская Нагорная Нахимовский проспект Новогиреево Новокузнецкая Новослободская Новые Черёмушки Октябрьская Октябрьское поле



06.02.2013


Катехоламины и нейромедиаторный обмен

Катехоламины - это физиологически активные вещества, которые являются медиаторами (норадреналин, дофамин, серотонин) и гормонами (адреналин, норадреналин). Основные регуляторные функции катехоламинов осуществляются через мозговое вещество надпочечников и специализированные адренергические нейроны.

Все высшие формы поведения человека связаны с жизнедеятельностью нервных клеток, синтезирующих катехоламины. Нейроны используют катехоламины в качестве нейромедиаторов (посредников), осуществляющих передачу нервного импульса.

Обмен катехоламинов в организме является ключевым звеном, как в умственной, так и в физической работоспособности, как в скорости мышления, так и в его качестве. Творческие способности: способность к абстрактному и художественному мышлению, к анализу и синтезу напрямую зависят от катехоламинового обмена. От активности синтеза и выделения катехоламинов зависят такие сложные процессы, как запоминание и воспроизведение информации, агрессивная реакция, настроение, эмоциональность, уровень общего энергетического потенциала, сексуальное поведение и т.д. Чем больше количество синтезируемых и выделяемых катехоламинов, тем выше настроение, работоспособность, общий уровень активности, скорость мышления. Катехоламины оказывают мобилизующее действие на энергетические резервы нервных клеток. Они активизируют окислительно-восстановительные процессы в организме, «запускают» сгорание источников энергии - в первую очередь углеводов, затем жиров и белков.

Самый высокий уровень катехоламинов (на единицу массы тела) у детей. Дети отличаются от взрослых прежде всего очень высокой эмоциональностью и подвижностью, способностью к быстрому переключению мышления. У детей хорошая память, высокая обучаемость и работоспособность.

С возрастом синтез катехоламинов как в центральной нервной системе, так и на периферии замедляется, что, вероятно, связано со старением клеточных мембран, общим снижением синтеза белков в организме. В результате снижения уровня катехоламинов в организме скорость мыслительных процессов уменьшается, ухудшается настроение, усиливается депрессия.

Катехоламины прямо или косвенно повышают активность эндокринных желез, стимулируют гипоталамус и гипофиз. При любой напряженной работе, особенно физической, содержание в крови катехоламинов увеличивается. Это приспособительная реакция организма к нагрузке любого рода. И чем более выражена реакция, тем лучше организм приспосабливается, тем быстрее достигается состояние тренированности. При интенсивной физической работе повышение температуры тела, учащение сердцебиения и др. вызвано выделением в кровь большого количества катехоламинов.

В настоящее время известны следующие катехоламины:
- адреналин
- норадреналин
- дофамин
- серотонин

Среди катехоламинов нейромедиаторами мозга являются:
- норадреналин
- серотонин
- дофамин

Адреналин - гормон, вырабатываемый надпочечниками. Его называют «гормоном страха» из-за того, что при испуге, ввиду сильного выброса адреналина в кровь, сердце часто начинает биться. Выброс адреналина происходит при любом сильном волнении или большой физической нагрузке. Адреналин повышает проницаемость клеточных мембран для глюкозы, усиливает распад углеводов (гликогена) и жиров, вызывает сужение сосудов органов брюшной полости, кожи и слизистых оболочек; в меньшей степени сужает сосуды скелетной мускулатуры. Артериальное давление под действием адреналина повышается. Если человек испуган или взволнован, то его выносливость резко повышается. Адреналин - активный допинг человеческого организма. Чем больше в надпочечниках резервы адреналина, тем выше физическая и умственная работоспособность.

Норадреналин - представляет собой катехоламин, который продуцируют преимущественно клетки мозгового вещества надпочечников и симпатической нервной системы. Его секреция и выброс в кровь усиливаются при стрессе, кровотечениях, тяжелой физической работе и других ситуациях, требующих быстрой перестройки организма. Так как норадреналин оказывает сильное сосудосуживающее действие, его выброс в кровь играет ключевую роль в регуляции скорости и объема кровотока. В отличие от адреналина, норадреналин называют «гормоном ярости», т.к. в результате выброса в кровь норадреналина всегда возникает реакция агрессии, значительно увеличивается мышечная сила. Если от адреналина лицо человека бледнеет, то от норадреналина - краснеет.

Дофамин - один из медиаторов возбуждения в синапсах центральной нервной системы. Дофамин синтезируется в специализированных нейронах мозга, ответственных за регуляцию его важнейших функций. В биосинтезе дофамин является предшественником норадреналина. Он вызывает повышение сердечного выброса, оказывает сосудорасширяющее действие, улучшает кровоток и др. Стимулируя распад гликогена и подавляя утилизацию глюкозы тканями, дофамин вызывает повышение концентрации глюкозы в крови. Он участвует в регуляции образования гормона роста, в торможении секреции пролактина. Недостаточный синтез дофамина обусловливает нарушение двигательной функции - синдромПаркинсона. Резкое повышение экскреции дофамина и его метаболитов с мочой наблюдается при гормонально-активных опухолях. При гиповитаминозе витамина В6 в тканях головного мозга увеличивается содержание дофамина, появляются его метаболиты, которые отсутствуют в норме.

Серотонин - катехоламин, содержащийся, главным образом, в тромбоцитах. При этом около 90% этого вещества синтезируется и хранится в специальных клетках желудочно-кишечного тракта, откуда серотонин поступает в кровь и депонируется тромбоцитами. Серотонин вызывает агрегацию тромбоцитов, оказывает существенное влияние на синтез биологически активных веществ в гипоталамусе, воздействует на функционирование желез внутренней секреции.

В клинической практике определение уровня серотонина в крови наиболее информативно при злокачественных новообразованиях желудка, кишечника и легких, при которых данный показатель превышает норму в 5-10 раз. При этом в моче выявляется повышенное содержание продуктов метаболизма серотонина. После радикального оперативного лечения опухоли происходит полная нормализация этих показателей, в связи с чем, исследование в динамике уровня серотонина в крови и в суточной моче позволяет оценить эффективность проведенной терапии и выявить рецидивы или метастазирование. Другими возможными причинами увеличения концентрации серотонина в крови и в моче являются рак щитовидной железы, острая кишечная непроходимость, острый инфаркт миокарда и др.

Снижение уровня серотонина наблюдается при лейкозах, гиповитаминозе В6, синдроме Дауна и др.

Современные лаборатории предлогают комплекс исследований по выявлению нарушений катехоламинового обмена.

При исследовании катехоламинов информативным является не только определение их уровня в плазме крови, но и экскреция с мочой. Однако необходимо отметить, что каждый из методов имеет свои недостатки. Так, в крови происходит достаточно быстрая элиминация катехоламинов, и достоверные результаты можно получить, если взятие крови для данного исследования производиться в момент четких клинических проявлений (гипертонический криз и др.), что на практике не всегда осуществимо.

Определение катехоламинов в моче может быть недостаточно информативно, если у пациента наблюдается нарушении функции почек. Поэтому наиболее оптимальный вариант: исследование адреналина и норадреналина в крови с одновременным определением их экскреции в моче.

Определяют концентрацию в плазме крови и в моче не только вышеперечисленные катехоламины, но и их метаболиты:

VМА (ваниллилминдальная кислота) - основной метаболит адреналина и норадреналина;
- НVА (гомованиллиновая кислота) - основной метаболит дофамина;
- 5-НIАА (5-гидроксииндолуксусная кислота) - основной метаболит серотонина.

Выявление уровня катехоламинов в динамике позволяет не только диагностировать такие заболевания как феохромоцитома (злокачественная опухоль надпочечников), необластома, синдром Паркинсона, установить причины артериальной гипертензии и гипотензии, недостаточности кровообращения, нарушения ритма сердца, стенокардии, инфаркта миокарда, но и осуществлять контроль за эффективностью проводимой терапии.

Сильные стрессы, психические нагрузки снижают содержание катехоламинов в центральной нервной системе. С помощью клинико-диагностических методов можно проводить контроль за эффективностью лечения антидепрессантами и нейролептиками при психической депрессии.

Во время сильных стрессов (в том числе и при больших физических нагрузках) происходит массированный выброс катехоламинов из депо. Иногда такой выброс достигает таких степеней, что депо катехоламинов истощается, и нервная клетка сама уже не может восполнить их дефицит. Нет ничего хуже истощения запасов катехоламинов в центральной нервной системе («истощение нервной системы»), т.е. истощение катехоламиновых депо в нервных клетках. В этом случае на человека обрушивается множество различных болезней. Он быстро стареет, т.к. без достаточного содержания в организме катехоламинов не происходит самообновления клеточных структур.

Восстановление резервов центральной нервной системы без рациональной лекарственной терапии невозможно. Есть несколько способов восстановления резервов катехоламинов в нервных клетках:

1. Введение малых доз катехоламинов;

2. Введение в организм предшественников катехоламинов;

3. Введение препаратов, усиливающих синтез катехоламинов в центральной нервной системе.

Почти все известные в настоящее время катехоламины причислены к допингам. Допингами считаются не только такие вещества, как адреналин, парадреналин и дофамин. К допингам причислены амфетамины, значительно повышающие выносливость и использующиеся особенно широко в тех видах спорта, где необходимы выносливость, быстрота реакции и т.п.; эфедрин, хорошо сжигающий жировую ткань, но при этом не затрагивающий мышечную, и другие катехоламины.

Современная фармакология достигла очень многого, с ее помощью мы можем вмешиваться как в синтез отдельных катехоламинов, так и в активность всей симпатико-адреналовой системы в целом. Повышая активность катехоламиновых систем, мы можем добиваться такого повышения спортивной работоспособности, о котором раньше можно было только мечтать. Некоторые катехоламины в малых дозах обладают анаболическим эффектом, способствуя наращиванию мышечной массы и силы.

Клинико-диагностическая лаборатория «ДиаЛаб» предлагает спортсменам и лицам, серьезно занимающимся спортом, провести мониторинг катехоламинового обмена с целью правильного распределения тренировочных нагрузок и предотвращения истощения катехоламиновых резервов.

в продолжение темы статьи:
тематические метки:

Введение

Подобно задней доле гипофиза, мозговой слой надпочечников - производное нервной ткани. Его можно рассматривать как продолжение симпатической нервной системы, так как преганглионарные волокна чревного нерва оканчиваются на хромаффинных клетках мозгового слоя надпочечников.

Своё название эти клетки получили потому, что они содержат гранулы, окрашивающиеся бихроматом калия в красный цвет. Такие клетки находятся также в сердце, печени, почках, половых железах, постганглионарных нейронах симпатической нервной системы и в ЦНС.

При стимуляции преганглионарного нейрона хромаффинные клетки продуцируют катехоламины - дофамин, адреналин и норадреналин.

У большинства видов животных хромаффинные клетки секретируют в основном адреналин (~ 80%) и в меньшей степени норадреналин.

По химическому строению катехоламины - 3,4-дигидроксипроизводные фенилэтиламина. Непосредственным предшественником гормонов служит тирозин.

надпочечник катехоламин мозговой гормон

Синтез и секреция катехоламинов

Синтез катехоламинов происходит в цитоплазме и гранулах клеток мозгового слоя надпочечников (рис. 11-22). В гранулах происходит также запасание катехоламинов.

Катехоламины поступают в гранулы путём АТФ-зависимого транспорта и хранятся в них в комплексе с АТФ в соотношении 4:1 (гормон-АТФ). Разные гранулы содержат разные катехоламины: некоторые только адреналин, другие - норадреналин, третьи - оба гормона.

Секреция гормонов из гранул происходит путём экзоцитоза. Катехоламины и АТФ освобождаются из гранул в том же соотношении, в каком они сохраняются в гранулах. В отличие от симпатических нервов, клетки мозгового слоя надпочечников лишены механизма обратного захвата выделившихся катехоламинов.

В плазме крови катехоламины образуют непрочный комплекс с альбумином. Адреналин транспортируется в основном к печени и скелетным мышцам. Норадреналин образуется в основном в органах, иннервируемых симпатическими нервами (80% от общего количества). Норадреналин лишь в незначительных количествах достигает периферических тканей. Т1/2 катехоламинов - 10-30 с. Основная часть катехоламинов быстро метаболизируется в различных тканях при участии специфических ферментов. Лишь небольшая часть адреналина (~ 5%) выделяется с мочой.

Лишь очень небольшая часть адреналина (менее 5%) выделяется с мочой. Катехоламины быстро

Рис. 49.2. Схема биосинтеза катехоламинов. ТГ-тирозингидроксилаза; ДД-ДОФА-декарбоксилаза; ФNMT - фенилтганоламин-ГМ-метилтрансфераза; ДБГ-дофамин-Р-гидроксилаза; АТР-аденозинтрифосфат. Биосинтез катехоламинов происходит в цитоплазме и в различных гранулах клеток мозгового слоя надпочечников. В одних гранулах содержится адреналин (А), в других-норадреналин (НА), а в некоторых - оба гормона. При стимуляции все содержимое гранул высвобождается во внеклеточную жидкость (ВКЖ).

метаболизируются под действием катехол-О-метилтрансферазы и моноаминоксидазы с образованием неактивных О-метилированных и дезаминированных продуктов (рис. 49.3). Большинство катехоламинов служат субстратами для обоих названных ферментов, причем реакции эти могут происходить в любой последовательности.

Катехол-О-метилтрансфераза (КОМТ) - цитозольный фермент, обнаруживаемый во многих тканях. Он катализирует присоединение метильной группы обычно по третьему положению (метаположение) бензольного кольца различных катехоламинов. Реакция требует присутствия двухвалентного катиона и S-аденозилметионина в качестве донора метильной группы. В результате этой реакции в зависимости от использованного субстрата образуются гомованилиновая кислота, норметанефрин и метанефрин.

Моноаминоксидаза (МАО) - оксидоредуктаза, дезаминирующая моноамины. Она обнаружена во многих тканях, но в наибольших концентрациях - в печени, желудке, почках и кишечнике. Описаны по крайней мере два изофермента МАО: МАО-А нервной ткани, дезаминирующая серотонин, адреналин и норадреналин, и МАО-В других (не нервных) тканей, наиболее активная в отношении -фенилэтиламина и бензиламина. Дофамин и тирамин метаболизируются обеими формами. Интенсивно исследуется вопрос о связи между аффективными расстройствами и повышением или понижением активности этих изоферментов. Ингибиторы МАО нашли применение при лечении гипертонии и депрессии, однако способность этих соединений вступать в опасные для организма реакции с содержащимися в пище и лекарственных препаратах симпатомиметическими аминами снижает их ценность.

О-Метоксилированные производные подвергаются дальнейшей модификации путем образования конъюгатов с глюкуроновой или серной кислотой.

Катехоламины образуют множество метаболитов. Два класса таких метаболитов используются в диагностике, поскольку присутствуют в моче в легко измеримых количествах. Метанефрины представляют собой метоксипроизводные адреналина и норадреналина; О-метилированным дезаминированным продуктом адреналина и норадреналина является З-метокси-4-гндроксиминдальная кислота (называемая также ванилилминдальной кислотой, ВМК) (рис. 49.3). При феохромоцитоме концентрация матанефринов или ВМК в моче оказывается повышенной более чем у 95% больных. Диагностические тесты, основанные на определении этих матаболитов, отличаются высокой точностью, особенно когда их используют в сочетании с определением катехоламинов в моче или плазме.

Мозговой слой надпочечников продуцирует соединение далекой от стероидов структуры. Они содержат 3,4-диоксифенильное (катехоловое) ядро и называются катехоламинами. К ним относятся адреналин, норадреналин и дофамин бета-окситирамин.

Последовательность синтеза катехоламинов достаточно проста: тирозин → диоксифенилаланин (ДОФА) → дофамин → норадреналин → адреналин. Тирозин поступает в организм с пищей, но может и образовываться из фенилаланина в печени под действием фенилаланингидроксилазы. Конечные продукты превращения тирозина в тканях различны. В мозговом слое надпочечников процесс протекает до стадии образования адреналина, в окончаниях симпатических нервов - норадреналина, в некоторых нейронах центральной нервной системы синтез катехоламинов завершается образованием дофамина.

Превращение тирозина в ДОФА катализируется тирозингидроксилазой, кофакторами которой служат тетрагидро-биоптерин и кислород. Считается, что именно этот фермент лимитирует скорость всего процесса биосинтеза катехоламинов и ингибируется конечными продуктами процесса. Тирозингидроксилаза является главным объектом регуляторных воздействий на биосинтез катехоламинов.

Превращение ДОФА в дофамин катализируется ферментом ДОФА-декарбоксилазой (кофактор - пиридоксальфосфат), который относительно неспецифичен и декарбоксилирует и другие ароматические L-аминокислоты. Однако имеются указания на возможность модификации синтеза катехоламинов за счет изменения активности и этого фермента. В некоторых нейронах отсутствуют ферменты дальнейшего превращения дофамина, и именно он является конечным продуктом. Другие ткани содержат дофамин-бета-гидроксилазу (кофакторы - медь, аскорбиновая кислота и кислород), которая превращает дофамин в норадреналин. В мозговом слое надпочечников (но не в окончаниях симпатических нервов) присутствует фенилэтаноламин - метилтрансфераза, образующая из норадреналина адреналин. Донором метальных групп в этом случае служит S-аденозилметионин.

Важно помнить, что синтез фенилэтаноламин-N-Meтилтрансферазы индуцируется глюкокортикоидами, попадающими в мозговой слой из коркового по портальной венозной системе. В этом, возможно, и кроется объяснение факта объединения двух различных желез внутренней секреции в одном органе. Значение глюкокортикоидов для синтеза адреналина подчеркивается тем, что клетки мозгового слоя надпочечников, продуцирующие норадреналин, располагаются вокруг артериальных сосудов, тогда как адреналинпродуцирующие клетки получают кровь в основном из венозных синусов, локализованных в корковом слое надпочечников.

Распад катехоламинов протекает главным образом под влиянием двух ферментных систем: катехол-О-метилтрансферазы (КОМТ) и моноаминоксидазы (МАО). Главные пути распада адреналина и норадреналина схематически представлены на рис. 54. Под действием КОМТ в присутствии донора метиловых групп S-адренозилметионина катехоламины превращаются в норметанефрин и метанефрин (3-О-метил-производные норадреналина и адреналина), которые под влиянием МАО переходят в альдегиды и далее (в присутствии альдегидоксидазы) в ванилил-миндальную кислоту (ВМК) - основной продукт распада норадреналина и адреналина. В том же случае, когда катехоламины вначале подвергаются действию МАО, а не КОМТ, они превращаются в 3,4-диоксиминдалевый альдегид, а затем под влиянием альдегидоксидазы и КОМТ - в 3,4-диоксиминдальную кислоту и ВМК. В присутствии алкогольдегидрогеназы из катехоламинов может образовываться 3-метокси-4-оксифенилгликоль, являющийся основным конечным продуктом деградации адреналина и норадреналина в ЦНС.

Распад дофамина протекает аналогично, за тем исключением, что его метаболиты лишены гидроксильной группы у бета-углеродного атома, и поэтому вместо ванилил-миндальной кислоты образуется гомованилиновая (ГВК) или 3-метокси-4-оксифенилуксусная кислота.

Постулируется также существование хиноидного пути окисления молекулы катехоламинов, на котором могут возникать промежуточные продукты, обладающие выраженной биологической активностью.

Образующиеся под действием цитозольных ферментов норадреналин и адреналин в окончаниях симпатических нервов и мозговом слое надпочечников поступают в секреторные гранулы, что предохраняет их от действия ферментов деградации. Захват катехоламинов гранулами требует энергетических затрат. В хромаффинных гранулах мозгового слоя надпочечников катехоламины прочно связаны с АТФ (в отношении 4:1) и специфическими белками - хромогранинами, что предотвращает диффузию гормонов из гранул в цитоплазму.

Непосредственным стимулом к секреции катехоламинов является, по-видимому, проникновение в клетку кальция, стимулирующего экзоцитоз (слияние мембраны гранул с клеточной поверхностью и их разрыв с полным выходом растворимого содержимого - катехоламинов, дофамин-бета-гидроксилазы, АТФ и хромогранинов - во внеклеточную жидкость).

Физиологические эффекты катехоламинов и механизм их действия

Эффекты катехоламинов начинаются с взаимодействия со специфическими рецепторами клеток-«мишеней». Если рецепторы тиреоидных и стероидных гормонов локализуются внутри клеток, то рецепторы катехоламинов (равно как и ацетилхолина и пептидных гормонов) присутствуют на наружной клеточной поверхности.

Уже давно было установлено, что в отношении одних реакций адреналин или норадреналин оказываются более эффективными, чем синтетический катехоламин изопротеренол, тогда как в отношении других эффект изопротеренола превосходит действия адреналина или норадреналина. На этом основании была разработана концепция о наличии в тканях двух типов адренорецепторов: альфа и бета, причем в отдельных из них может присутствовать только какой-либо один из этих двух типов. Изопротеренол является наиболее сильным агонистом бета-адренорецепторов, тогда как синтетическое соединение фенилефрин - наиболее сильным агонистом альфа-адренорецепторов. Природные катехоламины - адреналин и норадреналин - способны взаимодействовать с рецепторами обоих типов, однако адреналин проявляет большее сродство к бета-, а норадреналин - к альфа-рецепторам.

Катехоламины сильнее активируют сердечные бета-адренорецепторы, нежели бета-рецепторы гладких мышц, что позволило подразделить бета-тип на подтипы: бета1-рецепторы (сердце, жировые клетки) и бета2-рецепторы (бронхи, кровеносные сосуды и т. д.). Действие изопротеренола на бета1-рецепторы превосходит действие адреналина и норадреналина лишь в 10 раз, тогда как на бета2-рецепторы он действует в 100-1000 раз сильнее, чем природные катехоламины.

Применение специфических антагонистов (фентоламин и феноксибензамин в отношении альфа- и пропранолола в отношении бета-рецепторов) подтвердило адекватность классификации адренорецепторов. Дофамин способен взаимодействовать как с альфа-, так и с бета-рецепторами, но в различных тканях (мозг, гипофиз, сосуды) найдены и собственные дофаминергические рецепторы, специфическим блокатором которых является галоперидол. Количество бета-рецепторов колеблется от 1000 до 2000 на клетку. Биологические эффекты катехоламинов, опосредуемые бета-рецепторами, связаны, как правило, с активацией аденилатциклазы и повышением внутриклеточного содержания цАМФ. Рецептор и фермент хотя и соединены функционально, но представляют собой разные макромолекулы. В модуляции аденилатциклазной активности под влиянием гормон-рецепторного комплекса принимают участие гуанозинтрифосфат (ГТФ) и другие пуриновые нуклеотиды. Повышая активность фермента, они, по-видимому, снижают сродство бета-рецепторов к агонистам.

Давно известен феномен повышения чувствительности денервированных структур. Наоборот, длительное воздействие агонистов снижает чувствительность тканей-«мишеней». Изучение бета-рецепторов позволило объяснить эти явления. Показано, что длительное воздействие изопротеренола приводит к потере чувствительности аденилатциклазы за счет уменьшения числа бета-рецепторов.

Процесс десенситизации не требует активации синтеза белка и обусловлен, вероятно, постепенным образованием необратимых гормон-рецепторных комплексов. Напротив, введение 6-оксидофамина, разрушающего симпатические окончания, сопровождается увеличением числа реагирующих бета-рецепторов в тканях. Не исключено, что повышение симпатической нервной активности обусловливает и возрастную десенситизацию сосудов и жировой ткани по отношению к катехоламинам.

Число адренорецепторов в разных органах может контролироваться и другими гормонами. Так, эстрадиол увеличивает, а прогестерон уменьшает число альфа-адренорецепторов в матке, что сопровождается соответственным повышением и снижением ее сократительной реакции на катехоламины. Если внутриклеточным «вторым мессенджером», образующимся при действии агонистов бета-рецепторов, наверняка является цАМФ, то в отношении передатчика альфа-адренергических влияний дело обстоит сложнее. Предполагается существование различных механизмов: снижение уровня цАМФ, повышение содержания цАМФ, модуляция клеточной динамики кальция и др.

Для воспроизведения разнообразных эффектов в организме обычно требуются дозы адреналина, в 5-10 раз меньшие, чем норадреналина. Хотя последний является более эффективным в отношении а- и бета1-адренорецепторов, важно помнить, что оба эндогенных катехоламина способны взаимодействовать как с альфа-, так и с бета-рецепторами. Поэтому биологическая реакция данного органа на адренергическую активацию во многом зависит от типа присутствующих в нем рецепторов. Однако это не означает, что избирательная активация нервного или гуморального звена симпатико-адреналовой системы невозможна. В большинстве случаев наблюдается усиленная деятельность различных ее звеньев. Так, принято считать, что гипогликемия рефлекторно активирует именно мозговой слой надпочечников, тогда как снижение артериального давления (постуральная гипотензия) сопровождается в основном выбросом норадреналина из окончаний симпатических нервов.

Адренорецепторы и эффекты их активации в различных тканях

Система, орган

Тип адрено-рецепторов

Сердечно-сосудистая система:

Повышение частоты сокращений, проводимости и сократимости

Артериолы:

кожи и слизистых оболочек

Сокращение

скелетных мышц

Расширение Сокращение

органов брюшной полости

альфа (больше)

Сокращение

Расширение

Сокращение

Дыхательная система:

мышцы бронхов

Расширение

Пищеварительная система:

Снижение моторики

кишечник

Сокращение сфинктеров

Селезенка

Сокращение

Расслабление

Внешнесекреторная часть поджелудочной железы

Снижение секреции

Мочеполовая система:

Сокращение сфинктера

мочевой пузырь

Расслабление изгоняющей мышцы

Мужские половые органы

Эякуляция

Расширение зрачка

Повышение потоотделения

Слюнные железы

Выделение калия и воды

Секреция амилазы

Эндокринные железы:

островки поджелудочной железы

бета-клетки

альфа (больше)

Снижение секреции инсулина

Повышение секреции инсулина

альфа-клетки

Повышение секреции глюкагона

Повышение секреции соматостатина

Гипоталамус и гипофиз:

соматотрофы

Повышение секреции СТГ

Снижение секреции СТГ

лактотрофы

Снижение секреции пролактина

тиреотрофы

Снижение секреции ТТГ

кортикотрофы

Повышение секреции АКТГ

бета Снижение секреции АКТГ

Щитовидная железа:

фолликулярные клетки

Снижение секреции тироксина

Повышение секреции тироксина

парафолликулярные (К) клетки

Повышение секреции кальцитонина

Околощитовидные железы

Повышение секреции ПТГ

Повышение секреции ренина

Повышение секреции гастрина

Основной обмен

Повышение потребления кислорода

Повышение гликогенолиза и глюконеогенеза с выходш глюкозы; повышение кетогенеза с выходом кетоновых тел

Жировая ткань

Повышение липолиза с выходом свободных жирных кислот и глицерина

Скелетные мышцы

Повышение гликолиза с выходом пирувата и лактата; снижение протеолиза с уменьшением выхода аланина, глутамина

Важно учитывать, что результаты внутривенного введения катехоламинов не всегда адекватно отражают эффекты эндогенных соединений. Это относится в основном к норадреналину, так как в организме он выделяется главным образом не в кровь, а непосредственно в синаптические щели. Поэтому эндогенный норадреналин активирует, например, не только сосудистые альфа-рецепторы (повышение артериального давления), но и бета-рецепторы сердца (учащение сердцебиений), тогда как введение норадреналина извне приводит преимущественно к активации сосудистых альфа-рецепторов и рефлекторному (через вагус) замедлению сердцебиений.

Низкие дозы адреналина активируют в основном бета-рецепторы мышечных сосудов и сердца, в результате чего падает периферическое сосудистое сопротивление и увеличивается минутный объем сердца. В некоторых случаях первый эффект может преобладать, и после введения адреналина развивается гипотензия. В более высоких дозах адреналин активирует и альфа-рецепторы, что сопровождается повышением периферического сосудистого сопротивления и на фоне роста минутного объема сердца приводит к повышению артериального давления. Однако сохраняется и его влияние на сосудистые бета-рецепторы. В результате прирост систолического давления превышает аналогичный показатель диастолического (увеличение пульсового давления). При введении еще больших доз начинают преобладать альфа-миметические эффекты адреналина: систолическое и диастолическое давление возрастают параллельно, как под влиянием норадреналина.

Воздействие катехоламинов на обмен веществ складывается из их прямых и опосредованных эффектов. Первые реализуются главным образом через бета-рецепторы. Более сложные процессы связаны с печенью. Хотя усиление печеночного гликогенолиза традиционно считается результатом активации бета-рецепторов, но имеются данные и об участии в этом альфа-рецепторов. Опосредованные эффекты катехоламинов связаны с модуляцией секреции многих других гормонов, например инсулина. В действии адреналина на его секрецию явно преобладает альфа-адренергический компонент, поскольку показано, что любой стресс сопровождается торможением инсулиновой секреции.

Сочетание прямых и опосредованных эффектов катехоламинов обусловливает гипергликемию, сопряженную не только с повышением печеночной продукции глюкозы, но и с торможением ее утилизации периферическими тканями. Ускорение липолиза вызывает гиперлипацидемию с повышенной доставкой жирных кислот в печень и интенсификацией продукции кетоновых тел. Усиление гликолиза в мышцах приводит к повышению выхода в кровь лактата и пирувата, которые вместе с глицерином, высвобождающимся из жировой ткани, служат предшественниками печеночного глюконеогенеза.

Регуляция секреции катехоламинов. Сходство продуктов и способов реагирования симпатической нервной системы и мозгового слоя надпочечников явилось основанием для объединения этих структур в единую симпатико-адреналовую систему организма с выделением нервного и гормонального ее звена. Различные афферентные сигналы концентрируются в гипоталамусе и центрах спинного и продолговатого мозга, откуда исходят эфферентные посылки, переключающиеся на клеточные тела преганглионарных нейронов, расположенных в боковых рогах спинного мозга на уровне VIII шейного - II-III поясничных сегментов.

Преганглионарные аксоны этих клеток покидают спинной мозг и образуют синаптические соединения с нейронами, локализующимися в ганглиях симпатической цепочки, или с клетками мозгового слоя надпочечников. Эти преганглионарные волокна являются холинергическими. Первое принципиальное отличие симпатических постганглионарных нейронов и хромаффинных клеток мозгового слоя надпочечников заключается в том, что последние передают поступающий к ним холинергический сигнал не нервно-проводниковым (постганглионарные адренергические нервы), а гуморальным путем, выделяя адренергические соединения в кровь. Второе различие сводится к тому, что постганглионарные нервы продуцируют норадреналин, тогда как клетки мозгового слоя надпочечников - преимущественно адреналин. Эти два вещества оказывают различное действие на ткани.

Загрузка...