docgid.ru

Физиология дыхания у человека. Физиология дыхания. Тема: Роль и значение дыхания для организма

человека (газообмен между вдыхаемым атмосферным воздухом и циркулирующей по малому кругу кровообращения кровью ).

Введение

Дыхание является одной из важнейших функций регулирования жизнедеятельности человеческого организма.

В организме человека функцию дыхания обеспечивает дыхательная (респираторная система).

В дыхательную систему входят легкие и респираторный тракт (дыхательные пути), который, в свою очередь, включает носовые ходы, гортань, трахею, бронхи, мелкие бронхи и альвеолы. Бронхи разветвляются, распространяясь по всему объему легких, и напоминают крону дерева. Поэтому часто трахею и бронхи со всеми ответвлениями называют бронхиальным деревом .

Основная функция дыхательной системы заключается в обеспечении газообмена О2 и СО2 между окружающей средой и организмом в соответствии с его метаболическими потребностями. В целом эту функцию регулирует сеть многочисленных нейронов центральной нервной системы (ЦНС), которые связаны с дыхательным центром продолговатого мозга .

Газообмен осуществляется в альвеолах лёгких , и в норме направлен на захват из вдыхаемого воздуха кислорода и выделение во внешнюю среду образованного в организме углекислого газа .

Взрослый человек, находясь в состоянии покоя, совершает в среднем 14 дыхательных движений в минуту, однако частота дыхания может претерпевать значительные колебания (от 10 до 18 за минуту) . Взрослый человек делает 15-17 вдохов-выдохов в минуту, а новорождённый ребёнок делает 1 вдох в секунду. Вентиляция альвеол осуществляется чередованием вдоха (инспирация) и выдоха (экспирация). При вдохе в альвеолы поступает атмосферный воздух , а при выдохе из альвеол удаляется воздух, насыщенный углекислым газом.

Общая характеристика дыхания

По способу расширения грудной клетки различают два типа дыхания:

  • грудной тип дыхания (расширение грудной клетки производится путём поднятия рёбер), чаще наблюдается у женщин;
  • брюшной тип дыхания (расширение грудной клетки производится путём уплощения диафрагмы ), чаще наблюдается у мужчин .

По функционированию различают:

  • внешнее дыхание - это поступление кислорода в легкие и газообмен между воздухом альвеол и кровью малого круга;
  • внутреннее дыхание - утилизация кислорода в тканях, т. е. его участие в окислительно-восстановительных реакциях. Этот процесс протекает в митохондриях. Внутренне дыхание изучается в курсе биохимии.

Между внешним и внутренним дыханием имеется промежуточное звено - транспорт газов кровью. Обеспечивается не дыхательной системой, а сердечно-сосудистой системой и системой крови .

Дыхание-совокупность последовательно протекающих процессов, обеспечивающих потребление организмом О2 и выделение СО2.

Кислород поступает в составе атмосферного воздуха в легкие, транспортируется кровью и тканевыми жидкостями к клеткам и используется для биологического окисления. В процессе окисления образуется двуокись углерода, которая поступает в жидкие среды организма, транспортируется ими в легкие и выводится в окружающую среду.

Дыхание включает следующие процессы (этапы):

  • обмен воздуха между внешней средой и альвеолами легких (внешнее дыхание, или вентиляция легких);
  • обмен газов между альвеолярным воздухом и кровью, протекающей через легочные капилляры (диффузия газов в легких);
  • транспорт газов кровью;
  • обмен газов между кровью и тканями в тканевых капиллярах (диффузия газов в тканях);
  • потребление кислорода клетками и выделение ими углекислого газа (клеточное дыхание).

На рисунке 1 представлена схема легочного пузырька и газообмена в легких.

Рисунок 1 – Легочный пузырек. Газообмен в легких .

В дыхательных путях газообмен не происходит, и состав воздуха не меняется. Пространство, заключенное в дыхательных путях называется мертвым, или вредным. При спокойном дыхании объем воздуха в мертвом пространстве составляет 140-150 мл.

Предметом рассмотрения физиологии являются первые 5 процессов. Внешнее дыхание осуществляется благодаря изменениям объема грудной полости, влияющим на объем легких.

Объем грудной полости увеличивается во время вдоха (инспирация) и уменьшается во время выдоха (экспирация). Легкие пассивно следуют за изменениями объема грудной полости, расширяясь при вдохе и спадаясь при выдохе. Эти дыхательные движения обеспечивают вентиляцию легких за счет того, что при вдохе воздух по воздухоносным путям поступает в альвеолы, а при выдохе покидает их. Изменение объема грудной полости осуществляется в результате сокращений дыхательных мышц.

Дыхательный цикл состоит из двух фаз - вдох и выдох. Соотношение вдоха и выдоха - 1: 1,2.

Важнейший механизм газообмена – это диффузия , при которой молекулы перемещаются из области их высокого скопления в область низкого содержания без затраты энергии (пассивный транспорт ). Перенос кислорода из окружающей среды к клеткам производится путем транспорта кислорода в альвеолы, далее в кровь. Таким образом, венозная кровь обогащается кислородом и превращается в артериальную. Поэтому состав выдыхаемого воздуха отличается от состава наружного воздуха: в нем содержится меньше кислорода и больше углекислого газа, чем в наружном, и много водяных паров. Кислород связывается с гемоглобином , который содержится в эритроцитах, насыщенная кислородом кровь поступает в сердце и выталкивается в большой круг кровообращения. По нему кровь разносит кислород по всем тканям организма. Поступление кислорода в ткани обеспечивает их оптимальное функционирование, при недостаточном же поступлении наблюдается процесс кислородного голодания (гипоксии ).

Недостаточное поступление кислорода может быть обусловлено несколькими причинами как внешними (уменьшение содержания кислорода во вдыхаемом воздухе), так и внутренними (состояние организма в данный момент времени). Пониженное содержание кислорода во вдыхаемом воздухе, так же как и увеличение содержания углекислого газа и других вредных токсических веществ наблюдается в связи с ухудшением экологической обстановки и загрязнением атмосферного воздуха. По данным экологов только 15% горожан проживают на территории с допустимым уровнем загрязнения воздуха, в большинстве же районов содержание углекислого газа увеличено в несколько раз.

При очень многих физиологических состояниях организма (подъем в гору, интенсивная мышечная нагрузка), так же как и при различных патологических процессах (заболевания сердечно-сосудистой, дыхательной и других систем) в организме также может наблюдаться гипоксия.

Природа выработала множество способов, с помощью которых организм приспосабливается к различным условиям существования, в том числе к гипоксии. Так компенсаторной реакцией организма, направленной на дополнительное поступление кислорода и скорейшее выведение избыточного количества углекислого газа из организма является углубление и учащение дыхания. Чем глубже дыхание, тем лучше вентилируются легкие и тем больше кислорода поступает к клеткам тканей.

К примеру, во время мышечной работы усиление вентиляции легких обеспечивает возрастающие потребности организма в кислороде. Если в покое глубина дыхания (объем воздуха, вдыхаемого или выдыхаемого за один вдох или выдох) составляет 0,5 л, то во время напряженной мышечной работы она увеличивается до 2-4 л в 1 минуту. Расширяются кровеносные сосуды легких и дыхательных путей (а также дыхательных мышц), увеличивается скорость тока крови по сосудам внутренних органов. Активируется работа дыхательных нейронов. Кроме того, в мышечной ткани есть особый белок (миоглобин ), способный обратимо связывать кислород. 1 г миоглобина может связать примерно до 1,34 мл кислорода. Запасы кислорода в сердце составляют около 0,005 мл кислорода на 1 г ткани и этого количества в условиях полного прекращения доставки кислорода к миокарду может хватить для того, чтобы поддерживать окислительные процессы лишь в течение примерно 3-4 с.

Миоглобин играет роль кратковременного депо кислорода. В миокарде кислород, связанный с миоглобином, обеспечивает окислительные процессы в тех участках, кровоснабжение которых на короткий срок нарушается.

В начальном периоде интенсивной мышечной нагрузки увеличенные потребности скелетных мышц в кислороде частично удовлетворяются за счет кислорода, высвобождающегося миоглобином. В дальнейшем возрастает мышечный кровоток, и поступление кислорода к мышцам вновь становится адекватным.

Все эти факторы, включая усиление вентиляции легких, компенсируют кислородный “долг”, который наблюдается при физической работе. Естественно, увеличению доставки кислорода к работающим мышцам и удалению углекислого газа способствует согласованное увеличение кровообращения в других системах организма.

Мышечное обеспечение дыхания

Дыхательные мышцы обеспечивают ритмичное увеличение или уменьшение объема грудной полости. Функционально дыхательные мышцы делят на инспираторные (основные и вспомогательные) и экспираторные.

Основную инспираторную группу мышц составляют диафрагма, наружные межреберные и внутренние межхрящевые мышцы; вспомогательные мышцы - лестничные, грудиноключично-сосцевидные, трапецевидная, большая и малая грудные мышцы. Экспираторную группу мышц составляют абдоминальные (внутренняя и наружная косые, прямая и поперечная мышцы живота) и внутренние межреберные.

Важнейшей мышцей вдоха является диафрагма - куполообразная поперечнополосатая мышца, разделяющая грудную и брюшную полости. Она прикрепляется к трем первым поясничным позвонкам (позвоночная часть диафрагмы) и к нижним ребрам (реберная часть). К диафрагме подходят нервы от III-V шейных сегментов спинного мозга. При сокращении диафрагмы органы брюшной полости смещаются вниз и вперед и вертикальные размеры грудной полости возрастают.

Кроме того, при этом поднимаются и расходятся ребра, что приводит к увеличению поперечного размера грудной полости. При спокойном дыхании диафрагма является единственной активной инспираторной мышцей и ее купол опускается на 1 -1,5 см.

Известно два биомеханизма, которые изменяют объем грудной клетки: поднятие и опускание ребер и движения купола диафрагмы; оба биомеханизма осуществляются дыхательными мышцами. Дыхательные мышцы подразделяют наинспираторные и экспираторные.

Экспираторными мышцами являются внутренние межреберные и мышцы брюшной стенки, или мышцы живота. Последние нередко относят к главным экспираторным мышцам. У нетренированного человека они участвуют в дыхании при вентиляции легких свыше 40 л*мин-1.

Движения ребер. Каждое ребро способно вращаться вокруг оси, проходящей через две точки подвижного соединения с телом я поперечным отростком соответствующего позвонка.

Сокращение этих мышц вызывает перемещение ребер, что оказывает

содействие инспираторным мышцам. При спокойном дыхании вдох осуществляется активно, а выдох пассивно. Силы, обеспечивающие спокойный выдох:

  • сила тяжести грудной клетки
  • эластическая тяга легких
  • давление органов брюшной полости
  • эластическая тяга перекрученных во время вдоха реберных хрящей

В активном выдохе принимают участие внутренние межреберные мышцы, задняя нижняя зубчатая мышца, мышцы живота

осуществление форсированного дыхания;

При глубоком форсированном дыхании увеличивается амплитуда движений диафрагмы (экскурсия может достигать 10 см) и активизируются наружные межреберные и вспомогательные мышцы. Из вспомогательных мышц наиболее значимыми являются лестничные и грудиноключично-сосцевидные мышцы.

Наружные межреберные мышцы соединяют соседние ребра. Их волокна ориентированы наклонно вниз и вперед отверхнего к нижнему ребру. При сокращении этих мышц ребра поднимаются и смещаются вперед, что приводит к увеличению объема грудной полости в переднезаднем и боковом направлениях. Паралич межреберных мышц не вызывает серьезных расстройств дыхания, поскольку диафрагма обеспечивает вентиляцию.

Лестничные мышцы, сокращаясь во время вдоха, поднимают 2 верхних ребра, а вместе сними всю грудную клетку. Грудинно-ключично-сосцевидные мышцы поднимают I ребро и грудину. При спокойном дыхании они практически не задействованы, однако при увеличении легочной вентиляции могут интенсивно работать.

Величина давления в плевральной полости и легких при дыхании

Давление в герметично замкнутой плевральной полости между висцеральным и париетальным листками плевры зависит от величин и направления сил, создаваемых эластической паренхимой легких и грудной стенкой. Плевральное давление можно измерить манометром, соединенным с плевральной полостью полой иглой. В клинической практике часто применяют косвенный метод оценки величины плеврального давления, измеряя давление в нижней части пищевода с помощью пищеводного баллонного катетера. Внутри пищеводное давление во время дыхания отражает изменения внутри плеврального давления.

Плевральное давление ниже атмосферного во время вдоха, а во время выдоха может быть ниже, выше или равным атмосферному в зависимости от форсированности выдоха. При спокойном дыхании плевральное давление перед началом вдоха составляет -5 см вод.ст., перед началом выдоха оно понижается еще на 3-4 см вод.ст. При пневмотораксе (нарушение герметичности грудной клетки и сообщение плевральной полости с внешней средой) выравниваются плевральное и атмосферное давления, что вызывает спадение легкого и делает невозможной его вентиляцию.

Значение сурфактанта:

  • создает возможность расправления легкого при первом вдохе новорожденного;
  • препятствует развитию ателектаза при выдохе;
  • обеспечивает до ⅔ эластического сопротивления ткани легкого взрослого человека и стабильность структуры респираторной зоны;
  • регулирует скорость адсорбции О2 по границе раздела фаз газ – жидкость и интенсивность испарения Н2О с альвеолярной поверхности;
  • очищает поверхность альвеол от попавших с дыханием инородных частиц и обладает бактериостатической активностью.

Саморегуляция дыхания.

Организм осуществляет тонкое регулирование содержания кислорода и углекислого газа в крови, которое остается относительно постоянным, несмотря на колебания количества поступающего кислорода и потребности в нем. Во всех случаях регуляция интенсивности дыхания направлена на конечный приспособительный результат – оптимизацию газового состава внутренней среды организма.

Частота и глубина дыхания регулируются нервной системой – ее центральными (дыхательный центр ) и периферическими (вегетативными) звеньями. В дыхательном центре, расположенном в головном мозге, имеются центр вдоха и центр выдоха.

Дыхательный центр представляет совокупность нейронов, расположенных в продолговатом мозге центральной нервной системы.

При нормальном дыхании центр вдоха посылает ритмические сигналы к мышцам груди и диафрагме, стимулируя их сокращение. Ритмические сигналы образуются в результате спонтанного образования электрических импульсов нейронами дыхательного центра.

Сокращение дыхательных мышц приводит к увеличению объема грудной полости, в результате чего воздух входит в легкие. По мере увеличения объема легких возбуждаются рецепторы растяжения, расположенные в стенках легких; они посылают сигналы в мозг – в центр выдоха. Этот центр подавляет активность центра вдоха, и поток импульсных сигналов к дыхательным мышцам прекращается. Мышцы расслабляются, объем грудной полости уменьшается, и воздух из легких вытесняется наружу (рисунок 2).

Рисунок 2- Регуляция дыхания

Процесс дыхания, как уже отмечалось, состоит из легочного (внешнего) дыхания, а также транспорта газа кровью и тканевого(внутреннего) дыхания. Если клетки организма начинают интенсивно использовать кислород и выделять много углекислого газа, то в крови повышается концентрация угольной кислоты. Кроме того, увеличивается содержание молочной кислоты в крови за счет усиленного образования ее в мышцах. Данные кислоты стимулируют дыхательный центр, и частота и глубина дыхания увеличиваются. Это еще один уровень регуляции. В стенках крупных сосудов, отходящих от сердца, имеются специальные рецепторы, реагирующие на понижение уровня кислорода в крови. Эти рецепторы также стимулируют дыхательный центр, повышая интенсивность дыхания. Данный принцип автоматической регуляции дыхания лежит в основе бессознательного управления дыханием, что позволяет сохранить правильную работу всех органов и систем независимо от условий, в которых находится организм человека.

Ритмичность дыхательного процесса, различные типы дыхания. В норме дыхание представлено равномерными дыхательными циклами “вдох – выдох” до 12-16 дыхательных движений в минуту. В среднем такой акт дыхания совершается за 4-6 с. Акт вдоха проходит несколько быстрее, чем акт выдоха (соотношение длительности вдоха и выдоха в норме составляет 1:1,1 или 1:1,4). Такой тип дыхания называется эйпноэ (дословно – хорошее дыхание). При разговоре, приеме пищи ритм дыхания временно меняется: периодически могут наступать задержки дыхания на вдохе или на выходе (апноэ ). Во время сна также возможно изменение ритма дыхания: в период медленного сна дыхание становится поверхностным и редким, а в период быстрого – углубляется и учащается. При физической нагрузке за счет повышенной потребности в кислороде возрастает частота и глубина дыхания, и, в зависимости от интенсивности работы, частота дыхательных движений может достигать 40 в минуту.

При смехе, вздохе, кашле, разговоре, пении происходят определенные изменения ритма дыхания по сравнению с так называемым нормальным автоматическим дыханием. Из этого следует, что способ и ритм дыхания можно целенаправленно регулировать с помощью сознательного изменения ритма дыхания.

Человек имеет возможность сознательно управлять дыханием.

Человек рождается уже с умением использовать лучший способ дыхания. Если проследить как дышит ребенок, становится заметным, что его передняя брюшная стенка постоянно поднимается и опускается, а грудная клетка остается практически неподвижной. Он “дышит” животом – это так называемый диафрагмальный тип дыхания.

Диафрагма – это мышца, разделяющая грудную и брюшную полости. Сокращения данной мышцы способствуют осуществлению дыхательных движений: вдоха и выдоха.

В повседневной жизни человек не задумывается о дыхании и вспоминает о нем, когда по каким-то причинам становится трудно дышать. Например, в течение жизни напряжение мышц спины, верхнего плечевого пояса, неправильная осанка приводят к тому, что человек начинает “дышать” преимущественно только верхними отделами грудной клетки, при этом объем легких задействуется всего лишь на 20%. Попробуйте положить руку на живот и сделать вдох. Заметили, что рука на животе практически не изменила своего положения, а грудная клетка поднялась. При таком типе дыхания человек задействует преимущественно мышцы грудной клетки (грудной тип дыхания) или области ключиц (ключичное дыхание). Однако как при грудном, так и при ключичном дыхании организм снабжается кислородом в недостаточной степени.

Недостаток поступления кислорода может возникнуть также при изменении ритмичности дыхательных движений, то есть изменении процессов смены вдоха и выдоха.

В состоянии покоя кислород относительно интенсивно поглощается миокардом, серым веществом головного мозга (в частности, корой головного мозга), клетками печени и корковым веществом почек; клетки скелетной мускулатуры, селезенка и белое вещество головного мозга потребляют в состоянии покоя меньший объем кислорода, то при физической нагрузке потребление кислорода миокардом увеличивается в 3-4 раза, а работающими скелетными мышцами – более чем в 20-50 раз по сравнению с покоем.

Интенсивное дыхание, состоящее в увеличении скорости дыхания или его глубины (процесс называется гипервентиляцией ), приводит к увеличению поступления кислорода через воздухоносные пути. Однако частая гипервентиляция способна обеднить ткани организма кислородом. Частое и глубокое дыхание приводит к уменьшению количества углекислоты в крови (гипокапнии ) и защелачиванию крови – респираторному алкалозу.

Подобный эффект прослеживается, если нетренированный человек осуществляет частые и глубокие дыхательные движения в течение короткого времени. Наблюдаются изменения со стороны как центральной нервной системы (возможно появление головокружения, зевоты, мелькания “мушек” перед глазами и даже потери сознания), так и сердечно-сосудистой системы (появляется одышка, боль в сердце и другие признаки). В основе данных клинических проявлений гипервентиляционного синдрома лежат гипокапнические нарушения, приводящие к уменьшению кровоснабжения головного мозга. В норме у спортсменов в покое после гипервентиляции наступает состояние сна.

Следует отметить, что эффекты, возникающие при гипервентиляции, остаются в то же время физиологичными для организма – ведь на любое физическое и психоэмоциональное напряжение организм человека в первую очередь реагирует изменением характера дыхания.

При глубоком, медленном дыхании (брадипноэ ) наблюдается гиповентиляционный эффект. Гиповентиляция – поверхностное и замедленное дыхание, в результате которого в крови отмечается понижение содержание кислорода и резкое увеличение содержания углекислого газа (гиперкапния ).

Количество кислорода, которое клетки используют для окислительных процессов, зависит от насыщенности крови кислородом и степени проникновения кислорода из капилляров в ткани.Снижение поступления кислорода приводит к кислородному голоданию и к замедлению окислительных процессов в тканях.

В 1931 году доктор Отто Варбург получил Нобелевскую премию в области медицины, открыв одну из возможных причин возникновения рака. Он установил, что возможной причиной этого заболевания является недостаточный доступ кислорода к клетке.

Правильное дыхание, при котором воздух, проходящий через воздухоносные пути, в достаточной степени согревается, увлажняется и очищается – это спокойное, ровное, ритмичное, достаточной глубины.

Во время ходьбы или выполнения физических упражнений следует не только сохранять ритмичность дыхания, но и правильно сочетать ее с ритмом движения (вдох на 2-3 шага, выдох на 3-4 шага).

Важно помнить, что потеря ритмичности дыхания приводит к нарушению газообмена в легких, утомлению и развитию других клинических признаков недостатка кислорода.

При нарушении акта дыхания уменьшается приток крови к тканям и понижается насыщение ее кислородом.

Необходимо помнить, что физические упражнения способствуют укреплению дыхательной мускулатуры и усиливают вентиляцию легких. Таким образом, от правильного дыхания в значительной мере зависит здоровье человека .

Физиология дыхательных путей

Регуляция величины просвета бронхов.

Гладкие мышци бронхиол иннервируются волокнами вегетативной нервной системы. Прямое влияние симпатической системы незначительное, зато катехоламины, которые находятся в крови, особенно адреналин, действуя на b-адренорецепторы, оказывает расслабление этих мышц.

Ацетилхолин, который выделяется волокнами блуждающего нерва, суживает бронхиолы. Поэтому введение атропина сульфата может вызвать расширение бронхиол. При участие парасимпатических нервов реализируется ряд рефлексов, которые начинаются в дыхательных путях в случае раздражения их рецепторов дымом, отравляющими газами, инфекцией т.п.. Некоторые вещества, которые осуществляют аллергические реакции, также могут суживать бронхиолы .

Список литературы

  1. Научно популярное методическое пособие «Дыхательная система. Физиология дыхания» [Электронный ресурс ].- Режим доступа: http://www.rlsnet.ru/books_book_id_2_page_30.htm
  2. Свободная электронная энциклопедия
    1. Обсуждение «Внутреннее и внешнее дыхание. Их отличие» [Электронный ресурс ].- Режим доступа: http://otvet.mail.ru/question/49261280

    Физиология системы дыхания

    Дыхание (respiration)многоплановый термин, конкретное содержание которого зависит от области применения и контекста.

    В биоэнергетике дыхание рассматривается как процесс внутриклеточного освобождения энергии при разложении органических соединений и выработки АТФ.

    В биохимии дыхание исследуется как многоступенчатый ферментативный процесс окисления субстратов, протекающий на последовательно расположенных в мембранах клеточных органелл (митохондрии) ферментных комплексах дыхательной цепи, направляющих поток электронов на конечный акцептор. Если в качестве акцептора выступают нитриты, сульфиты или другие неорганические соединения, то такое дыхание называется анаэробным . Если в качестве конечного акцептора используется молекула кислорода – то говорят об аэробном дыхании. Часть освобожденной в процессе дыхания энергии затрачивается на активный транспорт и создание электрохимических градиентов на мембранах, часть рассеивается в виде тепла, часть аккумулируется в форме высокоэнергетических соединений.

    В физиологии термином дыхания обозначают процесс газообмена между организмом и средой его обитания, сопровождающийся поглощением кислорода, выделением углекислого газа и метаболической воды.

    У одноклеточных и ряда беспозвоночных, не имеющих специализированных образований для газообмена, осуществляется прямое дыхание через покровы без каких-либо движений и изменений объема тела. С увеличением массы тела в процессе эволюции возникают специализированные органы дыхания, имеющие развитую поверхность (жабры, легкие) и вспомогательные образования (дыхательные мышцы, осуществляющие принудительную вентиляцию), обеспечивающие непрямое дыхание .

    Наиболее часто под термином «дыхание» подразумевают периодическое движение грудной клетки, изменяющие ее объем и вызывающие возвратно-поступательное движение воздуха в дыхательных путях (респирация). Однако это лишь легко наблюдаемое проявление процесса вентиляции легких.

    В случае легочного дыхания выделяется 5 основных этапов процесса дыхания:


    1. внешнее дыхание, или вентиляция легких – обмен газов между альвеолами легких и атмосферным воздухом;

    2. обмен газов в легких между альвеолярным воздухом и кровью;

    3. транспорт газов кровью, т.е. процесс переноса кислорода от легких к тканям и углекислого газа от тканей к легким;

    4. обмен газов между кровью капилляров большого круга кровообращения и клетками тканей;

    5. внутреннее дыхание – биологическое окисление в митохондриях клетки.
    Последний этап в основном изучается биохимиками, а первые 4 являются объектами физиологических исследований. Ещё одним важнейшим объектом физиологического исследования процесса дыхания является НЕЙРОГУМОРАЛЬНЫЙ АППАРАТ его регуляции.

    Существуют и внелегочные формы ВНЕШНЕГО ДЫХАНИЯ, осуществляющие газообмен между наружной и внутренней средами организма (между воздухом и кровью) без участия легкого.

    КОЖНОЕ дыхание. У человека в покое около 1,5 – 2,0 % всего газообмена организма обеспечивается за счет кожи, общая поверхность которой составляет 1,5 – 2,0 м 2 и колеблется в зависимости от роста, масса тела, пола, возраста. В сутки через кожу в организм попадает около 4 г кислорода и выделяется около 8 г углекислого газа. Эти количества зависят от чистоты кожных покровов, температура окружающего воздуха и кожи, степени физической нагрузки, давления и др.

    Тот факт, что газообмен осуществляется в основном в легких, очевидно определяется рядом факторов: а) поверхность легких значительно больше поверхности кожи (общая поверхность альвеол по мнению различных авторов составляет от 40 до 140 м 2 . Чаще всего приводятся цифры 60-80 м 2); б) толщина легочной мембраны значительно меньше (0,3-2,0 мкм), чем толщина кожи; в) объемная скорость кровотока легких в 313 раз выше, чем в коже.

    Однако и вклад кожного дыхания значителен. Это ощущает каждый после бани (особенно после парной), когда на короткий промежуток времени человек испытывает облегчение в дыхании. Существует даже термин «коже стало легче дышать».

    Дыхательные функции кожи человека в некоторых условиях приобретает существенное значение. Например, при выполнении тяжелой физической работы или при температуре окружающей среды 45ºС 23% газообмена осуществляется через кожу.

    ДЫХАНИЕ ЧЕРЕЗ СЛИЗИСТЫЕ ЖЕЛУДКА И КИШЕЧНИКА. На ранних стадиях эволюции животных пищеварительный тракт выполнял по совместительству дыхательную функцию. В дальнейшем, по мере появления различных видов сухопутных животных и образования в процессе филогенеза из верхнего отдела пищеварительной трубки специфических органов дыхания, пищеварительная и дыхательная функции полностью разделились, образуя соответствующие анатомические отделения, а затем высокоспециализированный орган дыхания – легкое, к которому и перешла функция снабжения организма кислородом, а также удаления из него избытка углекислого газа. Дыхательная функция желудочно-кишечного тракта перешла в категорию атавистической. Однако, при серьезных патологических ситуациях, например, при пороке развития легкого или его стойком ателектазе у новорожденных детей желудочно-кишечный тракт может временно выполнять дыхательную функцию. В желудке в обычных условиях может всасываться до 5% кислорода, необходимого для жизнедеятельности организма, в тонком кишечнике – 0,15 мл кислорода на 1 см 2 за 1 час, в толстом кишечнике – 0,11 мл. В толстом кишечнике человека в покое всасывается 0,02-0,04 мл кислорода на 1 см 2 .

    Влияние кишечника на дыхание может состоять и в том, что наполнение толстого кишечника газами приводит к подъему диафрагмы и затруднению дыхательных движений.

    Искусственное дыхание - дыхательные процессы, не имеющие в процессе эволюции прототипа и осуществляемые с использованием искусственных путей введения кислорода и выведения углекислого газа:


    • подкожное и внутривенное введение кислорода,

    • введение кислорода в крупные полости (плевральную, перитонеальную, в суставную сумку),

    • осуществление дыхания с подключением экстракорпорального кровообращения в системе аппарата искусственного кровообращения (оксигенатор-инжектор).

    ЛЕГКИЕ – парные дыхательные органы, расположенные в плевральных полостях. Состоят из разветвлений бронхов, образующих бронхиальное дерево (воздухоносные пути легкого), и системы альвеол, которые вместе с дыхательными бронхиолами, альвеолярными ходами и альвеолярными мешочками составляет альвеолярное дерево (дыхательную паренхиму легкого). На стенках альвеолярных ходов и альвеолярных мешочков, а также дыхательных бронхиол располагаются открывающиеся в их просвет альвеолы легкого. Морфофункциональной единицей респираторного отдела легкого является ацинус. В понятие «ацинус» включаются все разветвления одной концевой бронхиолы – дыхательные бронхиолы всех порядков, альвеолярные ходы и альвеолы. Кровоснабжение легкого осуществляется легочными и бронхиальными сосудами. Легочные сосуды составляют малый круг кровообращения и выполняют главным образом функцию газообмена между кровью и воздухом. Бронхиальные сосуды обеспечивают питание легких и принадлежат большому кругу кровообращения. Между этими двумя системами существуют достаточно выраженные анастомозы. Капилляры образуют 4-12 петель на стенке альвеол и сливаются в посткапилляры. Сеть капилляров в легких очень густая. Общая площадь капиллярной сети одного легкого составляет 35-40 м 2 .

    Основная функция легких – дыхательная. Выделяют так называемые НЕДЫХАТЕЛЬНЫЕ ФУНКЦИИ ЛЕГКИХ:


    1. Метаболическая . Участие в обмене жиров для образования сурфактантов, синтез простагландинов, синтез тромбопластина и гепарина, синтез протеолитических и липолитических ферментов.

    2. Терморегуляторная . При снижении температуры в легких активируются экзотермические процессы (химическая теплопродукция), одновременно уменьшается капиллярный кровоток, а значит и физическая теплоотдача.

    3. Барьерная . При вдыхании задерживаются механические частицы, которые потом удаляются ресничками мерцательного эпителия. Для крови – инактивация серотонина, простагландинов, ацетилхолина, брадикина, а также очистка крови от механических примесей.

    4. Секреторная . Железы и секреторные клетки продуцируют 300-400 мл в сутки серозно-мукоидного секрета (защита). Эндокринная функция: продукция простагландинов и других биологические активных веществ.

    5. Экскреторная . Удаляется углекислый газ и другие летучие метаболиты (например: ацетоновый запах при диабетической коме). Кроме того удаляется до 500 мл воды в сутки.

    6. Всасывательная . Хорошо всасывается эфир, хлороформ. Возможен ингаляционный путь введения паров и аэрозолей ряда лекарственных веществ.

    7. Очистительная . Секреторная деятельность. Активность ресничного эпителия, сосудисто-лимфатический путь.

    ^ ВЕНТИЛЯЦИЯ ЛЁГКИХ.

    Осуществляется за счет создания разности давления между альвеолярным и атмосферным воздухом. При вдохе давление в альвеолярном пространстве значительно снижается (за счет расширения грудной полости) и становится меньше атмосферного (на 3-5 мм рт. ст.), поэтому воздух из атмосферы входит в воздухоносные пути. За счет этого совершается обмен газами – кислород входит в альвеолярное пространство, а углекислый газ выходит из него. При выдохе давление вновь выравнивается, т.е. давление в альвеолярном пространстве приближается к атмосферному или даже становится выше его (форсированный выдох), что приводит к удалению очередной порции воздуха из легких.

    Внутриплевральное давление меньше атмосферного: на вдохе на 4-9 мм рт.ст., на выдохе на 2-4 мм рт.ст..

    При спокойном вдохе и выдохе через легкие проходит около 500 мл воздуха (ДО). Из них часть заполняет анатомическое мертвое пространство (около 175 мл). До основной среды доходит около 325 мл воздуха.

    В среднем акт дыхания совершается за 4-6 с. Акт вдоха проходит несколько быстрее, чем акт выдоха. За минуту совершается 12-16 дыхательных циклов. Через легкое за минуту проходит около 6-8 л воздуха – это минутный объем дыхания (МОД) или легочная вентиляция (ЛВ).

    При форсированном (глубоком) вдохе человек может дополнительно вдохнуть до 2500 мл. Это резервный объем вдоха (РОВд).

    Резервный объем выдоха (РОВ) – количество воздуха, которое человек может дополнительно выдохнуть после спокойного выдоха.

    Остаточный объем лёгких (ООЛ) – количество воздуха, оставшееся в легких после максимального выдоха. Даже при самом глубоком выдохе в альвеолах и воздухоносных путях остается некоторое количество воздуха.

    Ёмкости легких:

    Общая емкость легких (ОЕЛ) – количество воздуха, находящегося в легких после максимального вдоха. Равна сумме – остаточный объем + жизненная емкость легких.

    Функциональная остаточная емкость (ФОЕ) – количество воздуха, остающееся в легких после спокойного выдоха. Равен сумме – резервный объем выдоха + остаточный объем. У молодых – 2,4 л и около 3,4 у пожилых.

    При спокойном дыхании ФОЕ обновляется примерно на 1/7 часть. За счет этого процентное содержание кислорода и углекислого газа (парциальное давление этих газов) сохраняется на постоянном уровне. Задача всех механизмов, участвующих в дыхании, в том числе и регуляторных, - это поддержание постоянства парциального давления кислорода и углекислого газа в альвеолярном пространстве как в покое, так и при любых других условиях.

    Дыхательная мускулатура.

    Акт вдоха (инспирация) – процесс активный. Расширение грудной полости совершается дыхательными мышцами. Главная мышца – диафрагма. При её сокращении уплощается купол диафрагмы, что приводит к увеличению верхне-нижнего размера грудной полости. 70-100% вентиляции легких обеспечивается работой диафрагмальных мышц. При спокойном вдохе участвуют т, акже межхрящевые участки межреберных мышц краниальных межреберий, а также наружные межреберные мышцы. При их сокращении поднимаются ребра и отходит грудина, т.е. увеличиваются размеры грудной полости в передне-заднем и поперечном направлениях. При форсированном вдохе дополнительно включаются лестничная, грудино-ключично-сосцевидная, трапециевидная, большая и малая грудные мышцы, мышцы-разгибатели позвоночника.

    Акт выдоха (экспирация) в условиях покоя – процесс пассивный. За счет эластической отдачи энергии, которая накопилась во время вдоха при растяжении эластических структур легких, происходит спадение легких на фоне расслабления инспираторной мускулатуры. При форсированном выдохе сокращаются внутренние межреберные мышцы, которые активно уменьшают объем грудной полости и тем самым повышают плевральное давление, т.е. создают в альвеолах более высокое давление, чем в атмосфере. Кроме того, сокращаются мышцы брюшной стенки – косая и прямая мышцы живота, межкостные части внутренних межреберных мышц, а также мышцы, сгибающие позвоночник.

    Альфа-мотонейроны диафрагмальной мышцы локализованы в шейных сегментах спинного мозга – С 2 - С 5 . В момент возбуждения нейроны посылают к мышечным волокнам ПД с частотой до 50 Гц и вызывают их тетанус.

    Мотонейроны межреберных мышц расположены в грудном отделе спинного мозга (Th1 – Th12) и представлены альфа- и гамма-мотонейронами. За счет гамма-мотонейронов происходит оценка степени податливости грудной клетки к растяжению. Когда сила дыхательной мускулатуры недостаточна для акта вдоха, происходит активация проприорецепторов дыхательных мышц, а затем – как следствие – альфа-мотонейронов. (Гамма-мотонейроны регулируют чувствительность этих рецепторов.)

    Респираторное сопротивление.

    Состоит из эластического и неэластического.

    Эластичность включает в себя растяжимость и упругость. Эластические свойства легких обусловлены: 1) эластичностью альвеолярной ткани (35-40 %) и 2) поверхностным натяжением пленки жидкости, выстилающей альвеолы (55-65 %).

    Растяжимость альвеолярной ткани связана с наличием эластиновых волокон, которые вместе с коллагеновыми волокнами (обеспечивают прочность альвеолярной стенки) образуют спиральную сеть вокруг альвеол. Длина эластиновых волокон при растяжении увеличивается почти в 2 раза, коллагеновых – на 10%.

    Поверхностное натяжение создаётся за счёт сурфактанта, благодаря которому альвеолы не спадаются. Сурфактант обеспечивает эластичность альвеол.

    В целом, эластическое сопротивление пропорционально степени растяжения легких при вдохе: чем глубже дыхание, тем больше эластическое сопротивление (эластическая тяга легких).

    РЕАКТИВНОЕ СОПРОТИВЛЕНИЕ обусловлено: 1) аэродинамическим сопротивлением в дыхательных путях, 2) динамическим сопротивлением перемещающихся при дыхании тканей, 3) инерционным сопротивлением перемещающихся тканей. Основной фактор – аэродинамическое сопротивление.

    Основное сопротивление, которое испытывает воздух, возникает при прохождении от трахеи до терминальных бронхиол. Именно в этих зонах совершается перемещение воздушного потока путем конвекции. Линейная скорость воздушного потока максимальна в трахее – 98,4 см/с и минимальна в альвеолярных мешках – 0,02 см/с.

    В альвеолах (респираторной зоне) воздушный поток не движется, а происходит диффузия кислорода, углекислого газа, паров воды по градиенту парциального давления. В этой области воздушные потоки уже не испытывают аэродинамического сопротивления.

    ^ Газообменная функция легких

    Газовая смесь в альвеолах, участвующих в газообмене, обычно называется альвеолярным воздухом или альвеолярной смесью газов. Содержание кислорода и углекислого газа в альвеолах зависит прежде всего от уровня альвеолярной вентиляции и интенсивности газообмена.

    В атмосферном воздухе содержится 20,9 об. % кислорода, 0,03 об. % углекислого газа и 79,1 об. % азота.

    В выдыхаемом воздухе содержится 16 об. % кислорода,4,5 об. % углекислого газа и 79,5 об. % азота.

    Состав альвеолярного воздуха при нормальном дыхании остается постоянным, так как при каждом вдохе обновляется лишь 1/7 часть альвеолярного воздуха. Кроме того газообмен в легких протекает непрерывно, при вдохе и при выдохе, что способствует выравниванию состава альвеолярной смеси.

    Парциальное давление газов в альвеолах составляют: 100 мм рт.ст. для О 2 и 40 мм рт.ст. для СО 2 . Парциальные давления кислорода и двуокиси углерода в альвеолах зависят от отношения альвеолярной вентиляции к перфузии легких (капиллярный кровоток). У здорового человека в покое это отношение равно 0,9-1,0. В патологических условиях это равновесие может претерпевать значительные сдвиги. При увеличении этого отношения парциальное давление кислорода в альвеолах увеличивается, а парциальное давление углекислого газа – падает и наоборот.

    Нормовентиляция – парциальное давление углекислого газа в альвеолах поддерживается в пределах 40 мм рт.ст.

    Гипервентиляция – усиленная вентиляция, превышающая метаболические потребности организма. Парциальное давление углекислого газа меньше 40 мм рт.ст.

    Гиповентиляция сниженная вентиляция по сравнению с метаболическими потребностями организма. Парциальное давление СО 2 больше 40 мм рт.ст.

    ^ Повышенная вентиляция – любое увеличение альвеолярной вентиляции по сравнению с уровнем покоя независимо от парциального давления газов в альвеолах (например: при мышечной работе).

    Эупноэ – нормальная вентиляция в покое, сопровождающаяся субъективным чувством комфорта.

    Гиперпноэ – увеличение глубины дыхания, независимо от того, повышена или снижена частота дыхания.

    Тахипноэ – увеличение частоты дыхания.

    Брадипноэ – снижение частоты дыхания.

    Апноэ – остановка дыхания, обусловленная отсутствием стимуляции дыхательного центра (например: при гипокапнии).

    Диспноэ – неприятное субъективное ощущение недостаточности дыхания или затрудненного дыхания (одышка).

    Ортопноэ – выраженная одышка, связанная с застоем крови в легочных капиллярах в результате сердечной недостаточности. В горизонтальном положении это состояние усугубляется и поэтому лежать таким больным тяжело.

    Асфиксия – остановка или угнетение дыхания, связанные главным образом с параличом дыхательного центра. Газообмен при этом резко нарушен: наблюдается гипоксия и гиперкапния.

    ^ Диффузия газов в легких

    Парциальное давление кислорода в альвеолах (100 мм рт.ст.) значительно выше, чем напряжение кислорода в венозной крови, поступающей в капилляры легких. Градиент парциального давления углекислого газа направлен в обратную сторону (46 мм рт.ст. в начале легочных капилляров и 40 мм рт.ст. в альвеолах). Эти градиенты давлений являются движущей силой диффузии кислорода и двуокиси углерода, т.е. газообмена в легких.

    Согласно закону Фика диффузный поток прямо пропорционален градиенту концентрации. Коэффициент диффузии для СО 2 в 20-25 раз больше, чем кислорода. При прочих равных условиях углекислый газ диффундирует через определенный слой среды в 20-25 раз быстрее, чем кислород. Именно поэтому обмен СО 2 в легких происходит достаточно полно, несмотря на небольшой градиент парциального давления этого газа.

    При прохождении каждого эритроцита через легочные капилляры время, в течение которого возможна диффузия (время контакта) относительно невелико (около 0,3 с). Однако этого времени вполне достаточно для того, чтобы напряжения дыхательных газов в крови и их парциальное давление в альвеолах практически сравнялись.

    Диффузионную способность легких, как и альвеолярную вентиляцию, следует рассматривать в отношении к перфузии (кровоснабжению) легких.

    ^ Транспорт кислорода кровью. Кривая диссоциации оксигемоглобина, ее характеристика. Факторы, влияющие на образование и диссоциацию оксигемоглобина.

    Почти во всех жидкостях может содержаться некоторое количество физически растворенных газов. Содержание растворенного газа в жидкости зависит от его парциального давления.

    Хотя содержание в крови О 2 и СО 2 в физически растворенном состоянии относительно невелико, это состояние играет существенную роль в жизнедеятельности организма. Для того, чтобы связаться с теми или иными веществами, дыхательные газы сначала должны быть доставлены к ним в физически растворенном виде. Таким образом, при диффузии в ткани или кровь каждая молекула О или СО определенное время пребывает в состоянии физического растворения.

    Большая часть кислорода переносится кровью в виде химического соединения с гемоглобином. 1 моль гемоглобина может связать до 4 молей кислорода, а 1 грамм гемоглобина – 1,39 мл кислорода. При анализе газового состава крови получают несколько меньшую величину (1,34 – 1,36 мл О 2 на 1 г. Hb). Это обусловлено тем, что небольшая часть гемоглобина находится в неактивном виде. Таким образом, ориентировочно можно считать, что in vivo 1г Hb связывает 1,34 мл О 2 (так называемое число Хюфнера).

    Исходя из числа Хюфнера, можно, зная содержание гемоглобина, вычислить кислородную емкость крови: [О 2 ] макс = 1,34 мл О 2 на 1 г Hb; 150 г Hb на 1 л крови = 0,20 л О 2 на 1 л крови. Однако, такое содержание кислорода в крови может достигаться лишь в том случае, если кровь контактирует с газовой смесью с высоким содержанием кислорода (РО 2 = 300 мм рт.ст.), поэтому в естественных условиях гемоглобин оксигенируется не полностью.

    Реакция, отражающая соединения кислорода с гемоглобином подчиняется закону действующих масс. Это означает, что отношение между количеством гемоглобина и оксигемоглобина зависит от содержания физически растворенного О 2 в крови; последнее же пропорционально напряжению О 2 . Процентное отношение оксигемоглобина к общему содержанию гемоглобина называется насыщением гемоглобина кислородом. В соответствии с законом действующих масс насыщение гемоглобина кислородом зависит от напряжения О 2 . Графически эту зависимость отражает так называемая кривая диссоциации оксигемоглобина. Эта кривая имеет S – образную форму.

    Наиболее простым показателем, характеризующим расположение этой кривой, служит так называемое напряжение полунасыщения РО 2 , т.е. такое напряжение О 2 , при котором насыщение гемоглобина кислородом составляет 50 %. В норме РО 2 артериальной крови составляет около 26 мм рт.ст.

    Конфигурация кривой диссоциации оксигемоглобина имеет важное значение для переноса кислорода кровью. В процессе поглощения кислорода в легких напряжение О 2 в крови приближается к парциальному давлению этого газа в альвеолах. У молодых людей РО 2 артериальной крови составляет около 95 мм рт.ст. При таком напряжении насыщение гемоглобина кислородом равно примерно 97 %. С возрастом (и в еще большей степени при заболеваниях легких) напряжение О 2 в артериальной крови может значительно снижаться, однако, поскольку кривая диссоциации оксигемоглобина в правой части почти горизонтальна, насыщение крови кислородом уменьшается ненамного. Так, даже при падении РО 2 в артериальной крови до 60 мм рт.ст. насыщение гемоглобина кислородом равно 90 %. Таким образом, благодаря тому, что области высоких напряжений кислорода соответствует горизонтальный участок кривой диссоциации оксигемоглобина, насыщение артериальной крови кислородом сохраняется на высоком уровне даже при существенных сдвигах РО 2 .

    Крутой наклон среднего участка кривой диссоциации оксигемоглобина свидетельствует о благоприятной ситуации для отдачи кислорода тканям. В состоянии покоя РО 2 в области венозного конца капилляра равно приблизительно 40 мм рт.ст., что соответствует примерно 73 % насыщения. Если в результате увеличения потребления кислорода его напряжение в венозной крови падает лишь на 5 мм рт.ст., то насыщение гемоглобина кислородом снижается на 75 %: высвобождающийся при этом О 2 может быть сразу же использован для процессов метаболизма.

    Несмотря на то, что конфигурация кривой диссоциации оксигемоглобина обусловлена главным образом химическими свойствами гемоглобина, существует и ряд других факторов, влияющих на сродство крови к кислороду. Как правило, все эти факторы смещают кривую, увеличивая или уменьшая ее наклон, но не изменяя при этом ее S-образную форму. К таким факторам относятся температура, рН, напряжение СО 2 и некоторые другие факторы, роль которых возрастает в патологических условиях.

    Равновесие реакции оксигенации гемоглобина зависит от температуры. При понижении температуры наклон кривой диссоциации оксигемоглобина увеличивается, а при ее повышении – снижается. У теплокровных животных этот эффект проявляется только при гипотермии или лихорадочном состоянии.

    Форма кривой диссоциации оксигемоглобина в значительной степени зависит от содержания в крови ионов Н + . При снижении рН, т.е. закислении крови, сродство гемоглобина к кислороду уменьшается, и кривая диссоциации оксигемоглобина называется эффектом Бора.

    РН крови тесно связано с напряжением СО 2 (РСО 2): чем РСО 2 выше, тем рН ниже. Увеличение напряжения в крови СО 2 сопровождается снижением сродства гемоглобина к кислороду и уплощение кривой диссоциации НbО 2 . Эту зависимость также называют эффектом Бора, хотя при подобном количественном анализе было показано, что влияние СО 2 на форму кривой диссоциации оксигемоглобина нельзя объяснить только изменением рН. Очевидно, сам углекислый газ оказывает на диссоциацию оксигемоглобина «специфический эффект».

    При ряде патологических состояний наблюдаются изменения процесса транспорта кислорода кровью. Так, есть заболевания (например, некоторые вида анемий), которые сопровождаются сдвигами кривой диссоциации оксигемоглобина вправо (реже – влево). Причины таких сдвигов окончательно не раскрыты. Известно, что на форму и расположение кривой диссоциации оксигемоглобина оказывают выраженное влияние некоторые фосфорорганические соединения, содержание которых в эритроцитах при патологии может изменяться. Главным таким соединением является 2,3-дифосфоглицерат – (2,3 – ДФГ). Сродство гемоглобина к кислороду зависит также от содержания в эритроцитах катионов. Необходимо отметить также влияние патологических сдвигов рН: при алкалозе поглощение кислорода в легких в результате эффекта Бора увеличивается, но отдача его тканям затрудняется; а при ацидозе наблюдается обратная картина. Наконец, значительный сдвиг кривой влево имеет место при отравлении угарным газом.

    ^ Транспорт СО кровью. Формы транспорта. Значение карбоангидразы.

    Двуокись углерода – конечный продукт окислительных обменных процессов в клетках – переносится с кровью к легким и удаляется через них во внешнюю среду. Так же как и кислород, СО 2 может переноситься как в физически растворенном виде, так и в составе химических соединений. Химические реакции связывания СО 2 несколько сложнее, чем реакции присоединения кислорода. Это обусловлено тем, что механизмы, отвечающие за транспорт СО 2 должны одновременно обеспечивать поддержание постоянства кислотно-щелочного равновесия крови и тем самым внутренней среды организма в целом.

    Напряжение СО 2 в артериальной крови, поступающей в тканевые капилляры составляет 40 мм рт.ст. В клетках же, расположенных около этих капилляров, напряжение СО 2 значительно выше, так как это вещество постоянно образуется в результате метаболизма. В связи с этим физически растворенный СО 2 переносится по градиенту напряжения из тканей в капилляры. Здесь некоторое количество углекислого газа остается в состоянии физического растворения, но большая часть СО 2 претерпевает ряд химических превращений. Прежде всего происходит гидратация молекул СО 2 с образованием угольной кислоты.

    В плазме крови эта реакция протекает очень медленно; в эритроците же она ускоряется примерно в 10 тыс. раз. Это связано с действием фермента карбоангидразы. Поскольку этот фермент присутствует только в клетках, практически все молекулы СО 2 , участвующие в реакции гидратации, должны сначала поступить в эритроциты.

    Следующая реакция в цепи химических превращений СО 2 заключается в диссоциации слабой кислоты Н 2 СО 3 на ионы бикарбоната и водорода.

    Накопление НСО 3 - в эритроците приводит к тому, что между его внутренней средой и плазмой крови создается диффузионный градиент. Ионы НСО 3 - могут передвигаться по этому градиенту лишь в том случае, если при этом не будет нарушаться равновесное распределение электрических зарядов. В связи с этим одновременно с выходом каждого иона НСО 3 - должен происходить либо выход из эритроцита одного катиона, либо вход одного аниона. Поскольку мембрана эритроцита практически не проницаема для катионов, но сравнительно легко пропускает небольшие анионы, взамен НСО 3 - в эритроцит поступают ионы Сl - . Этот обменный процесс называется хлоридным сдвигом.

    СО 2 может связываться также путем непосредственного присоединения к аминогруппам белкового компонента гемоглобина. При этом образуется так называемая карбаминова связь.

    Гемоглобин, связанный с СО 2 , называется карбогемоглобином.

    Зависимость содержания СО 2 от степени оксигенации гемоглобина называется эффектом Холдейна. Данный эффект частично обусловлен различной способностью оксигемоглобина и дезоксигемоглобина к образованию карбаминовой связи.

    ^ Регуляция дыхания

    Регуляцию дыхания можно определить как приспособление внешнего дыхания к потребностям организма. Главное в регуляции дыхания – обеспечить смену дыхательных фаз.

    Чрезвычайно важно, чтобы деятельность дыхательной системы была адекватна метаболическим потребностям организма в целом. Так, при физической работе скорость поглощения кислорода и удаления углекислого газа должна возрастать в несколько раз по сравнению с покоем. Для этого необходимо увеличить вентиляцию легких. Увеличение минутного объема дыхания может быть достигнуто путем повышения частоты и глубины дыхания. Регуляция дыхания должна обеспечивать наиболее экономичное соотношение между этими двумя параметрами. Кроме того, при осуществлении некоторых рефлексов (например: глотательного, кашлевого, чихательного), а также определенных видов деятельности, характерных для человека (речи, пения и т.д.), характер дыхания должен оставаться более или менее постоянным. Учитывая все это разнообразие запросов организма для оптимального функционирования дыхательной системы необходимы сложные регуляторные механизмы.

    В системе управления дыханием можно выделить два основных контура:


    1. Саморегуляторный, действующий на уровне системы, который включает дыхательный центр посредством активации механорецепторов легких, дыхательных мышц, центральных и периферических хеморецепторов. Данный уровень регуляции осуществляет поддержание постоянства газового состава артериальной крови.

    2. Регуляторный, корректирующий – включает сложные поведенческие условные и безусловные акты. На уровне регуляторного контура происходят процессы, приспосабливающие дыхание к изменяющимся условиям окружающие среды и жизнедеятельности организма.

    ^ Саморегуляторный контур

    В продолговатом мозге были обнаружены скопления нейронов, отвечающих за частоту, глубину и длительность вдоха и выдоха. Данная нейрональная ассоциация получила название ДЫХАТЕЛЬНЫЙ ЦЕНТР. Дыхательный центр делят на три области по преобладанию нейронов, выполняющих специфические функции:


    1. «Центр вдоха» совпадает с ростральным отделом обоюдного ядра. Здесь располагаются инспираторные нейроны (α - нейроны), разряжающиеся незадолго до вдоха и во время самого вдоха. α - нейроны обладают автоматией, очень чувствительны к возбуждению и углекислому газу;

    2. «Центр выдоха» располагается вдоль обоюдного ядра. Здесь обнаружены экспираторные нейроны;

    3. в медиальной инспираторной области, расположенной вдоль одиночного тракта, были обнаружены как α - нейроны, возбуждающиеся при вдохе, так и β – нейроны. Активность β – нейронов увеличивается при максимальном растяжении легких. Полагают, что при активации β – нейроны оказывают тормозное влияние на α – нейроны.
    Как следует из приведенных выше данных, ритмическое чередование вдоха и выдоха связано с попеременными разрядами инспираторных и экспираторных нейронов. Во время активности инспираторных нейронов экспираторные клетки «молчат», и наоборот. Это позволяет предположить, что инспираторные и экспираторные клетки оказывают друг на друга реципрокное тормозное влияние.

    Инспираторные нейроны возбуждаются при постоянном поступлении ритмических импульсов с центральных и периферических хеморецепторов. Активность данных рецепторов находится в прямой зависимости от содержания в крови кислорода и углекислого газа (периферические хеморецепторы) и концентрации ионов водорода в ликворе (центральные хеморецепторы).

    Потоки импульсов от α- инспираторных нейронов устремляются к ядрам дыхательных мышц спинного мозга, и, активируя их вызывают сокращение диафрагмы и увеличение объема грудной клетки, а также возбуждают β – инспираторные нейроны. Одновременно, в процессе увеличения объема грудной клетки, нарастают потоки импульсов от механорецепторов легких на β – нейроны. Предполагают, что β – инспираторные нейроны возбуждают инспираторно – тормозящие нейроны замыкающиеся на α – инспираторных нейронах. Как следствие происходит прекращение вдоха и наступает выдох. Феномен раздражения рецепторов растяжения легких и прекращение вдоха получило название – инспираторно – тормозящий рефлекс Геринга и Брейера. Напротив, если существенно уменьшить объем легких, то произойдет глубокий вдох. Дуга этого рефлекса начинается от рецепторов растяжений легочной паренхимы (подобные рецепторы обнаружение в трахее, бронхах и бронхиолах. Некоторые из этих рецепторов реагируют на степень растяжения легочной ткани, другие только при уменьшении или увеличении растяжения (независимо от степени)). Афферентные волокна от рецепторов растяжения легких идут в составе блуждающих нервов, а эфферентное звено представлено двигательными нервами, идущими к дыхательной мускулатуре. Физиологическое значение рефлекса Геринга-Брейера состоит в ограничении дыхательных экскурсий, благодаря рефлексу достигается соответствие глубины дыхания сиюминутными условиям функционирования организма, при котором работа дыхательной системы совершается более экономично. Кроме того, рефлекс препятствует перерастяжению легких.

    Уменьшение при вдохе объема легких снижает поток импульсов с механорецепторов на β – инспираторные нейроны и вновь наступает вдох.

    Принудительное увеличение времени выдоха (например, при раздувании легких в период экспирации) продлевает время возбуждения рецепторов растяжения легких, и как следствие, задерживает наступление следующего вдоха – экспираторно облегчающий рефлекс Геринга-Брейера.

    Таким образом, чередование вдоха и выдоха происходит по принципу отрицательной обратной связи.

    ^ Регуляторный контур

    Как мы уже отметили, основой активности α – инспираторных нейронов является постоянная активирующая импульсация от центральных и периферических хеморецепторов. Роль ведущих возбуждающих агентов указанных рецепторных образований выполняют СО 2 и О 2 в крови, а также концентрация протонов в ликворе.

    Однако, на уровне регуляторного контура осуществляется опережающая регуляция дыхания без изменения газового состава в крови (стресс, эмоциональные состояния, творческий подъем, и т.д.). В отличие от саморегуляторного уровня, контролируемого гуморальными агентами, а регуляторном преобладающее влияние приобретает центральная нервная система.

    ^ Роль дыхания в формировании речи

    Дыхательная система человека помимо своей основной функции – обеспечение газообмена в легких принимает непосредственное участие в создании звуков речи. Звуковая речь образуется при преобразовании части кинетической энергии воздушных потоков в дыхательных путях в акустическую энергию.

    Основными способами создания акустических эффектов является или прерывание воздушной струи ритмически смыкающимися и размыкающимися голосовыми связками, ведущее к возникновению тональных звуков, или же возбуждение шумовых звуков при протекании воздуха с достаточно большой скоростью через сужения, образуемые в том или ином месте по ходу верхних дыхательных путей. Благодаря действиям дыхательной системы обеспечиваются необходимые давления и потоки воздуха в речеобразующем тракте.

    Как дыхательная система, так и подвижные элементы верхних дыхательных путей, принимающие участие в речеобразовании – артикуляторы, приводятся в действие многими мышцами, которые являются исполнительными органами.

    Необходимость одновременного обеспечения функций легочного газообмена и создания определенных акустических эффектов и определяет своеобразие картины речевого дыхания. Равномерные циклы нормального дыхания характерным образом преображаются при речи. Перед началом произнесения фразы возникает более глубокий вдох. Фраза произносится на выдохе. Речевой выдох происходит в основном через рот, лишь небольшие порции воздуха выходят через носовые отверстия (назальные звуки).

    На работу дыхательного центра при речи оказывают влияние расположенные на высоких уровнях ЦНС нервные механизмы, производящие синтез и организующие реализацию речевой программы.

    РЕЧЬ – форма общения между людьми, является основой сигнальной системы у человека.

    Специальных органов речи у человека нет. Речь реализуется с помощью аппаратов дыхания, жевания и глотания, обеспечивающих процессы голосообразования и артикуляции.

    Выделяют два основных вида речи: импрессивную (понимание речи) и экспрессивную (устная активная речь).


    1. органы дыхания (легкие с бронхами и трахеей)

    2. органы, непосредственно участвующие в звукообразовании.
    Среди последних различают активные (подвижные), способные менять объем и форму речевого тракта и создавать в нем препятствия для выдыхаемого воздуха, и пассивные (неподвижные), лишенные этой способности. К активным относится гортань, глотка, мягкое небо, язык, губы, к пассивным – зубы, твердое небо, полость носа и придаточные пазухи.

    Все эти образования можно представить как три взаимосвязанных отдела речеобразовательного аппарата: генераторный, резонаторный и энергетический. Различают два генератора – тоновый (гортань) и шумовой (за счет создания щелей в полости рта); два модулирующих резонатора – рот и глотка и один немодулирующий – носоглотка с придаточными полостями; два энергодатчика – дыхательные мышцы и гладкие мышцы трахеобронхионального дерева.

    Акустические сигналы речи обладают двумя независимыми переменными параметрами: информация о высоте звука и его фонемном составе (характеристика гласного звука в слоге). Оба эти параметра обеспечиваются двумя различными механизмами. Первый контролирует высоту звука и называется фонацией, он локализован в гортани, его физической основой является колебание связок. Второй – артикуляция, он работает в так называемом голосовом тракте. Физической основой механизма артикуляции является резонанс полых пространств. Подтверждением наличия двух механизмов является шепотная речь. При шепоте нет звукового тона (голоса), фонация отсутствует и речь обеспечивается только лишь механизмом артикуляции.

    Немаловажное значение в звукообразовании имеют сосудистые реакции в слизистых оболочках дыхательных путей и голосового тракта. От состояния кровенаполнения данных отделов зависит резонаторная функция. Увеличение кровенаполнения приводит к изменению окраски (тембра) звука.

    Секреция желез слизистой оболочки дыхательных путей и голосового тракта так же оказывает влияние на речепроизводство. Ее усиление сказывается и на резонаторных свойствах голосового тракта.

    Обильная секреция в носоглотке создает затруднение для произношение носовых звуков, придает им оттенок гнусавости. Гиперсоливация влияет на формирование всех звуков, в которых участвует полость рта, зубы, язык и губы. Эта сфера уже стоматологического аспекта речеобразования, на что врач - стоматолог должен обращать внимание.

    Одним из важных исполнительных отделов речеобразовани является голосовой тракт, где за счет артикуляции формируются фонемная и шепотная составляющие речи. Деятельность этого отдела большей своей части является областью компетентности врача стоматолога. Нарушение целостности зубных рядов, особенно резцовой группы, приводит к изменения и затруднению в формировании зубных звуков (Т, Д, С, Ц), при этом могут наблюдаться шепелявость, присвист и т.д.

    Патологические образования на спинке языка приводят к затруднению производства фрикативных звуков (З, Ч, Ж, Ш, Щ). Нарушение в области губ осложняют произношение взрывных (Б, П) и фрикативных звуков (В, Ф) и др.

    На результат фонации большое влияние оказывает измененный прикус. Особенно это проявляется при открытом, перекрестных прикусах, прогнатии и прогении.

    Существует несколько видов нарушения речеобразования:

    Палатолалия – нарушение фонации, связанное с расщелиной твердого неба.

    Глоссолалия – артикуляционные расстройства при аномалиях строения и функций языка.

    Дислалии – нарушение артикуляции при неправильном строении зубов и их расположении в альвеолярных дугах, особенно передней группы (резцы, клыки).

    Хирург – стоматолог при операциях на органах полости рта должен заранее прогнозировать возможность нарушения речеобразовательной функции. Особенно важно знание механизмов артикуляции для стоматолога-ортопеда. Производство съемных протезов, особенно при обширных адентиях или полном отсутствии зубов, приводит к изменению артикуляции в полости рта, что, естественно, сказывается и на резонирующей функции голосового аппарата и, следовательно, на словообразовании. Часто у больных со съемными протезами проявляются те или иные признаки дислалий, которые выражаются в затруднении звукообразования фонем, дополнительного пришептывания, шепелявости, присвистывания и т. д. Все это необходимо учитывать при конструировании и создании зубных протезов, особенно людям, в своем трудовом процессе использующим речь (артисты, певцы, лекторы, дикторы, педагоги).

    Врач-стоматолог должен восстанавливать или предупреждать не только нарушение функции пищеварения в области рта, но и функции речеобразования в стоматогенном аспекте, диагностируя причины дислалий, прогнозируя их появление при терапевтических, хирургических и ортопедических вмешательствах.

    ^ Носовое и ротовое дыхание. Особенности.

    В обычных условиях человек дышит через нос. Это имеет определенное физиологическое значение. При дыхании через нос воздух проходит с большим сопротивлением, чем при дыхании через рот, поэтому при носовом дыхании работа дыхательных мышц возрастает и дыхание становится более глубоким. Атмосферный воздух, проходя через нос, согревается, увлажняется, очищается. Согревание происходит за счет тепла, отдаваемого кровью, протекающей по хорошо развитой системе кровеносных сосудов слизистой оболочки носа. Носовые ходы имеют сложно извилистое строение, что увеличивает площадь слизистой оболочки, с которой контактирует атмосферный воздух. Согревание воздуха тем больше, чем ниже внешняя температура.

    В носу происходит очищение вдыхаемого воздуха, причем в полости носа захватываются частицы пыли размером больше 5-6 мкм в диаметре, а более мелкие проникают в нижележащие отделы.

    В полости носа выделяется 0,5-1 л слизи в сутки, которая движется в задних двух третях носовой полости со скоростью 8-10 мм/мин, а в передней трети – 1-2 мм/мин. Каждые 10 минут проходит новый слой слизи, которая содержит бактерицидные вещества (лизоцим, секреторный иммуноглобулин А).

    Для дыхания ротовая полость имеет большое значение лишь у низших животных (амфибий, рыб). У человека дыхание через рот появляется при патологических условиях, главным образом при заболеваниях носа и носоглотки. В нормальных условиях ротовое дыхание появляется при напряженном разговоре, быстрой ходьбе, беге, при другой интенсивной физической нагрузке, когда потребность в воздухе велика.

    Дыхание через рот у детей первого полугодия жизни почти невозможно, так как большой язык оттесняет надгортанник кзади.

    ^ Первый вдох ребенка, причины его возникновения. Характеристика первого вдоха. Особенности дыхания у новорожденных и детей раннего возраста.

    Во внутриутробном периоде развития легкие не являются органом внешнего дыхания плода, эту функцию выполняет плацента. Но задолго до рождения появляются дыхательные движения, которые необходимы для нормального развития легких. Легкие до начала вентиляции заполнены жидкостью (около 100 мл).

    Рождение вызывает резкие изменения состояния дыхательного центра, приводящие к началу вентиляции. Первый вдох наступает через 15-70 сек после рождения, обычно после пережатия пуповины, иногда – до него, т.е. сразу после рождения. Факторы, стимулирующие первый вдох:


    1. Наличие в крови гуморальных раздражителей дыхания: СО 2 , Н + и недостаток О 2 . В процессе родов, особенно после перевязки пуповины, напряжение СО 2 и концентрация Н + возрастают, усиливается гипоксия. Но сами по себе гиперкапния, ацидоз и гипоксия не объясняют наступления первого вдоха. Возможно, что у новорожденных небольшие уровни гипоксии могут возбуждать дыхательный центр, действуя непосредственно на ткань мозга.

    2. Не менее важный фактор, стимулирующий первый вдох, - резкое усиление потока афферентных импульсов от рецепторов кожи (холодовых, тактильных), проприорецепторов, вестибулорецепторов, наступающее в процессе родов и сразу после рождения. Эти импульсы активируют ретикулярную формацию ствола мозга, которая повышает возбудимость нейронов дыхательного центра.

    3. Стимулирующим фактором является устранение источников торможения дыхательного центра. Раздражение жидкостью рецепторов, расположенных в области ноздрей, сильно тормозит дыхание (рефлекс «ныряльщика»). Поэтому сразу при рождении головки плода из родовых путей, акушеры удаляют слизь и оклоплодные воды из воздухоносных путей.
    Таким образом, возникновение первого вдоха – результат одновременного действия ряда факторов.

    Первый вдох новорожденного характеризуется сильным возбуждением инспираторных мышц, прежде всего диафрагмы. В 85 % случаев первый вдох более глубокий, чем последующие, первый дыхательный цикл более длительный. Происходит сильное снижение внутриплеврального давления. Это необходимо для преодоления силы трения между жидкостью, находящейся в воздухоносных путях и их стенкой, а также для преодоления силы поверхностного натяжения альвеол на границе жидкость – воздух после попадания в них воздуха. Длительность первого вдоха 0,1–0,4 сек., а выдоха в среднем 3,8 сек. Выдох происходит на фоне суженной голосовой щели и сопровождается криком. Объем выдыхаемого воздуха меньше, чем вдыхаемого, что обеспечивает начало формирования ФОЕ. ФОЕ увеличивается от вдоха к вдоху. Аэрация легких обычно заканчивается ко 2-4 дню после рождения. ФОЕ в этом возрасте составляет около 100 мл. С началом аэрации начинается функционировать малый круг кровообращения. Жидкость, оставшаяся в альвеолах всасывается в кровеносное русло и лимфу.

    У новорожденных ребра расположены с меньшим наклоном, чем у взрослых, поэтому сокращения межреберных мышц менее эффективно изменяют объем грудной полости. Спокойное дыхание у новорожденных является диафрагмальным, инспираторные мышцы работают только при крике и одышке.

    Новорожденные всегда дышат носом. Частота дыхания вскоре после рождения в среднем около 40 в минуту. Воздухоносные пути у новорожденных узкие, их аэродинамическое сопротивление в 8 раз выше, чем у взрослых. Легкие мало растяжимы, но податливость стенок грудной полости высокая, результатом этого являются низкие величины эластической тяги легких. Для новорожденных характерен относительно небольшой резервный объем вдоха и относительно большой резервный объем выдоха. Дыхание новорожденных нерегулярно, серии частых дыханий чередуются более редкими, 1-2 раза в 1 минуту возникают глубокие вздохи. Могут наступать задержки дыхания на выдохе (апноэ) до 3 и более секунд. У недоношенных может наблюдаться дыхание типа Чейн-Стокса. Деятельность дыхательного центра координируется с активностью центров сосания и глотания. При кормлении частота дыхания обычно соответствует частоте сосательных движений.

    Возрастные изменения дыхания:

    После рождения до 7-8 лет идут процессы дифференцировки бронхиального дерева и увеличения количества альвеол (особенно в первые три года). В подростковом возрасте происходит увеличение объема альвеол.

    Минутный объем дыхания увеличивается с возрастом почти в 10 раз. Но для детей в целом характерен высокий уровень вентиляции легких, приходящийся на единицу массы тела (относительной МОД). Частота дыхания с возрастом уменьшается, особенно сильно в течение первого года после рождения. С возрастом ритм дыхания становиться более стабильным. У детей длительность вдоха и выдоха почти равны. Увеличение продолжительности выдоха у большинства людей происходит в подростковом возрасте.

    С возрастом совершенствуется деятельность дыхательного центра, развиваются механизмы, обеспечивающие четкую смену дыхательных фаз. Постепенно формируется способность детей к произвольной регуляции дыхания. С конца первого года жизни дыхание участвует в речевой функции.

    ^ Легочное дыхание и адаптивные реакции организма.

    При характеристике легочного дыхания особое внимание уделяют оценке дыхательного цикла , под которым понимают ритмически повторяющуюся смену состояний дыхания. У мелких животных состоит из вдоха и выдоха, у крупных – включает три фазы: вдох, выдох и паузу. У человека длительность спокойного выдоха на 10-20 % больше длительности вдоха. Отношение длительности вдоха и общей длительности дыхательного цикла называют инспираторным индексом . В условиях полного покоя дыхательная пауза имеет максимальную длительность, при физических или эмоциональных нагрузках – резко сокращается.

    При действии на организм различных физиологических и экстремальных факторов адаптивная роль легочного дыхания состоит в такой перестройке своей деятельности, чтобы обеспечивать максимально возможное поступление в организм кислорода и выведения углекислого газа, т.е. внешнее дыхание приспосабливается к потребностям организма в целом. Это прежде всего проявляется в изменении минутного объема дыхания , что достигается изменением глубины и частоты дыхания. Таким образом, регуляция дыхания должна обеспечивать наиболее экономное соотношение между двумя этими параметрами.

    Большинство экстремальных воздействий требуют от организма повышения метаболической активности, а значит большего потребления кислорода, поэтому наиболее частой реакцией легочного дыхания будет тахипноэ , т.е. учащение ритма дыхательных движений. При этом возможно развитие двух его типов: 1) учащение и углубление – тахигиперпноэ, 2) учащение и уменьшение глубины – тахигипоноэ. У животных с тахигиперпноэ в фазе учащения дыхания нарастают все параметры дыхания, при тахигипноэ они снижаются относительно исходных величин. Вентиляция легких возрастает при всех воздействиях, приводящих к увеличению напряжения углекислого газа в артериальной крови (гиперкапния), к снижению рН артериальной крови ниже 7,4, к недостатку кислорода в артериальной крови (гипоксия), физической нагрузке, при незначительном понижении температуры тела (умеренная гипотермия) и при лихорадке, при боли (у новорожденных болевые раздражители стимулируют дыхание), при состояниях, сопровождающихся выбросом в кровь адреналина (физическая или умственная нагрузка, стресс), при повышении уровня прогестерона (беременность.

    Ряд же воздействий на организм, наоборот, сопровождается уменьшением вентиляции легких. Например, гипероксия (дыхание воздухом с повышенным содержанием килслорода или чистым кислородом), резкое охлаждение организма (глубокая гипотермия). Урежение дыхательного ритма брадипноэ также может развиваться в двух вариантах: 1) урежение и углубление – брадигиперпноэ, 2) урежение и уменьшение глубины – брадигипноэ.

    В определенных условиях эти адаптивные реакции дыхательной системы могут существенно изменяться:


    1. ^ Дыхательная аритмия (arhythmia respiratoria) – нарушение физиологической ритмичности следования дыхательных циклов. Может быть результатом нормальной жизнедеятельности (труд, спорт, эмоциональное возбуждение, смех, плачь, речь, пение и др.) или патологических процессов (инфекционное заболевания, интоксикация, травмы, гипертермия, измененная газовая среда).

    2. ^ Парадоксальные дыхательные движения ( paradoxos – греч., неожиданный, странный) – синхронное с фазами дыхательного цикла движения части грудной клетки или диафрагмы, но с обратной направленностью. Наблюдаются при периферическом параличе части дыхательных мышц в результате присасывающего действия субатмосферного давления в полости плевры. Парализованные мышцы пассивно втягиваются при вдохе и выбухают во время активного выдоха за счет энергии сокращения нормально функционирующих дыхательных мышц.

    3. ^ Патологические типы дыхания:
    а) периодические типы дыхания типа Чейна-Стокса. Может наблюдаться даже у здоровых людей во сне в условиях высокогорья. Такое дыхание характеризуется тем, что за несколькими глубокими вдохами следует остановка дыхания (апноэ); затем вновь возникают глубокие дыхательные движения и так далее.

    Рис. График

    В данном случае дыхание Чейна-Стокса обусловлено снижением парциального давления кислорода в атмосферном воздухе в сочетании с с изменением дыхательного центра во время сна (снижение его возбудимости или усиление тормозного процесса в подкорковых центрах). Во время фазы глубоких дыхательных движений углекислый газ вымывается, и его напряжение в крови достигает подпороговых величин. В результате стимулирующий эффект углекислого газа на дыхательный центр практически устраняется и возникает остановка дыхания. Во время этой остановки углекислый газ накапливается в крови до тех пор, пока его напряжение не достигает пороговой величины; вследствие этого вновь возникает гипервентиляция. Дыхание типа Чейна-Стокса наблюдается также в патологических условиях, в частности при отравлениях (при уремии, когда в результате нарушения функции почек в крови накапливаются токсические вещества, подлежащие выделению).

    Б) дыхание Биота – характеризуется постоянной амплитудой дыхательных волн, которые внезапно начинаются и внезапно прекращаются. Такой тип дыхания, по-видимому, обусловлен непосредственным поражением дыхательных центров: он наблюдается при повреждении головного мозга, повышения внутричерепного давления и т.д.

    В) дыхание Кусомауля – особый вид очень глубокого уреженного дыхания. В основе лежит снижение рН крови в результате накопления нелетучих кислот (метаболический ацидоз, наблюдающийся, например, при сахарном диабете). Усиленная вентиляция легких при таком дыхании частично компенсирует метаболический ацидоз.

    Г) апнейстическое дыхание – характеризуется медленным расширением грудной клетки, которая длительное время пребывала в состоянии вдоха. Относится к разновидностям терминального дыхания. При этом наблюдается непрекращающееся инспираторное усилие и дыхание останавливается на высоте вдоха. Развивается при поражении пневмотаксического комплекса.

    Д) гаспинг – дыхание терминальное, проявляющееся редкими одиночными инспираторными движениями, каждое из которых напоминает резкий взрывообразный глубокий вдох. В норме присущ черепахам, а в период зимней спячки суркам и другим животным. В акте дыхания при гаспинге участвуют не только диафрагма и дыхательные мышцы, но и мускулатура шеи и рта. Он встречается у недоношенных детей и при многих патологических состояниях, в частности при отравлениях, в терминальных фазах дыхательной недостаточности, т.е. при глубокой гипоксии или гиперкапнии, при повышении тонуса блуждающего нерва. Гаспинг является результатом тотальной блокады хемо- и механорецептивных синапсов на эфферентных бульбарных дыхательных мышц возрастает в момент максимального возбуждения хеморецепторов. Резкое повышение порога возбудимости синапсов от хеморецепторных бульбарных дыхательных нейронов к эффективным и приводит к гаспингу.

    В механизме адаптивных реакций легких важное место занимают рефлекторные механизмы . При этом следует учитывать, что в самой легочной ткани отсутствуют какие-либо водители ритма (пейсмекеры). Ритм дыхания целиком и полностью задается дыхательным центром.

    На ритм дыхания могут рефлекторно оказывать влияние раздражения различных отделов организма, а поскольку водителем ритма является дыхательный центр, то и афферентные пути рефлекторной дуги должны замыкаться на дыхательном центре, а эфферентные пути от центра к исполнительным структурам дыхательной системы. При этом можно выделить ряд рецепторных зон, оказывающих наибольшее влияние на ритм дыхания.

    Среди таких висцеро-пульмональных рефлексов наиболее известны:


    1. рефлекс Геринга – Брейера – если легкие сильно раздуть, то вдох рефлекторно затормозится и начнется выдох (см. выше).

    2. Рефлексы с дыхательных мышц – Дыхательные мышцы (как любые другие) содержат рецепторы растяжения – мышечные веретена. В случае если либо вдох, либо выдох затруднены, веретена соответствующих мышц возбуждаются и в результате сокращения этих мышц усиливаются. Благодаря этим особенностям мембранной мускулатуры достигается соответствие механических параметров дыхания сопротивлению дыхательной мускулатуры. Кроме того афферентная импульсация от мышечных веретен поступает также к дыхательным центрам, изменяя деятельность дыхательной мускулатуры.

    3. Смена фаз дыхательного цикла может быть изменена импульсацией с обширных рецепторных полей висцеральной и париетальной плевры, которые связаны с парасимпатической и симпатической системами, диафрагмальными нервами.

    4. Рефлексы с хеморецепторов (раздражителями служат повышение концентрации углекислого газа, понижение pH, снижение концентрации кислорода). Наиболее важные зоны хемоцепции:
    а- центральные- расположенные в стволовой части мозга (в частности около корешков блуждающего и подъязычного нервов), реагирующие на изменение состава межклеточной и спинномозговой жидкостей,

    Б- периферические


    • параганглии каротидной зоны,

    • параганглии дуги аорты.

    1. Рефлексы с барорецепторов дуги аорты и синокартидной зоны – повышение артериального давления приводит к торможения как инспираторных, так и экспираторных нейронов, и в результате уменьшается как глубина, так и частота дыхания.

    2. Рефлексы с кожных терморецепторов – сильное холодовое или тепловое воздействие на кожу приводят к возбуждению дыхательных центров. Применяя контрастные ванны, можно запустить дыхание новорожденного. С рефлекторным влиянием с терморецепторов на дыхательный центр сталкивается и взрослый организм. Например, холодный бассейн после парной или финской бани. Эта процедура приводит к субъективному ощущению облегченного дыхания в результате раздражения дыхательного центра.

    3. Раздражение болевых рецепторов стимулируют дыхание.

    4. Рефлексы с работающих мышц – импульсы с двигательных центров проводятся не только к рабочей мускулатуре, но также к дыхательным центрам, вызывая возбуждение дыхательных нейронов, т.е. имеет место феномен коиннервации. Действие на дыхательный центр может осуществляться также с механо- и хеморецепторов мышц.
    На состояние дыхательного центра оказывает влияние не только рефлекторные механизмы, но и эндокринная система – адреналин и прогестерон возбуждают дыхательный центр.

    Наряду с висцеро-пульмональными рефлексами существуют и пульмоно-висцеральные рефлексы – это группа рефлекторных реакций, афферентное звено которых расположено в тканях легкого. Эфферентным звеном рефлексов могут быть сосуды головного мозга, миокарда брюшной полости, почки, печень.

    Завершая разговор о роли легких в процессе адаптации организма, следует остановиться на понятии дыхательные рефлексы.

    ^ Дыхательные рефлексы (reflexus respiratorius) – опосредованные нервной системой ответные реакции организма на изменение внешней и внутренней среды, изменяющие в первую очередь характер внешнего дыхания. По конечному эффекту их подразделяют на


    • регуляторные (например, рефлекс Геринга-Брейера)

    • защитные – рефлекторные изменения характера внешнего дыхания, предотвращающие или уменьшающие попадания в дыхательные пути раздражающих или повреждающих веществ, но они направлены лишь на выделение раздражающего агента (непроизвольная рефлекторная задержка дыхания при попадании в атмосферу, насыщенную парами летучих соединений; аппонический рефлекс Крачмера – на введение в носовую полость газообразных или жидких раздражителей (паров аммиака, эфира, хлороформа, толуола и др.), а также при механическом или холодовом раздражении тормозится активность диафрагмы, развивается преходящая экспираторная остановка дыхания, сопровождающаяся закрытием голосовой щели, гипотония мышц гортани, конечностей и кожной мышцы шеи, вместе с тем повышается артериальное давление, вазоконстрикция и замедление кровотока в сосудистых руслах мягких тканей (кроме мозга), брадикардия синусового типа (иррадиация возбуждения на сосудистодвигательный центр), глотательное торможение инспирации, спазм голосовой щели, сужение гортани и бронхов).

    • Обонятельные – рефлекторные изменения характера внешнего дыхания при возбуждении обонятельных рецепторов. При пороговых и околопороговых значений раздражителя проявляются типичными для млекопитающих реакциями принюхивания – движениями, вентилирующими только верхние дыхательные пути. При сильных и субмаксимальных значениях раздражителя дополнительно появляются активные форсированные вдохи, носящие оборонительный характер и выводящие часть раздражающих веществ на организм.

    • Оборонительные – рефлекторные изменения характера дыхательных движений, направленные на устранение экзогенных повреждающих агентов или эндогенных раздражителей (патологического происхождения) из глубины дыхательных путей с помощью непосредственного физического воздействия на них. Эффект большинства рефлексов этого типа связан с экспульсивными процессами, т.е. с изгнанием раздражителя с помощью усиленной воздушной (у дышащих воздухом животных) или водной (у рыб) струи. Типичными примерами служит кашель и чихание . Они связаны с форсированным вдохом, которому часто предшествует предварительное закрытие голосовой щели и резкое повышение внутрилегочного давления, создающие усиленную воздушную струю в магистральных бронхах, трахее и верхних дыхательных путях. Ларингофарингеальный кашель – в отличие от кашля, наступающего в следствие раздражений бифуркации трахеи, бронхов, верхнего гортанного нерва и блуждающего нерва, характеризуется большей частотой кашлевых усилий и более продолжительными инспираторными усилиями. Подобные явления с преобладание судорожных выдыханий наблюдаются у человека, например, при манипуляциях в гортани, при попадании в нее инородных тел и особенно выражены при коклюше. Аспирационный рефлекс возникает при повторных прикосновениях (например, нейлоновым волокном) к слизистой носоглотки наркотизированных и ненаркотизированных животных и проявляется одним – тремя быстрыми и сильными вдохами без последующего выдоха, чем напоминает принюхивание. Такая же реакция может быть вызвана инстилляцией в нос 0,1 – 0,4 мл воды или физиологического раствора, вдуванием воздуха в верхние дыхательные пути (если его струю деформирует их слизистую), электрораздражением IX нерва или верхней части глотки. Благодаря аспирационному рефлексу облегчается и ускоряется очищение верхних дыхательных путей выведения раздражителей в нижнюю часть глотки с последующим удалением. Экспираторный рефлекс – представляет собой реакцию в виде экспираторных усилий, не предваряемых вдохом. Рефлекс вызывается тактильным, химическим раздражением рефлексогенной зоны (гортани бодрствующих и наркотизированных млекопитающих и птиц, особенно слизистой истинных голосовых связок) или электростимуляцией проксимального конца верхнего гортанного нерва.

    ^ Легочное дыхание в условиях патологии

    Процессы компенсации при патологии внешнего дыхания

    При патологии легких можно выделить несколько механизмов компенсации:

    ^ Компенсация за счет резервов

    А) дополнительной дыхательной мускулатуры, которая включается только в случае чрезвычайных обстоятельств;

    Б) увеличение вентиляции плоховентилируемых альвеолярных участков (у здорового человека в обычных условиях благодаря совершенству конструкции трахеобронхионального дерева и регуляции его просветов распределение вдыхаемого воздуха совершается довольно равномерно, но тем не менее существуют участки легкого, вентилируемые в различной степени, как лучше, так и хуже основной массы альвеол);

    В) уменьшения функционального (физиологического) мертвого пространства, под которым понимают все те участки дыхательной системы, где не происходит газообмен: анатомическое мертвое пространство (представляет собой объем воздухоносных путей, начиная от отверстий носа и рта и кончая респираторными бронхиолами, его размеры относительно стабильны) и те альвеолы, которые вентилируются, но в них отсутствует кровоток по капиллярам. Эти последние альвеолы и представляют резерв. Некоторые авторы в состав физиологического мертвого пространства включают также объем альвеол, вентилируемых в большей степени, чем это требуется для артериализации омывающей их крови;

    Г) изменения кровотока в легких – прежде всего венозной крови – у здорового человека в положении сидя или стоя (т.е. при вертикальном расположении грудной клетки) количество крови, протекающей через верхние отделы легких, во много раз меньше 9на единицу легочной ткани), чем в нижних отделах. Увеличение кровотока будет способствовать большей артериализации крови.

    ^ Компенсация за счет усиления или ослабления функций.

    Легкие в состоянии покоя пропускают 7-8 л воздуха в минуту, а при интенсивной работе – до 130 л в минуту. При уменьшении поверхности легких, в связи с развитием эмфиземы, появлением пневмонических или других очагов в паренхиме имеет место учащение и углубление дыхания. И, наоборот, под влиянием боли с поврежденной дыхательной мускулатуры больной ограничивает дыхание. Это же он делает и на ходу.

    ^ Викарирование функций (компенсация функций пораженного органа за счет парного к нему) – удаление легкого приводит к тому, что его функцию берет на себя другое легкое.

    Гипертрофия – восстановление функций дыхания после резекции долей легкого обеспечивается гипертрофией оставшейся легочной ткани за счет полиферации клеточных элементов альвеол, а также их гипертрофии.

    ^ Репаративная регенерация – компенсация поврежденных эпителиальных клеток легочной ткани осуществляется за счет полиферации клеточных элементов.

    Процессы повреждения аппарата дыхания

    Трахеобронхиональное дерево представляет собой сложную, делящуюся со скачкообразным уменьшением диаметра, с неровной внутренней поверхностью систему эластических трубок, укрепленных в эластическом каркасе легких. Последний же образован эластическими, коллагеновыми, ретикулярными и гладкими мышечными волокнами дистальных отделов бронхиального дерева. Эти волокна с одной стороны крепятся к ветвлениям дистальных бронхов, а с другой – к висцеральной плевре.

    В поступлении кислорода в альвеолы и в выведении углекислого газа из альвеолярного воздуха действуют по меньшей мере два механизма:

    1. механизм диффузии газов (наибольшую роль играет во внутрилегочном смешивании газов и особенно при поступлении кислорода из дыхательных путей в альвеолы) – постоянная утилизация кислорода в альвеолах снижает парциальное давление кислорода в альвеолярном воздухе по сравнению с атмосферным, иными словами создает градиент концентрации, по которому кислород поступает в альвеолы. Для углекислого газа градиент концентрации будет направлен в противоположную сторону в результате выделения газа в альвеолярный воздух.

    Однако диффузия газов может осуществляться достаточно медленно уже хотя бы в силу анатомического строения легких, поэтому к диффузии присоединяется механизм активной замены воздуха в легких путем

    2. активного изменения объемов – на подобии эффекта мехов или поршня – в результате часть альвеолярного воздуха заменяется на атмосферный.

    Исходя из этого, при оценке анатомо-физиологических свойств системы используют три группы показателей:

    I. Показатели объема (см. схему 3)

    Схема 3. Аппарат вентиляции (слева) при максимальном вдохе (I), спокойном вдохе (II), спокойном выдохе (III) и максимальном выдохе (IV) [по «руководство по клинической физиологии дыхания» под ред. Л.Л.Шика и Н.Н.Канаваева, 1980]


    1. Дыхательный объем (ДО) – количество воздуха, которое человек вдыхает и выдыхает в спокойном состоянии. В покое дыхательный объем мал по сравнению с общим объемом воздуха в легких.

    2. Резервный объем вдоха – количество воздуха, которое человек может дополнительно вдохнуть после нормального вдоха.

    3. Резервный объем выдоха – количество воздуха, которое человек может дополнительно выдохнуть после спокойного выдоха.

    4. Остаточный объем – количество воздуха, оставшееся в легких после максимального выдоха. Даже при самом глубоком выдохе в альвеолах и воздухоносных путях остается некоторое количество воздуха.

    5. Жизненная емкость легких (ЖЕЛ) – наибольшее количество воздуха, которое можно выдохнуть после максимального вдоха. Равна сумме – дыхательный объем + резервный объем вдоха + резервный объем выдоха. У мужчин ростом 180 см – 4,5 л. У пловцов и гребцов до 8,0 л.

    6. Резерв вдоха – максимальное количество воздуха, которое можно вдохнуть после спокойного выдоха. Равен сумме – дыхательный объем + резервный объем вдоха.

    7. Функциональная остаточная емкость (ФОЕ) – количество воздуха, остающееся в легких после спокойного выдоха. Равен сумме – резервный объем вдоха + остаточный объем. У молодых – 2,4 л и около 3,4 у пожилых.

    8. Общая емкость легких (ОЕЛ) – количество воздуха, содержащееся в легких на высоте максимального вдоха. Равна сумме – остаточный объем + жизненная емкость легких.
    Ключевыми показателями являются – ДО, ЖЕЛ, ФОЕ. У женщин эти показатели, как правило, на 25 % ниже, чем у мужчин.

    II. Показатели давления

    Усилие, развиваемое дыхательными мышцами при перемещении воздуха путем изменения объемов тратится на преодоления сопротивлений, оказываемых грудной клеткой, непосредственно легочной тканью и газом, находящимся в легких. Общее давление, приложенное к дыхательному аппарату, можно предоставить как сумму 3 давлений, приложенных к газам (г), и к легким (л) и к грудной клетке (гк): Р = Рг + Рл + Ргк. Каждое из этих давлений имеет эластический (э), динамический (д) и иннерционный (и) компоненты. Последним обычно можно пренебречь.


    1. Газы подвергаются давлению, равному разности между наружным барометрическим (Рб), т.е. атмосферным давлением и альвеолярным давлением (Ра): Рг = Рб – Ра = Рэг + Рдг.

    2. Легкие изнутри находятся под альвеолярным давлением, а снаружи под плевральным (Рпл). Давление в плевральной полости представляет собой разницу давлений между атмосферным и внутриплевральном давлениями. Рл = Рпл – Ра = Рэл – Рдл.

    3. К грудной клетке изнутри приложено плевральное давление, снаружи барометрическое, поэтому Ргк = Рб – Рпл = Рэгк – Рдгк.

    4. Максимальная величина внутригрудного давления – является косвенной мерой предельного дыхательного усилия, в то время как давление в различных точках аппарата вентиляции само по себе не несет диагностической информации о свойствах системы.
    III. Скорости потока воздуха (а значит изменений объемов и давлений).

    Во время дыхательного акта в различных частях аппарата вентиляции происходит изменение объема и давления со скоростью, определяемой характером дыхания. При этом приходится преодолевать: а) эластическое и б) неэластическое сопротивления, обусловленные эластическими и неэластическими свойствами аппарата вентиляции.

    ^ Эластические свойства аппарата вентиляции

    А) эластические свойства грудной клетки – обусловлены упругостью ребер, особенно их хрящевых частей, и дыхательных мышц, главным образом диафрагмы. Их характеризует зависимость между эластическим давлением грудной клетки и объемом легких;

    Б) эластические свойства легких, их формируют


    • эластический тканевый каркас;

    • силы поверхностного натяжения альвеолярной пленки.
    На границе между воздухом и внутренней поверхностью альвеол последние покрыты слоем жидкости. На любой поверхности раздела между воздухом и жидкостью действуют силы межмолекулярного сцепления, стремящиеся уменьшить величину этой поверхности (силы поверхностного натяжения). Под влиянием таких сил альвеолы стремятся сократиться, что усиливает тягу легких в целом. Однако в альвеолярной жидкости содержатся вещества, снижающие поверхностное натяжение. Их молекулы сильно притягиваются друг к другу, но обладают слабым сродством к жидкости; вследствие этого они собираются на поверхности и тем самым снижают поверхностное натяжение. Такие вещества называются поверхностно-активными или сурфактантами . При расширении альвеол их поверхностное натяжение становится довольно высоким т.к. плотность молекул сурфактанта на единицу площади уменьшается, а при спадении – поверхностное натяжение значительно снижается так как молекулы сурфактанта сближаются и их плотность (на единицу площади) возрастает. Если бы этого не происходило, то при уменьшении размеров альвеол поверхностное натяжение их становилось бы столь большим, что они могли спасться. Наибольшей активностью из белков и липидов альвеолярной жидкости обладают производные лецитина:

    ^ Неэластические свойства аппарата вентиляции

    А) неэластическое (фрикционное) сопротивление грудной клетки,

    Б) неэластическое (фрикционное) сопротивление легочной ткани,

    В) бронхиальное сопротивление, т.е. сопротивление, возникающее

    При движении воздуха по трахеобронхиальным путям,

    Г) иннерционное сопротивление легких и грудной клетки.

    В соответствии с представлениями о структуре, свойствах и функционировании аппарата внешнего дыхания можно выделить 6 уровней его поражения.

    I. Поражение бронхов и респираторных структур легких

    1. Поражение бронхиального дерева. Ведущим патофизиологическим синдромом при данном виде патологии является нарушение бронхиальной проходимости или бронхиальная обстукция.

    а – стойкая изолированная обструкция внегрудных дыхательных путей наблюдаются при рубцовом сужении трахеи или отеке гортани.

    1 Физиологическая система дыхания- это комплексная система организма человека, обеспечивающая и осуществляющая процесс дыхания. Основная задача заключается в доставке экзогенного кислорода клеткам и выведении из организма углекислого газа.1-й этап: – Внешнее дыхание. Сущность данного этапа заключается в газообмене между атмосферным воздухом и альвеолярным воздухом лёгких. Осуществляется за счёт актов вдоха и выдоха. Благодаря внешнего дыхания обеспечивается оптимальный уровень парциального давления кислорода в альвеолярном воздухе на уровне 100 мм.рт. ст

    2-й этап: – Газообмен в лёгких. Осуществляется между альвеолярным воздухом лёгких и венозной кровью малого круга кровообращения, осуществляемое через аэрогематический барьер. В основе газообмена лежит разность парциального давления кислорода и углекислого газа в альвеолярном воздухе и венозной крови малого круга кровообращения. В результате газообмена происходит переход венозной крови малого круга кровообращения в артериальную кровь.

    3-й этап: – Транспорт кислорода кровью. Основано на физиологических свойствах крови и закономерностях гемодинамики. Осуществляется транспорт кислорода в микроци-ркуляторное русло большого круга кровообращения и обеспечивается необходимый уровень парциального давления кислорода в капиллярном русле.

    4-й этап:- Газообмен в микроциркуляторном русле или тканевое дыхание. Осуществляется между артериальной кровью большого круга кровообращения тканями и клетками, в результате чего происходит переход артериальной крови в венозную кровь., Осуществляется газообмен через гистогематические барьеры. В основе газообмена в МЦР лежит разность парциального давления кислорода и углекислого газа в артериальной крови, тканевой и цилюлярной жидкости. Происходит газообмен за счёт высокой избирательной проводимости для газов гистогематических барьеров.

    5-й:- Утилизация кислорода органеллами клетки. Осуществляется на основе окислительно-восстановительных процессов, происходящих в клетках и тканях. Важную роль в данных процессах играют дыхательные и транспортные ферменты. Происходит удовлетворение клеточных потребностей в кислороде, образование и выведение углекислого газа. Образуемый углекислый газ регулирует поддержание в организме человека кислотно-основного баланса и является важным элементом в регуляции активности дыхательного центра.

    2 Система воздухопроведения включает в себя верхние дыхательные пути: полость носа, носоглотка и нижние дыхательные пути: гортань, трахея, главные бронхи. На их границе располагается гортань, предшественником которой был сфинктер. Он обеспечивал защиту более структурно-дифференцированного нижнего отдела от неблаго­приятных изменений атмосферного воздуха. Сохраняя цилиндрическую конструкцию и трехкомпонентный состав стенок, пути воздухопроведения постепенно уменьшают свой просвет. Их протяженность в легких достигает 700 метров. Количество бронхиол с диаметром менее миллиметра составляет одну тысячу. Сложную конструкцию путей можно сравнить с ветвящейся кроной дерева, формирующей обширную поверхность контакта воздуха с системой крови. У взрослого человека она колеблется в пределах 60-100 кв. м.

    Сложный рельеф носовых ходов, их взаимодействие с придаточными пазухами моделируют вихревые (турбулентные) потоки циркулирующего по ним воздуха. Этим формируется продолжительность его контакта с мерцательным эпителием и венозными сплетениями, расположенными в подслизистом слое, что способствует очищению, увлажнению и согреванию атмосферного воздуха и составляет сущность его преобразований. Особое место среди путей воздухопроведения занимает гортань. Она не только моделирует характер перемещения потоков воздуха, но и регулирует его объем. Именно здесь происходит произвольное дробление объемов выдыхаемого воздуха во время устной речи. Если при спокойном (неречевом) дыхании соотношение продолжительности фаз вдоха и выдоха составляет 1:1, то при речевом дыхании оно становится равным 1:10 или 1:40. Данный орган достигает высокой структурной дифференцировки, занимая сравнительно небольшое пространство. В его состав входят: 9 хрящей, 23 связки, 17 мышц, которые формируют морфологическую основу широкого спектра микродвижений, столь значимых для человека при речевом общении. В последние годы оформляется новая научная дисциплина - фониатрия, разрабатывающая проблемы формирования нормального функционирования речевого аппарата. В таблице представлены составляющие, взаимодействие которых моделирует основные характеристики человеческого голоса: тональность, силу, тембр.

    3 Лёгкие - это парные паренхиматозные органы, имеющие форму неправильного конуса, располагающиеся в полости грудной клетки и осуществляющие процессы внешнего дыхания и газообмена. Доли – это изолированные части лёгкого, отделённые друг от друга щелями. Сегменты - это изолированные части долей лёгкого фиброзными перегородками. Дольки – это изолированные части сегментов лёгких в виде перевёрнутых пирамид.В состав дольки входят структурно-функциональные единицы лёгкого – ацинусы , в которых осуществляется процесс газообмена. Ацинусы формируют аэро-гематические барьеры, которые структурно представлены стенкой альвеолы и прилегающего к ней капилляра малого круга кровообращения. Стенка альвеолы представлена однослойным эпителием, состоящим из клеток альвеолоцитов. Внутри альвеолы выстланы особым веществом-сур-фактантом, который обеспечивает поверхностное натяжение в альвеолах и препятствует их склеивание. В структуру дольки входят бронхиолы мышечного типа, способные к сокращению и сужению своего просвета. Между ацинусами располагается интерстициальная волокнистая соединительная ткань с большим количеством эластических волокон.

    5 Плевра – это фиброзная оболочка, покрывающая лёгкие двумя листками: пристеночным или париетальным и внутренностным (висцеральным). Париетальный листок выстилает внутреннюю поверхность грудной клетки и верхнюю поверхность диафрагмы. Висцеральный листок покрывает сами лёгкие. Между листками плевры образуется пространство – плевральная щель, содержащая жидкость. На медиастинальной (медиальной) и диафра-гмальной поверхности образуются плевральные синусы – полости, которые не заполняются лёгкими при максимальном вдохе. Плевра играет важную роль в процессе внешнего дыхания, обеспечивая акты вдоха и выдоха. В области корней лёгких париетальная плевра, прилегающая к средостению (медиастинальная плевра), переходит в висцеральную плевру. В свою очередь, соединительная ткань, формирующая висцеральную плевру, проникает в ткань лёгких, образуя интерстициальный лёгочный каркас, а также выстилает поверхности долей лёгких в междолевых щелях. Плевра, выстилающая боковые поверхности грудной полости (рёберная плевра) и медиастинальная плевра внизу переходят на поверхность диафрагмы, образуя диафрагмальную плевру. Места перехода плевры с одной поверхности лёгкого на другую называются плевральными синусами; они не заполняются лёгкими даже при глубоком вдохе. Различают рёберно-диафрагмальные, рёберно-медиастинальные и диафрагмо-медиастинальные синусы, ориентированные в различных плоскостях. В плевральных синусах, особенно самых низкорасположенных задних рёберно-диафрагмальных, в первую очередь накапливается жидкость при развитии гидроторакса . Иннервируется плевра блуждающими , межрёберными и диафрагмальными нервами. В париетальной плевре располагаются болевые чувствительные рецепторы . Плевральная полость с формирующими её плевральными листками помогают осуществлению акта дыхания . Содержащаяся в плевральных полостях жидкость способствует скольжению листков плевры друг относительно друга при вдохе и выдохе. Герметичность плевральных полостей, постоянно поддерживающая в них давление ниже атмосферного, а также поверхностное натяжение плевральной жидкости, способствуют тому, что лёгкие постоянно удерживаются в расправленном состоянии и прилежат к стенкам грудной полости. Благодаря этому, дыхательные движения грудной клетки передаются плевре и лёгким.

    6 Биомеханизм процесса внешнего дыхания: заключается в постоянно совершаемых актах вдоха и выдоха. Акт вдоха – это активный акт, осуществляемый за счёт работы дыхательных мышц в несколько этапов:

    1. – Сокращение дыхательных мышц и увеличение объёма грудной полости за счёт уплощения диафрагмы и переход рёбер в горизонтальное положение.

    2. – В связи с увеличением объёма грудной клетки происходит увеличение в объёме плевральной полости и формирование вокруг лёгких разряжённого пространства.

    3. – В связи со снижением давления в плевральной полости относительно давления в лёгких, происходит расширение альвеолярного воздуха и соответственно расширение лёгких.

    4.- В результате расширения лёгких происходит снижение давления альвеолярного воздуха лёгких относительно атмосферного. В связи с этим атмосферный воздух поступает из зоны высокого давления в зону низкого, то есть в лёгкие. Объём вдыхаемого воздуха зависит от величины экскурсии грудной клетки и разности атмосферного давления и альвеолярного.

    Акт выдоха: пассивный акт, формируемый в результате расслабления дыхательных мышц и возвращения грудной клетки и диафрагмы в исходное положение. Лёгкие подвергаются компрессии, давление альвеолярного воздуха растёт и превышает атмосферное давление. В связи с этим воздух из лёгких выходит наружу. Чем выше степень компрессии лёгких, тем больше объём выдыхаемого воздуха. Газообмен в лёгких- этап процесса дыхания, происходящий в ацинусах лёгких на уровне аэрогематических барьеров между альвеолярным воздухом лёгких и венозной кровью малого круга кровообращения. В основе газообмена лежит разность парциального давления кислорода и углекислого газа в альвеолярном воздухе и венозной крови и движения газов из зоны высокого давления в зону низкого давления. Так как парциальное давление кислорода в артериальной крови равно 100 мм рт ст., а в венозной крови 40 мм рт ст., то кислород поступает из альвеолярного воздуха в венозную кровь пока давление его станет равным 100мм рт ст. Такая кровь называется артериальной. Парциальное давление углекислого газа равно в венозной крови равен 46 мм. рт. ст. , а в альвеолярном воздухе – 38 мм рт ст. Так как парциальное давление углекислого газа в венозной крови превышает парциальное давление в альвеолярном воздухе, то углекислый газ поступает из венозной крови в альвеолярный воздух. При этом парциальное давление углекислого газа не должно в норме снижаться ниже 40 мм рт ст.

    7 Основные лёгочные объёмы и показатели деятельности:

    1. Дыхательный объём- это объём воздуха вдыхаемый и выдыхаемый в состоянии полного покоя. В среднем равен 500 – 600мл.
    2. Резервный вдох и резервный выдох – это объём воздуха дополнительно вдыхаемый и выдыхаемый после спокойного вдоха и выдоха. Равен до 1,5 – 2,0 литров.
    3. Жизненная ёмкость лёгких (ЖЁЛ) – это объём воздуха выдыхаемый человеком при максимальном выдохе после максимального вдоха. Равна 2,5 – 3,5 литров.
    4. Остаточный объём- объём воздуха, который остаётся в лёгких после максимального выдоха. Равен 500мл.
    5. Общий дыхательный объём – Это сумма жизненной ёмкости лёгких и остаточного объёма.
    6. Лёгочная вентиляция – это объём воздуха вдыхаемый и выдыхаемый человеком за единицу времени (1 минута). Частота дыхания х Дыхательный объём.
    7. Воздух мёртвого пространства: объём воздуха дыхательных путей, не участву-ющий в газообмене.
    8. Частота дыхания – количество дыхательных актов за одну минуту. В норме составляет от 16 до 20 актов в минуту. Менее16 актов в минуту – это брадипноэ , а более 20 актов – тахипноэ.

    9 Виды и механизмы регуляции вдоха и выдоха . Регуляция внешнего дыхания осуществляется за счёт механизмов нейрогуморальной регуляции. Выделяют механизм непроизвольной регуляции или саморегуляции и произвольной регуляции процесса внешнего дыхания. Механизм саморегуляции внешнего дыхания основан на принципе круговой рефлекторной связи с формированием систем прямой и обратной афферентной связи. Центральным звеном рефлекторной саморегуляции является дыхательный центр ромбовидной ямки продолговатого мозга, функционирующий по принципу соотношения. Он состоит из двух антогонистических центров: экспираторного или выдоха и инспираторного или вдоха. Эти два центра никогда не бывают одновременно в состоянии возбуждения. Центр вдоха связан с дыхательными центрами спинного мозга и регулируют их активность. Центр выдоха или экспираторный осуществляет контроль за функциональным состоянием рабочих органов, осуществляющих процесс внешнего дыхания. Пусковым моментом в саморегуляции внешнего дыхания является пороговая концентрация в крови углекислого газа и угольной кислоты. Эти химические вещества и газы являются активаторами инспираторной части дыхательного центра, что приводит к активации дыхательных центров спинного мозга. Активные дыхательные центры спинного мозга иннервируют дыхательные мышцы, этим самым осуществляя акт вдоха. В результате акта вдоха происходит раздражение механорецепторов лёгких, дыхательных мышц с образованиемнервных импульсов.Эти импульсы идут по чуствительным нервам к центру выдоха или экспираторному и переводят его в состояние возбуждения. Возбуждённый экспираторный центр тормозит центр вдоха или инспираторный центр, что приводит к расслаблению дыхательных мышц и осуществлению акта выдоха. Произвольная регуляция внешнего дыхания осуществляется за счёт пирамидной системы регуляции произвольных движений. Высшие корковые центры регуляции внешнего дыхания локализуются в зоне коры прецентральной извилины лобных долей конечного мозга. Произвольная регуляция внешнего дыхания позволяет осознанно изменять её активность и обеспечивать фонетические процессы и адаптационные.

    Функциональная система поддержания газового состава крови относится к сложным функциональным системам. Она организована на основе соподчинения двух подсистем, т.е. внешнего и внутреннего звена саморегуляции.Внешнее звено обеспечивает необходимый объем легочной вентиляции в каждом дыхательном цикле. Внутреннее звено обеспечивает оптимальный для метаболизма уровень дыхательных показателей в крови и тканях. В этой обобщенной ФС изменение внешнего дыхания (частоты, глубины дыхания, жизненной емкости легких) способствует поддержанию оптимального уровня тканевого дыхания. Полезным для организма результатом в этой системе является оптимальный для метаболизма уровень дыхательных показателей (pСО2, pО2, pH) в крови. При этом с одной стороны, имеющийся уровень метаболической активности, определяет потребность в этих показателях. С другой стороны, имеющийся уровень этих показателей, может обеспечить определенный уровень метаболизма. Сигнализацию о потребности определенного уровня дыхательных показателей осуществляют специальные хеморецепторы, обладающие избирательной чувствительностью к изменениям pСО2, pО2, pH. Они расположены в сосудистых хеморецепторных зонах (в дуге аорты, в области каротидного синуса и др.) По нервным каналам связи (по симпатическим нервам и афферентным волокнам блуждающего нерва) эта информация поступает в дыхательный центр продолговатого мозга. Одновременно информация о величинах дыхательных показателей тканями мозга может восприниматься гуморальным путем за счет непосредственного воздействия HСО3- и H+ ионов крови, спиномозговой жидкости на центральные хеморецепторы продолговатого мозга.

    1 Физиологическая система питания – это комплексная система организма человека, осуществляющая процесс питания. Морфологическую основу ФС питания составляет пищеворительная система. Эта система включает в себя пищеворительный тракт и пищеворительные железы.

    2 Процесс питания - многоэтапный процесс происходящий на различных уровнях ор-ма чел-ка. Он включает в себя: внешнее питание (осуществляет усвоение экзогенных питательных в-в получаемых человеком в виде пищи.) Внутреннее питание (обмен в-в - биохимический процесс превращения органических в-в на уровне кл-ок и межклеточного в-ва) он включает в себя: промежуточный обмен - обмен между внутренней средой тканей и оргагов осуществляемых через гистогематические и гематоинцефалические барьеры. Конечный обмен - обменные процессы происходящие на уровне кл-ок и межклеточного в-ва. Хар-ся утилизацией питательных в-в поступающих в кл-ки и ткани за счет анаболизма и катоболизма или процесс окисления и востановления.

    33 Пи щеварительная система это совокупность органов, осуществляющих процесс пищеварения.

    Представлена пищеварительным трактом и пищеварительными железами. Пищеварительный тракт представляет собой не замкнутую, полую, не спадающуюся извитую трубку с расширениями в виде ротовой полости и желудка. Условно выделяют три отдела пищеварительной системы. Передний отдел включает органы ротовой полости, глотку и пищевод. Здесь осуществляется, в основном, механическая переработка пищи. Средний отдел состоит из желудка, тонкой и толстой кишки, печени и поджелудочной железы, в этом отделе осуществляется преимущественно химическая обработка пищи, всасывание продуктов её расщепления и формирование каловых масс. Задний отдел представлен каудальной частью прямой кишки и обеспечивает выведение кала из организма. Стенка пищеварительного тракта состоит из трёх слоёв: 1. Слизистый слой с подслизистой основой.2. Мышечный. 3. Серозно-адвентициальный. Слизистая собственно ротовой полости выстлана многослойным плоским неороговевающим эпителием.

    ñ Моторно-механическая (измельчение, передвижение, выделение пищи)

    ñ Секреторная (выработка ферментов, пищеварительных соков, слюны и жёлчи)

    ñ Всасывающая (всасывание белков, жиров, углеводов, витаминов, минеральных веществ и воды)

    ñ Выделительная (выведение непереваренных остатков пищи, избытка некоторых ионов, солей тяжёлых металлов)

    СИСТЕМА ДЫХАНИЯ

    СУЩНОСТЬ И ЗНАЧЕНИЕ ДЫХАНИЯ ДЛЯ ОРГАНИЗМА

    Дыхание - это неотъемлемый признак жизни. Мы ды­шим постоянно с момента рождения и до самой смерти. Дышим днем и ночью во время глубокого сна, в сос­тоянии здоровья и болезни. В организме человека и животных запасы кислоро­да ограничены. Поэтому организм нуждается в непрерыв­ном поступлении кислорода из окружающей среды. Так же постоянно и непрерывно из организма должен удалять­ся углекислый газ, который всегда образуется в процес­се обмена веществ и в больших количествах является токсичным соединением. Дыхание - сложный непрерывный процесс, в ре­зультате которого постоянно обновляется газовый состав крови. В этом заключается его сущность .

    Нормальное функционирование организма человека возможно только при условии пополнения энергией, кото­рая непрерывно расходуется. Организм получает энергию за счет окисления сложных органических веществ - бел­ков, жиров, углеводов. При этом освобождается скрытая химическая энергия, которая является источником жиз­недеятельности клеток тела, их развития и роста. Та­ким образом, значение дыхания состоит в поддержании в организме оптимального уровня окислительно-вос­становительных процессов.

    В процессе дыхания принято различать три звена: внешнее (легочное), дыхание, транспорт газов кровью и внутреннее (тканевое) дыхание.

    Внешнее дыхание - это газообмен между орга­ низмом и окружающим его атмосферным воздухом . Внеш­нее дыхание может быть разделено на два этапа - об­мен газов между атмосферным и альвеолярным возду­ хом и газообмен между кровью легочных капилляров и альвеолярным воздухом . Внешнее дыхание осуществляется за счет активности аппарата внешнего дыхания.

    Аппарат внешнего дыхания включает в себя дыхательные пути, легкие, плевру, скелет грудной клетки и ее мышцы, а также диафрагму. Основной функцией ап­парата внешнего дыхания является обеспечение организ­ма кислородом и освобождение его от избытка углекис­лого газа. О функциональном состоянии аппарата внеш­него дыхания можно судить по ритму, глубине, часто­те дыхания, по величине легочных объемов, по показа­телям поглощения кислорода и выделения углекислого газа и т. д.

    Транспорт газов осуществляется кровью . Он обеспечивается разностью парциального давления (нап­ряжения) газов по пути их следования: кислорода от лег­ких к тканям, углекислого газа от клеток к легким.

    Внутреннее или тканевое дыхание также может быть разделено на два этапа. Первый этап - обмен газов между кровью и тканями. Второй - потреб­ление кислорода клетками и выделение ими углекислого газа (клеточное дыхание).

    СОСТАВ ВДЫХАЕМОГО, ВЫДЫХАЕМОГО И АЛЬВЕОЛЯРНОГО ВОЗДУХА

    Человек дышит атмосферным воздухом, который имеет следующий состав: 20,94% кислорода, 0,03% углекислого газа, 79,03% азота. В выдыхаемом воздухе обнаружи­вается 16,3% кислорода, 4% углекислого газа, 79,7% азота.

    Состав выдыхаемого воздуха непостоянен и зависит от интенсивности обмена веществ, а также от частоты и глубины дыхания. Стоит задержать дыхание или сделать несколько глубоких дыхательных движений, как состав выдыхаемого воздуха изменяется.

    Сравнение состава вдыхаемого и выдыхаемого возду­ха служит доказательством существования внешнего ды­хания.

    Альвеолярный воздух по составу отличается от ат­мосферного, что вполне закономерно. В альвеолах проис­ходит обмен газов между воздухом и кровью, при этом в кровь диффундирует кислород, а из крови - углекислый газ. В результате в альвеолярном воздухе резко умень­ шается содержание кислорода и возрастает количество углекислого газа . Процентное содержание отдельных газов в альвеолярном воздухе: 14,2-14,6% кислорода, 5,2-5,7% углекислого газа, 79,7-80% азота. Альвеолярный воздух отличается по составу и от выдыхаемого воздуха. Это объясняется тем, что выдыхаемый воздух содержит смесь газов из альвеол и вредного пространства.

    ДЫХАТЕЛЬНЫЙ ЦИКЛ

    Дыхательный цикл состоит из вдоха, выдоха и дыхательной паузы. Обычно вдох короче выдоха. Длительность вдоха у взрослого человека от 0,9 до 4,7 с, длительность выдоха - 1,2-6 с. Продолжительность вдо­ха и выдоха зависит в основном от рефлекторных воздей­ствий, идущих от рецепторов легочной ткани. Дыха­тельная пауза - непостоянная составная часть дыхатель­ного цикла. Она различна по величине и даже может отсутствовать.

    Дыхательные движения совершаются с определенным ритмом и частотой, которые определяют по числу экскур­сий грудной клетки в 1 мин. У взрослого человека час­тота дыхательных движений составляет 12-18 в 1 мин. У детей дыхание поверхностное и поэтому более частое, чем у взрослых. Так, новорожденный дышит около 60 раз в мин, 5-летний ребенок 25 раз в 1 мин. В любом возрас­те частота дыхательных движений меньше количества сер­дечных сокращений в 4-5 раз. Глубину дыхательных движений опреде­ляют по амплитуде экскурсий грудной клетки и с по­мощью специальных методов, позволяющих исследовать легочные объемы. На частоту и глубину дыхания влияют многие фак­торы, в частности эмоциональное состояние, умственная нагрузка, изменение химического состава крови, степень тренированности организма, уровень и интенсивность об­мена веществ. Чем чаще и глубже дыхательные движе­ния, тем больше кислорода поступает в легкие и соот­ветственно большее количество углекислого газа выводит­ся. Редкое и поверхностное дыхание может привести к недостаточному снабжению клеток и тканей организма кислородом. Это в свою очередь сопровождается снижением их функциональной активности. В значительной степени изменяется частота и глубина дыхательных движений при патологических состояниях, особенно при заболеваниях органов дыхания.

    Механизм вдоха . Вдох (инспирация ) совершается вс­ледствие увеличения объема грудной клетки в трех нап­равлениях - вертикальном, сагиттальном (переднезаднем) и фронтальном (реберном). Изменение размеров грудной полости происходит за счет сокращения дыхательных мышц. При сокращении наружных межреберных мышц (при вдохе) ребра принимают более горизонтальное положение, поднимаясь кверху, при этом нижний конец грудины отходит вперед. Благодаря движению ребер при вдохе размеры грудной клетки увеличиваются в поперечном и в продольном направлениях. В результате сокращения диафрагмы купол ее уплощается и опускается: органы брюшной полости оттесняются вниз, в стороны и вперед, в итоге объем грудной клетки увеличивается в вертикальном направлении.

    В зависимости от преимущественного участия в акте вдоха мышц грудной клетки и диафрагмы различают грудной , или реберный, и брюшной , или диафрагмальный, тип дыхания. У мужчин преобладает брюшной тип ды­хания, у женщин - грудной. В некоторых случаях, например, при физической работе, при одыш­ке, в акте вдоха могут принимать участие так называемые вспомога­тельные мышцы - мышцы плечевого пояса и шеи. При вдохе легкие пассивно следуют за увеличивающей­ся в размерах грудной клеткой. Дыхательная поверхность легких увеличивается , давление же в них понижается и становится на 0,26 кПа (2 мм рт. ст.) ниже ат­мосферного. Это способствует поступлению воздуха через воздухоносные пути в легкие. Быстрому выравниванию давления в легких препятствует голосовая щель, так как в этом месте воздухоносные пути сужены. Только на вы­соте вдоха происходит полное заполнение воздухом рас­ширенных альвеол.

    Механизм выдоха . Выдох (экспирация ) осуществляется в результате расслабления наружных межреберных мышц и поднятия купола диафрагмы . При этом грудная клет­ка возвращается в исходное положение и дыхательная поверхность легких уменьшается. Сужение воздухоносных путей в области голосовой щели обусловливает медленный выход воздуха из легких. В начале фазы выдоха давле­ние в легких становится на 0,40-0,53 кПа (3-4 мм рт. ст.) выше атмосферного, что облегчает выход возду­ха из них в окружающую среду.

    ЛЕГОЧНЫЕ ОБЪЕМЫ. ЛЕГОЧНАЯ ВЕНТИЛЯЦИЯ Для исследования функционального состояния аппа­рата внешнего дыхания как в клинической практике, так и в физиологических лабораториях широко используют определение легочных объемов. Различают четыре положения грудной клетки, которым соответствуют четыре основных объема легких: дыхатель­ный, резервный объем вдоха, резервный объем выдоха и остаточный объем .

    Дыхательный объем - количество воздуха, ко­торое человек вдыхает и выдыхает при спокойном дыха­нии. Его объем (300-700 мл). Дыхательный объем обеспечивает поддержание определенного уровня парциального давления кислорода и углекислого газа в альвеолярном воздухе , способствуя тем самым нормальному напряжению газов в артериаль­ной крови.

    Резервный объем вдоха - количество воздуха, которое может быть введено в легкие, если вслед за спокойным вдохом произвести максимальный вдох. Ре­зервный объем вдоха равняется (1500-2000 мл). Резервный объем вдоха определяет спо­ собность легких к добавочному расширению, необходи­ мость в котором имеется при увеличении потребности ор­ ганизма в газообмене .

    Резервный объем выдоха - тот объем возду­ха, который удаляется из легких, если вслед за спокой­ным вдохом и выдохом произвести максимальный выдох. Он составляет (1500-2000 мл). Резервный объем выдоха определяет степень постоянного растяжения легких .

    Остаточный объем - это объем воздуха, кото­рый остается в легких после максимально глубокого выдоха. Остаточный объем равняется (1000-1500 мл) воздуха.

    Жизненную емкость легких составляют: дыхательный объем, резервные объемы вдоха и выдоха. ЖЕЛ (показатель внешнего дыхания) - самое глубокое дыхание, на которое способен данный человек. Она определяется тем количест­вом воздуха, которое может быть удалено из легких, если после максимального вдоха сделать максимальный выдох.

    Жизненная емкость легких у мужчин молодого воз­раста составляет (3,5-4,8 л), у женщин - (3-3,5 л). Показатели жизненной емкости легких изменчивы. Они зависят от пола, возраста, роста, массы, положения тела, состояния дыхательных мышц, уровня возбудимости дыхательного центра и других факторов.

    Общая емкость легких состоит из жизненной емкости легких и остаточного объема воздуха.

    Коллапсный воздух - это минимальное коли­чество воздуха, которое остается в легких после двусто­роннего открытого пневмоторакса. Наличие коллапсного воздуха в легких доказывается простым опытом. Уста­новлено, что кусочек ткани легкого после пневмоторак­са плавает в воде, а легкое мертворожденного (недышав­шего) плода тонет.

    Частота и глубина дыхания может оказать значитель­ное влияние на циркуляцию воздуха в легких во время ды­хания или на легочную вентиляцию.

    Легочная вентиляция - количество воздуха, обмениваемое в 1 мин. За счет легочной вентиляции обно­вляется альвеолярный воздух и в нем поддерживается парциальное давление кислорода и углекислого газа на таком уровне, который обеспечивает нормальный газо­обмен. Легочную вентиляцию определяют путем умноже­ния дыхательного объема на число дыханий в 1 мин (минутный объем дыхания). У взрослого человека в со­стоянии относительного физиологического покоя легочная вентиляция составляет (6-8 л) в 1 мин. Определение минутного объема дыхания имеет диагностическое значение.

    Легочные объемы могут быть определены с помощью специальных приборов - спирометра и спирографа. Спирографический метод позволяет графически регистриро­вать величины легочных объемов.

    ТРАНСПОРТ ГАЗОВ КРОВЬЮ Местом же потребления кислорода и образования углекислого газа являются все клетки организма, где осуществляется тканевое или внутреннее дыхание. Вслед­ствие этого, когда речь идет о дыхании в целом, необхо­димо учитывать пути и условия переноса газов: кислоро­да - от легких к тканям, углекислого газа - от тканей к легким. Посредником между клетками и внешней средой является кровь. Она доставляет тканям кислород и уно­сит углекислый газ. Движение га зов из окружающей среды в жидкость и из жидкости в окружающую среду осуществляется благодаря разности их парциального давления. Газ всегда диффундирует из среды, где имеется высокое давление, в среду с меньшим давлением. Это происходит до тех пор, пока не установится динамическое равновесие.

    Проследим путь кислорода из окружающей среды в альвеолярный воздух, затем в капилляры малого и боль­шого круга кровообращения и к клеткам организма.

    Парциальное давление кислорода в атмосферном воз­духе 21,1 кПа (158 мм рт. ст.), в альвеолярном воздухе - 14,4-14,7 кПа (108-110 мм рт. ст.) и в венозной крови, притекающей к легким,-5,33 кПа (40 мм рт. ст.). В арте­риальной крови капилляров большого круга кровообраще­ния напряжение кислорода составляет 13,6-13,9 кПа (102-104 мм рт. ст.), в межтканевой жидкости - 5,33 кПа, (40 мм рт. ст.), в тканях - 2,67 кПа (20 мм рт. ст.) и меньше в зависимости от функциональной актив­ности клеток. Таким образом, на всех этапах движения кислорода имеется разность его парциального давления, что способствует диффузии газа.

    Движение углекислого газа происходит в противопо­ложном направлении. Напряжение углекислого газа в тка­нях, в местах его образования - 8,0 кПа и более (60 и более мм рт. ст.), в венозной крови - 6,13 кПа (46 мм рт. ст.), в альвеолярном воздухе - 0,04 кПа (0,3 мм рт. ст.)". Следовательно, разность напряжения углекислого газа по пути его следования является причиной диффузии газа от тканей в окружающую среду. Схема диффузии газов через стенку альвеол представлена на рис. 24. Однако одними физическими закономерностями объяснить движение газов нельзя. В живом организме равенства пар­циального давления кислорода и углекислого газа на этапах их движения никогда не наступает. В легких постоянно происходит обмен газов вследствие дыхательных движений грудной клетки, в тканях же разность напряжения газов поддерживается непрерывным процессом окисления.

    Транспорт кислорода кровью . Кислород в крови нахо­дится в двух состояниях: физическом растворении и в химической связи с гемоглобином. Из 19 об% кислорода, извлекаемого из артериальной крови, только 0,3 об% на­ходится в растворенном состоянии в плазме, остальная же часть кислорода химически связана с гемоглобином эритроцитов.

    Гемоглобин образует с кислородом очень непрочное, легко диссоциирующее соединение - оксигемоглобин: 1 г гемоглобина связывает 1,34 мл кислорода. Содер­жание гемоглобина в крови составляет в среднем 140 г/л (14 г%). 100 мл крови может связать 14X1,34 = = 18,76 мл кислорода (или 19 об%), что составляет в ос­новном так называемую кислородную емкость крови. Следовательно, кислородная емкость крови пред­ ставляет собой максимальное количество кислорода, ко­ торое может быть связано 100 мл крови .

    Насыщение гемоглобина кислородом колеблется от 96 до 98%. Степень насыщения гемоглобина кислородом и диссоциация оксигемоглобина (образование восстано­вленного гемоглобина) не находятся в прямой пропор­циональной зависимости от напряжения кислорода. Эти два процесса не являются линейными, а совершаются по кривой, которая получила название кривой связывания или диссоциации оксигемоглобина .

    При нулевом напряжении кислорода оксигемоглобина в крови нет. При низких значениях парциального давле­ния кислорода скорость образования оксигемоглобина невелика. Максимальное количество гемоглобина (45 - 80%) связывается с кислородом при его напряжении 3,47 - 6,13 кПа (26 - 46 мм рт. ст.). Дальнейшее повыше­ние напряжения кислорода приводит к снижению скорости образрвания оксигемоглобина (рис. 25).

    Сродство гемоглобина к кислороду значительно пони­жается при сдвиге реакции крови в кислую сторону , что наблюдается в тканях и клетках организма вследствие образования углекислого газа. Это свойство гемоглобина имеет важное значение для организма. В капиллярах тка­ней, где концентрация углекислого газа в крови увели­чена, способность гемоглобина удерживать кислород уменьшается, что облегчает его отдачу клеткам. В альвео­лах, легких, где часть углекислого газа переходит в аль­веолярный воздух, способность гемоглобина связывать кислород вновь возрастает.

    Переход гемоглобина в оксигемоглобин и из него в восстановленный зависит и от температуры. При одном и том же парциальном давлении кислорода в окружающей среде при температуре 37-38° С в восстановленную фор­му переходит наибольшее количество оксигемоглобина. Таким образом, транспорт кислорода обеспечивается, в основном, за счет химической связи его с гемоглоби­ном эритроцитов. Насыщение гемоглобина кислородом за­висит в первую очередь от парциального давления газа в атмосферном и альвеолярном воздухе. Одной из основ­ных причин, способствующих отдаче кислорода гемоглоби­ном, является сдвиг активной реакции среды в тканях в кислую сторону.

    Транспорт углекислого газа кровью . Растворимость углекислого газа в крови выше, чем растворимость кисло­рода. Однако только 2,5-3 об% углекислого газа из об­щего его количества (55-58 об%) находится в раство­ренном состоянии. Большая часть углекислого газа содер­жится в крови и в эритроцитах в виде солей угольной кислоты (48-51 об%), около 4-5 об% -в соединении с гемоглобином в виде карбгемоглобина, около 2 /з всех соединений углекислого газа находится в плазме и около "/з в эритроцитах.

    Угольная кислота образуется в эритроцитах из угле­кислого газа и воды. И. М. Сеченов впервые высказал мысль о том, что в эритроцитах должен содержаться какой-то фактор типа катализатора, который ускоряет процесс синтеза угольной кислоты. Однако лишь в 1935 г. предположение, высказанное И. М. Сеченовым, было подтверждено. В настоящее время установлено, что в эритроцитах содержится угольная ангидраза (карбоангидраза) - биологический катализатор, фермент, который значительно (в 300 раз) ускоряет расщепление угольной кислоты в капиллярах легких . В тканевых же капиллярах при участии карбоангидразы происходит синтез угольной кислоты в эритроцитах. Активность карбоангидразы в эритроцитах настолько велика, что син­тез угольной кислоты ускоряется в десятки тысяч раз. Угольная кислота отнимает основания от восстановлен­ного гемоглобина, в результате чего образуются соли угольной кислоты - бикарбонаты натрия в плазме и би­карбонаты калия в эритроцитах. Кроме того, гемоглобин образует химическое соединение с углекислым газом - карбгемоглобин. Впервые это соединение обнаружено И. М. Сеченовым. Роль карбгемоглобина в транспорте углекислого газа достаточно велика. Около 25-30% углекислого газа, поглощаемого кровью в капиллярах большого круга кровообращения, транспортируется в виде карбгемоглобина. В легких гемоглобин присоединяет кислород и переходит в оксигемоглобин. Гемоглобин вступает в реакцию с бикарбонатами и вытесняет из них угольную кислоту. Свободная угольная кислота расщепляет­ся карбоангидразой на углекислый газ и воду. Угле­кислый газ диффундирует через мембрану легочных ка­пилляров и переходит в альвеолярный воздух. Уменьше­ ние напряжения углекислого газа в капиллярах легких способствует расщеплению карбгемоглобина с освобожде­ нием углекислого газа .

    Таким образом, углекислый газ переносится к легким в форме бикарбонатов и в состоянии химической связи с гемоглобином (карбгемоглобин). Важная роль в слож­нейших механизмах транспорта углекислого газа принад­лежит карбоангидразе эритроцитов.

    Конечной целью дыхания является снабжение всех клеток кислородом и удаление из организма углекислого газа. Для осуществления этой цели дыхания необходим ряд условий: 1) нормальная деятельность аппарата внеш­него дыхания и достаточная вентиляция легких; 2) нор­мальный транспорт газов кровью; 3) обеспечение систе­мой кровообращения достаточного кровотока; 4) способ­ность тканей «забирать» из протекающей крови кислород, утилизировать его и отдавать в кровь углекислый газ.

    Таким образом, тканевое дыхание обеспечивается функциональными взаимосвязями между системами ды­хания, крови и кровообращения.

    21. ДЫХАТЕЛЬНЫЙ ЦЕНТР

    Ритмическая последовательность вдоха и выдоха, а также изменение характера дыхательных движений в за­висимости от состояния организма (покой, работа различ­ной интенсивности, эмоциональные проявления и т. д.) регулируются дыхательным центром, расположенным в продолговатом мозге. Дыхательным центром называется совокупность нейронов, обеспечивающих деятельность аппарата дыхания и его приспособление к изменяющимся условиям внешней и внутренней среды .

    Решающее значение в определении локализации дыха­тельного центра и его активности имели исследования отечественного физиолога Н. А. Миславского, который в 1885 г. показал, что дыхательный центр у млекопитаю­щих находится в продолговатом мозге, на дне IV желу­дочка в ретикулярной формации. Дыхательный центр - парное, симметрично расположенное образование, в состав которого входят вдыхательная и выдыхательная части.

    Результаты исследований Н. А. Миславского легли в основу современных представлений о локализации, строе­нии и функции дыхательного центра. Они подтверждены в экспериментах с использованием микроэлектродной техники и отведения биопотенциалов от различных струк­тур продолговатого мозга. Было показано, что в дыха­тельном центре имеются две группы нейронов: инспиратор­ные и экспираторные. Обнаружены некоторые особенности в работе дыхательного центра. При спокойном дыхании активна только небольшая часть дыхательных нейронов, и, следовательно, в дыхательном центре есть резерв нейро­нов, который используется при повышенной потребности организма в кислороде. Установлено, что между инспираторными и экспираторными нейронами дыхательного центра существуют функциональные взаимосвязи. Они вы­ражаются в том, что при возбуждении инспираторных нейронов, обеспечивающих вдох, деятельность экспиратор­ных нервных клеток заторможена, и наоборот. Таким образом, одной из причин ритмичной, автоматической дея­тельности дыхательного центра являются взаимосвязанные функциональные отношения между этими группами ней­ронов. Существуют и другие представления о локализации и организации дыхательного центра, которые поддержива­ются рядом советских и зарубежных физиологов. Пред­полагают, что в продолговатом мозге локализованы центры вдоха, выдоха и судорожного дыхания. В верхней части моста головного мозга (варолиев мост) находится пневмотаксический центр, который контролирует деятельность расположенных ниже центров вдоха и выдоха и обеспе­чивает правильное чередование циклов дыхательных дви­жений.

    Дыхательный центр, расположенный в продолговатом мозге, посылает импульсы к мотонейронам спинного моз­га, иннервирующим дыхательные мышцы. Диафрагма иннервируется аксонами мотонейронов, расположенных на уровне III-IV шейных сегментов спинного мозга. Мото­нейроны, отростки которых образуют межреберные нервы, иннервирующие межреберные мышцы, расположены в передних рогах (III-XII) грудных сегментов спинного мозга.

    Регуляция деятельности дыхательного центра

    Регуляция деятельности дыхательного центра осуще­ствляется с помощью гуморальных, рефлекторных меха­низмов и нервных импульсов, поступающих из вышележа­щих отделов головного мозга.

    Гуморальные механизмы. Специфическим регулятором активности нейронов дыхательного центра является угле­кислый газ, который действует на дыхательные нейроны непосредственно и опосредованно. В нейронах дыхатель­ного центра в процессе их деятельности образуются про­дукты обмена веществ (метаболиты), в том числе и угле­кислый газ, который оказывает непосредственное влияние на инспираторные нервные клетки, возбуждая их. В ре­тикулярной формации продолговатого мозга, вблизи дыха­тельного центра, обнаружены хеморецепторы, чувствитель­ные к углекислому газу. При увеличении напряжения углекислого газа в крови хеморецепторы возбуждаются, и нервные импульсы поступают к инспираторным нейро­нам, что приводит к повышению их активности. В лабора­тории М. В. Сергиевского получены данные о том, что углекислый газ повышает возбудимость нейронов коры большого мозга. В свою очередь клетки коры большого мозга стимулируют активность нейронов дыхательного центра. В механизме стимулирующего влияния углекисло­го газа на дыхательный центр важное место принадлежит хеморецепторам сосудистого русла. В области сонных синусов и дуги аорты обнаружены хеморецепторы, чув­ствительные к изменениям напряжения углекислого газа и кислорода в крови.

    В эксперименте показано, что промывание сонного си­нуса или дуги аорты, изолированных в гуморальном отношении, но с сохраненными нервными связями, жид­костью с повышенным содержанием углекислого газа сопровождается стимуляцией дыхания (рефлекс Гейманса). В аналогичных экспериментах установлено, что повы­шение напряжения кислорода в крови тормозит актив­ность дыхательного центра.

    Рефлекторные механизмы . Различают постоянные и непостоянные (эпизодические) рефлекторные влияния на функциональное состояние дыхательного центра.

    Постоянные рефлекторные влияния воз­никают в результате раздражения рецепторов альвеол (рефлекс Геринга - Брейера), корня легкого и плевры (пульмоторакальный рефлекс), хеморецепторов дуги аор­ты и сонных синусов (рефлекс Гейманса), проприорецеп­торов дыхательных мышц.

    Наиболее важным рефлексом является рефлекс Геринга - Брейера. В альвеолах легких заложены механорецепторы растяжения и спадения, являющиеся чувст­вительными нервными окончаниями блуждающего нерва. Рецепторы растяжения возбуждаются при обычном и максимальном вдохе, т. е. любое увеличение объема легоч­ных альвеол возбуждает эти рецепторы. Рецепторы спаде­ния становятся активными только в условиях патологии (при максимальном спадении альвеол).

    В экспериментах на животных было установлено, что при увеличении объема легких (вдувание в легкие возду­ха) наблюдается рефлекторный выдох, выкачивание же воздуха из легких приводит к быстрому рефлекторному вдоху. Указанные реакции не возникали при перерезке блуждающих нервов.

    Рефлекс Геринга - Брейера является одним из механизмов саморегуляции дыхательного процесса, обе­спечивая смену актов вдоха и выдоха. При растяжении альвеол во время вдоха нервные импульсы от рецепторов растяжения по блуждающему нерву идут к экспиратор­ным нейронам, которые, возбуждаясь, тормозят активность инспираторных нейронов, что приводит к пассивному выдоху. Легочные альвеолы спадаются, и нервные импульсы от рецепторов растяжения уже не поступают к экспираторным нейронам. Активность их падает, что создает условия для повышения возбудимости инспираторной части дыхательного центра и осуществлению актив­ного вдоха. Кроме того, активность инспираторных нейронов усиливается при нарастании концентрации угле­кислого газа в крови, что также способствует проявлению вдоха.

    Дыхание - сложный непрерывный процесс, в результате которого постоянно обновляется газовый состав крови.

    Легкие — парные дыхательные органы, расположенные в герметически замкнутой грудной полости. Их воздухоносные пути представлены носоглоткой, гортанью, трахеей. Трахея в грудной полости делится на два бронха — правый и левый, каждый из которых, многократно разветвляясь, образует так называемое бронхиальное дерево. Мельчайшие бронхи — бронхиолы на концах расширяются в слепые пузырьки — легочные альвеолы.

    В дыхательных путях газообмен не происходит, и состав воздуха не меняется. Пространство, заключенное в дыхательных путях называется мертвым, или вредным. При спокойном дыхании объем воздуха в мертвом пространстве составляет 140—150 мл .

    Строение легких обеспечивает выполнение ими дыхательной функции. Тонкая стенка альвеол состоит из однослойного эпителия, легко проходимого для газов. Наличие эластических элементов и гладких мышечных волокон обеспечивает быстрое и легкое растяжение альвеол, благодаря чему они могут вмещать большие количества воздуха. Каждая альвеола покрыта густой сетью капилляров, на которые разветвляется легочная артерия.

    Каждое легкое покрыто снаружи серозной оболочкой —плеврой, состоящей из двух листков: пристеночного и легочного (висцерального). Между листками плевры имеется узкая щель, заполненная серозной жид костью — плевральная полость.

    Давление в плевральной полости и в средостении в норме всегда отрицательное. За счет этого альвеолы всегда находятся в растянутом состоянии. Отрицательное внутригрудное давление играет значительную роль в гемодинамике, обеспечивая венозный возврат крови к сердцу и улучшая кровообращение в легочном круге, особенно в фазу вдоха.

    Расправление и спадение легочных альвеол, а также движение воздуха по воздухоносным путям сопровождается возникновением ды хательных шумов, которые можно исследовать методом выслу шивания (аускультации).

    В процессе дыхания различают три звена : внешнее, или легочное, дыхание, транспорт газов кровью и внутреннее, или тканевое, дыхание.

    Внешнее дыхание — это газообмен между организмом и окружающим его атмосферным воздухом. Осуществляется в два этапа — обмен газов между атмосферным и альвеолярным возду хом и газообмен между кровью легочных капилляров и альвеолярным воздухом.

    Аппарат внешнего дыхания включает в себя дыхательные пути, легкие, плевру, скелет грудной клетки и ее мышцы, а также диафрагму. Основной функцией ап парата внешнего дыхания является обеспечение организма кислородом и освобождение его от избытка углекислого газа. О функциональном состоянии аппарата внешнего дыхания можно судить по ритму, глубине, часто те дыхания, по величине легочных объемов, по показателям поглощения кислорода и выделения углекислого газа и т. д.

    Транспорт газов осуществляется кровью. Он обеспечивается разностью парциального давления (напряжения) газов по пути их следования: кислорода от легких к тканям, углекислого газа от клеток к легким.

    Внутреннее или тканевое дыхание также может быть разделено на два этапа . Первый этап - обмен газов между кровью и тканями. Второй — потребление кислорода клетками и выделение ими углекислого газа (клеточное дыхание).

    Человек дышит атмосферным воздухом, который имеет следующий состав: 20,94% кислорода, 0,03% углекислого газа, 79,03% азота. В выдыхаемом воздухе обнаруживается 16,3% кислорода, 4% углекислого газа, 79,7% азота.

    Альвеолярный воздух по составу отличается от атмосферного. В альвеолярном воздухе резко уменьшается содержание кислорода и возрастает количество углекислого газа. Процентное содержание отдельных газов в альвеолярном воздухе: 14,2—14,6% кислорода, 5,2—5,7% углекислого газа, 79,7—80% азота.

    ДЫХАТЕЛЬНЫЙ ЦИКЛ.

    Дыхательный цикл состоит из вдоха, выдоха и дыхательной паузы. Длительность вдоха у взрослого человека от 0,9 до 4,7 с, длительность выдоха — 1,2—6 с. Дыхательная пауза различна по величине и даже может отсутствовать.

    Дыхательные движения совершаются с определенным ритмом и частотой , которые определяют по числу экскурсий грудной клетки в 1 мин. У взрослого человека частота дыхательных движений составляет 12—18 в 1 мин.

    Глубину дыхательных движений определяют по амплитуде экскурсий грудной клетки и с помощью специальных методов, позволяющих исследовать легочные объемы.

    Механизм вдоха. Вдох обеспечивается расширением грудной клетки вследствие сокращения дыхательных мышц - наружных межреберных и диафрагмы. При этом увеличивается объем легких, давление заключенного в них воздуха становится ниже атмосферного, и воздух засасывается в легкие.

    Механизм выдоха. Выдох (экспирация) осуществляется в результате расслабления дыхательной мускулатуры, а также вследствие эластической тяги легких, стремящихся занять исходное положение. Эластические силы легких представлены тканевым компонентом и силами поверхностного натяжения, которые стремятся сократить альвеолярную сферическую поверхность до минимума. Однако альвеолы в норме никогда не спадаются. Причина этого - наличие в стенках альвеол поверхностно-активного стабилизирующего вещества - сурфактанта , вырабатываемого альвеолоцитами.

    ЛЕГОЧНЫЕ ОБЪЕМЫ. ЛЕГОЧНАЯ ВЕНТИЛЯЦИЯ.

    Дыхательный объем — количество воздуха, которое человек вдыхает и выдыхает при спокойном дыхании. Его объем составляет 300 — 700 мл.

    Резервный объем вдоха — количество воздуха, которое может быть введено в легкие, если вслед за спокойным вдохом произвести максимальный вдох. Резервный объем вдоха равняется 1500—2000 мл.

    Резервный объем выдоха — тот объем воздуха, который удаляется из легких, если вслед за спокойным вдохом и выдохом произвести максимальный выдох. Он составляет 1500—2000 мл.

    Остаточный объем — это объем воздуха, который остается в легких после максимально глубокого выдоха. Остаточный объем равняется 1000—1500 мл воздуха.

    Дыхательный объем, резервные объемы вдоха и выдоха составляют так называемую жизненную емкость легких.
    Жизненная емкость легких у мужчинмолодого возраста составляет 3,5—4,8 л, у женщин — 3—3,5 л.

    Общая емкость легких состоит из жизненной емкости легких и остаточного объема воздуха.

    Легочная вентиляция — количество воздуха, обмениваемое в 1 мин.

    Легочную вентиляцию определяют путем умножения дыхательного объема на число дыханий в 1 мин (минутный объем дыхания). У взрослого человека в состоянии относительного физиологического покоя легочная вентиляция составляет 6—8 л в 1 мин.

    Легочные объемы могут быть определены с помощью специальных приборов — спирометра и спирографа.

    ТРАНСПОРТ ГАЗОВ КРОВЬЮ.

    Кровь доставляет тканям кислород и уносит углекислый газ.

    Движение газов из окружающей среды в жидкость и из жидкости в окружающую среду осуществляется благодаря разности их парциального давления . Газ всегда диффундирует из среды, где имеется высокое давление, в среду с меньшим давлением.

    Парциальное давление кислорода в атмосферном воздухе 21,1 кПа (158 мм рт. ст.), в альвеолярном воздухе — 14,4—14,7 кПа (108—110 мм рт. ст.) и в венозной крови, притекающей к легким,—5,33 кПа (40 мм рт. ст.). В артериальной крови капилляров большого круга кровообращения напряжение кислорода составляет 13,6—13,9 кПа (102—104 мм рт. ст.), в межтканевой жидкости — 5,33 кПа (40 мм рт. ст.), в тканях — 2,67 кПа (20 мм рт. ст.). Таким образом, на всех этапах движения кислорода имеется разность его парциального давления, что способствует диффузии газа.

    Движение углекислого газа происходит в противоположном направлении. Напряжение углекислого газа в тканях — 8,0 кПа и более (60 и более мм рт. ст.), в венозной крови — 6,13 кПа (46 мм рт. ст.), в альвеолярном воздухе — 0,04 кПа (0,3 мм рт. ст.). Следовательно, разность напряжения углекислого газа по пути его следования является причиной диффузии газа от тканей в окружающую среду.

    Транспорт кислорода кровью. Кислород в крови находится в двух состояниях: физическом растворении и в химической связи с гемоглобином. Гемоглобин образует с кислородом очень непрочное, легко диссоциирующее соединение - оксигемоглобин: 1г гемоглобина связывает 1,34 мл кислорода. Максимальное количество кислорода, которое может быть связано 100 мл крови, -кислородная емкость крови (18,76 мл или 19 об%).

    Насыщение гемоглобина кислородом колеблется от 96 до 98%. Степень насыщения гемоглобина кислородом и диссоциация оксигемоглобина (образование восстановленного гемоглобина) не находятся в прямой пропорциональной зависимости от напряжения кислорода. Эти два процесса не являются линейными, а совершаются по кривой, которая получила название кривой связывания или диссоциации оксигемоглобина.

    10 20 30 40 50 60 70 мм рт.ст.

    Рис. 25. Кривые диссоциации оксигемоглобина в водном растворе (I) и в крови (II) при напряжении углекислого газа 5,33 кПа (40 мм рт. ст.) (по Баркрофту).

    При нулевом напряжении кислорода оксигемоглобина в крови нет. При низких значениях парциального давления кислорода скорость образования оксигемоглобина невелика. Максимальное количество гемоглобина (45— 80%) связывается с кислородом при его напряжении 3,47—6,13 кПа (26—46 мм рт. ст.). Дальнейшее повышение напряжения кислорода приводит к снижению скорости образования оксигемоглобина.

    Сродство гемоглобина к кислороду значительно понижается при сдвиге реакции крови в кислую сторону, что наблюдается в тканях и клетках организма вследствие образования углекислого газа

    Переход гемоглобина в оксигемоглобин и из него в восстановленный зависит и от температуры. При одном и том же парциальном давлении кислорода в окружающей среде при температуре 37—38° С в восстановленную форму переходит наибольшее количество оксигемоглобина,

    Транспорт углекислого газа кровью. Углекислый газ переносится к легким в форме бикарбонатов и в состоянии химической связи с гемоглобином (карбогемоглобин).

    ДЫХАТЕЛЬНЫЙ ЦЕНТР.

    Ритмическая последовательность вдоха и выдоха, а также изменение характера дыхательных движений в зависимости от состояния организма регулируются дыхательным центром , расположенным в продолговатом мозге.

    В дыхательном центре имеются две группы нейронов:инспираторные и экспираторные. При возбуждении инспираторных нейронов, обеспечивающих вдох, деятельность экспираторных нервных клеток заторможена, и наоборот.

    В верхней части моста головного мозга (варолиев мост) находится пневмотаксический центр , который контролирует деятельность расположенных ниже центров вдоха и выдоха и обеспечивает правильное чередование циклов дыхательных движений.

    Дыхательный центр, расположенный в продолговатом мозге, посылает импульсы к мот онейронам спинного мозга, иннервирующим дыхательные мышцы. Диафрагма иннервируется аксонами мотонейронов, расположенных на уровне III—IV шейных сегментов спинного мозга. Мотонейроны, отростки которых образуют межреберные нервы, иннервирующие межреберные мышцы, расположены в передних рогах (III—XII) грудных сегментов спинного мозга.

    Регуляция деятельности дыхательного центра.

    Регуляция деятельности дыхательного центра осуществляется с помощью гуморальных, рефлекторных механизмов и нервных импульсов, поступающих из вышележащих отделов головного мозга.

    Гуморальные механизмы. Специфическим регулятором активности нейронов дыхательного центра является углекислый газ , который действует на дыхательные нейроны непосредственно и опосредованно. В ретикулярной формации продолговатого мозга, вблизи дыхательного центра, а также в области сонных синусов и дуги аорты обнаружены хеморецепторы , чувствительные к углекислому газу. При увеличении напряжения углекислого газа в крови хеморецепторы возбуждаются, и нервные импульсы поступают к инспираторным нейронам, что приводит к повышению их активности.

    Углекислый газ повышает возбудимость нейронов коры головного мозга. В свою очередь клетки КГМ стимулируют активность нейронов дыхательного центра.

    При оптимальном содержании в крови углекислого газа и кислорода наблюдаются дыхательные движения, отражающие умеренную степень возбуждения нейронов дыхательного центра. Эти дыхательные движения грудной клетки получили название эйпноэ .

    Избыточное содержание углекислого газа и недостаток кислорода в крови усиливают активность дыхательного центра, что обусловливает возникновение частых и глубоких дыхательных движений - гиперпноэ. Еще большее нарастание количества углекислого газа в крови приводит к нарушению ритма дыхания и появлению одышки - диспноэ. Понижение концентрации углекислого газа и избыток кислорода в крови угнетают активность дыхательного центра. В этом случае дыхание становится поверхностным, редким и может наступить его остановка - апноэ.

    Механизм первого вдоха новорожденного.

    В организме матери газообмен плода происходит через пупочные сосуды. После рождения ребенка и отделения плаценты указанная связь нарушается. Метаболические процессы в организме новорожденного приводят к образованию и накоплению углекислого газа, который, так же как и недостаток кислорода, гуморально возбуждает дыхательный центр. Кроме того, изменение условий существования ребенка приводит к возбуждению экстеро- и проприорецепторов, что также является одним из механизмов, принимающих участие в осуществлении первого вдоха новорожденного.

    Рефлекторные механизмы.

    Различают постоянные и непостоянные (эпизодические) рефлекторные влияния на функциональное состояние дыхательного центра.

    Постоянные рефлекторные влияния возникают в результате раздражения рецепторов альвеол (рефлекс Геринга — Брейера ), корня легкого и плевры (пульмоторакальный рефлекс ), хеморецепторов дуги аорты и сонных синусов (рефлекс Гейманса ), проприорецепторов дыхательных мышц.

    Наиболее важным рефлексом является рефлекс Геринга — Брейера. В альвеолах легких заложены механорецепторы растяжения и спадения, являющиеся чувствительными нервными окончаниями блуждающего нерва. Любое увеличение объема легочных альвеол возбуждает эти рецепторы.

    Рефлекс Геринга — Брейера является одним из механизмов саморегуляции дыхательного процесса, обеспечивая смену актов вдоха и выдоха. При растяжении альвеол во время вдоха нервные импульсы от рецепторов растяжения по блуждающему нерву идут к экспираторным нейронам, которые, возбуждаясь, тормозят активность инспираторных нейронов, что приводит к пассивному выдоху. Легочные альвеолы спадаются, и нервные импульсы от рецепторов растяжения уже не поступают к экспираторным нейронам. Активность их падает, что создает условия для повышения возбудимости инспираторной части дыхательного центра и осуществлению активного вдоха .

    Кроме того, активность инспираторных нейронов усиливается при нарастании концентрации углекислого газа в крови, что также способствует проявлению вдоха.

    Пульмоторакальный рефлекс возникает при возбуждении рецепторов, заложенных в легочной ткани и плевре. Проявляется этот рефлекс при растяжении легких и плевры. Рефлекторная дуга замыкается на уровне шейных и грудных сегментов спинного мозга.

    К дыхательному центру постоянно поступают нервные импульсы от проприорецепторов дыхательных мышц. Во время вдоха происходит возбуждение проприорецепторов дыхательных мышц и нервные импульсы от них поступают в инспираторную часть дыхательного центра. Под влиянием нервных импульсов тормозится активность вдыхательных нейронов, что способствует наступлению выдоха.

    Непостоянные рефлекторные влияния на активность дыхательных нейронов связаны с возбуждением разнообразных экстеро- и интерорецепторов . К ним относятся рефлексы, возникающие при раздражении рецепторов слизистой оболочки верхних дыхательных путей, слизистой носа, носоглотки, температурных и болевых рецепторов кожи, проприорецепторов скелетных мышц. Так, например, при внезапном вдыхании паров аммиака, хлора, сернистого ангидрида, табачного дыма и некоторых других веществ происходит раздражение рецепторов слизистой оболочки носа, глотки, гортани, что приводит к рефлекторному спазму голосовой щели, а иногда даже мускулатуры бронхов и рефлекторной задержке дыхания.

    При раздражении эпителия дыхательных путей накопившейся пылью, слизью, а также попавшими химическими раздражителями и инородными телами наблюдается чиханье и кашель. Чиханье возникает при раздражении рецепторов слизистой оболочки носа, кашель — при возбуждении рецепторов гортани, трахеи, бронхов.

    Влияние клеток коры большого мозга на активность дыхательного центра.

    По М. В. Сергиевскому, регуляция активности дыхательного центра представлена тремя уровнями.

    Первый уровень регуляции спинной мозг. Здесь располагаются центры диафрагмальных и межреберных нервов, обусловливающие сокращение дыхательных мышц.

    Второй уровень регуляции продолговатый мозг. Здесь находится дыхательный центр. Этот уровень регуляции обеспечивает ритмичную смену фаз дыхания и активность спинномозговых мотонейронов, аксоны которых иннервируют дыхательную мускулатуру.

    Третий уровень регуляции — верхние отделы головного мозга, включающие и корковые нейроны. Только при участии коры большого мозга возможно адекватное приспособление реакций системы дыхания к изменяющимся условиям окружающей среды.

    ДЫХАНИЕ ПРИ ФИЗИЧЕСКОЙ НАГРУЗКЕ.

    У тренированных людей при напряженной мышечной работе объем легочной вентиляции возрастает до 50—100 л/мин по сравнению с 5—8 л в состоянии относительного физиологического покоя. Повышение минутного объема дыхания при физической нагрузке связано с увеличением глубины и частоты дыхательных движений. При этом у тренированных людей, в основном, изменяется глубина дыхания, у нетренированных — частота дыхательных движений.

    При физической нагрузке увеличивается концентрация в крови и тканях углекислого газа и молочной кислоты, которые стимулируют нейроны дыхательного центра как гуморальным путем, так и за счет нервных импульсов, поступающих от сосудистых рефлексогенных зон. Наконец, активность нейронов дыхательного центра обеспечивается потоком нервных импульсов, поступающих от клеток коры головного мозга, обладающих высокой чувствительностью к недостатку кислорода и к избытку углекислого газа.

    Одновременно возникают приспо собительные реакции в сердечно-сосудистой системе. Увеличиваются частота и сила сердечных сокращений, повышается артериальное давление, расширяются сосуды работающих мышц и суживаются сосуды других областей.

    Таким образом, система дыхания обеспечивает возрастающие потребности организма в кислороде. Системы же кровообращения и крови, перестраиваясь на новый функциональный уровень, способствуют транспорту кислорода к тканям и углекислого газа к легким.


Загрузка...