docgid.ru

Электрические проявления активности коры большого мозга. Функции симпатической нервной системы. Возбуждающие и тормозящие синапсы


Складчатая наружная поверхность полушарий достигает 1700-2500 см2, толщина серого вещества варьирует между 1,5 и 5 мм, а находящиеся в нем нейроны образуют шесть слоев, различающихся между собой по составу клеток. В зависимости от выполняемых функций области коры подразделяются на сенсорные, моторные и ассоциативные (рис. 4.33). К сенсорным областям относят: соматосенсорную кору, занимающую задние центральные извилины, зрительную кору, находящуюся в затылочных долях, и слуховую кору, занимающую часть височных долей. Моторная кора находится в передних центральных извилинах и в примыкающих к ним спереди регионах лобных долей. Ассоциативная кора занимает всю осталь-

Рис. 4.33. Схема функциональных областей коры.
На рисунке обозначены примерные границы функциональных областей коры на боковой по верхности левого полушария.

ную поверхность мозга и подразделяется на префронтальную кору лобных долей, теменно-височно-затылочную (парието-темпорально-окципиталь- ную) и лимбическую, к которой относят внутренние и нижние поверхности лобных долей, внутренние поверхности затылочных долей и нижние отделы височных долей.
Различные области коры взаимодействуют друг с другом посредством внутрикортикальных ассоциативных связей или с помощью подкорковых структур (таламус, базальные ганглии). Регионы коры, находящиеся в разных полушариях, связаны друг с другом волокнами мозолистого тела, что позволяет передавать информацию из одного полушария в другое. Функциональное распределение нейронов в коре
Дендриты пирамидных нейронов коры образуют синапсы с очень большим количеством афферентов, а их аксоны направляются в белое вещество и своими разветвленными коллатералями образуют 3/4 всех синапсов кортикальных нейронов. Большинство пирамидных нейронов используют в качестве медиаторов возбуждающие аминокислоты (глутамат или аспартат), но одновременно могут секретировать несколько комедиаторов (нейропептиды, АТФ), модулирующих синаптический перенос сигналов. Непирамидные нейроны (корзинчатые и звездчатые клетки) в большинстве случаев синтезируют ГАМК в разных комбинациях с нейропептидами и обладают тормозным действием, однако часть непирамидных клеток использует возбуждающие медиаторы. В отличие от пирамидных нейронов все виды непирамидных клеток образуют не выходящие за пределы коры аксоны и играют роль внутрикортикальных интернейронов.
Нейроны расположены в коре упорядоченными слоями, специфика которых отражает их роль в переработке информации. В наружном молекулярном слое проходят соединительные нервные волокна, осуществляющие внутрикорковые связи соседних нейронов. В наружном зернистом II слое и в наружном пирамидном III слое содержатся мелкие и средней величины пирамидные нейроны, аксоны которых служат для связи региона с другими областями коры. Во внутреннем зернистом IV слое имеются небольшие звездчатые клетки, получающие афферентные волокна таламических нейронов и выполняющие функцию входных нейронов. Наряду с ними в этом слое содержится много пирамидных нейронов, использующихся для передачи эфферентных сигналов. Во внутреннем пирамидном V слое сосредоточены крупные пирамидные нейроны (клетки Беца), аксоны которых служат для передачи информации к базальным ганглиям, стволу и спинному мозгу (кортикоспинальный тракт). Во внутреннем полиморфном VI слое, граничащим с белым веществом, встречаются разной формы нейроны, а в подслое Via обнаружен самый большой процент пирамидных нейронов (97 %), которые осуществляют передачу информации к таламусу. Модульная организация коры
Каждый релейный нейрон таламуса возбуждается в ответ на раздражение собственного рецептивного поля, после чего активирует звездчатые клетки IV слоя коры в кортикальной колонке, получающей проекцию от этого таламического нейрона. Каждая кортикальная колонка представляет ориентированный перпендикулярно поверхности цилиндр диаметром 300-500 мкм. Нейроны одной колонки получают сходные афферентные сигналы и
образуют синапсы преимущественно друг с другом. В колонках проекционной коры имеются две разновидности пирамидных нейронов, которые получили название простых и сложных.
Простые нейроны расположены поблизости от входного IV слоя и выполняют функцию детекторов элементарных признаков раздражителя. Например, простые нейроны зрительной коры сильнее всего реагируют на линейный зрительный стимул в виде полосы или грани между светлой и темной плоскостью, т. е. реагируют на контраст. Друг от друга они отличаются по чувствительности к разным углам наклона линейного стимула. Аксоны нескольких однотипных простых нейронов конвергируют к сложным, или комплексным, нейронам, поэтому комплексные нейроны реагируют на стимул позже простых клеток. Рецептивное поле сложных нейронов состоит из небольших рецептивных полей простых нейронов, а эффективными раздражителями для комплексных нейронов становится уже не линейный раздражитель определенной ориентации, а характер и направление его движения через рецептивное поле. Так осуществляется переход от детекции простых сигналов к абстрагированию, обобщению. В этом процессе участвуют интернейроны локальной сети кортикальной колонки, а итогом преобразования становится уровень активности выходных нейронов, аксоны которых покидают колонку, чтобы обеспечить ее взаимодействие с другими колонками.
Аналогичная нейронная организация имеет место в слуховой и моторной коре, что послужило поводом для гипотезы о модульном строении как общем принципе организации нейронных ансамблей в коре. Подобный нейронный ансамбль представляет собой функциональную единицу коры, для которой используют термины «кортикальная колонка» или «микромодуль». С помощью горизонтальных связей они взаимодействуют с соседними колонками (микромодулями), образуя вместе с ними гиперколонку, или модуль. Если микромодули предназначены для распознания элементарных признаков раздражителя или образа, то модуль служит для комплексного объединения элементарных признаков.
Разные модули могут быть связаны друг с другом ассоциативными волокнами, образованными преимущественно пирамидными нейронами II- III слоев. Если модули находятся на большом расстоянии друг от друга, такие волокна проходят в составе белого вещества. Модули, расположенные в разных полушариях, могут передавать информацию посредством волокон мозолистого тела. Волокна пирамидных нейронов обычно группируются, и аксоны направляются к клеткам-мишеням в виде пучка волокон. В модулях ассоциативной коры отсутствуют клетки, реагирующие на элементарные раздражители, но имеются нейроны, разряжающиеся только в ответ на определенный сложный комплекс стимулов. Например, в нижней височной доле существуют нейроны, которые активируется только при зрительном восприятии человеческого лица. Электрическая активность коры
Нейроны коры обладают спонтанной ритмической фоновой активностью, характер которой изменяется в ответ на стимуляцию периферических рецепторов (вызванные потенциалы). Обе эти разновидности электрической активности можно зарегистрировать с помощью электродов, помещенных на поверхности коры (электрокортикограмма) или на коже головы (электроэнцефалограмма, ЭЭГ). ЭЭГ отражает суммарную активность большого количества одновременно возбуждающихся и тормозимых нейронов, нахо-

Рис. 4.34. Основные ритмы электроэнцефалограммы.
Бета-ритм - электрические колебания малой амплитуды с частотой 13-26 Гц, наиболее выраженные в лобных областях и характерные для активного бодрствования. Альфа-ритм - характеризуется близкими к синусоидальным волнами с амплитудой 50-100 мкВ и частотой 8- 12 Гц, наблюдается при пассивном бодрствовании и монотонной деятельности. Тета-ритм отличается волнами, имеющими амплитуду до 100 мкВ и более с частотой 4-7 Гц, возникает при переходе ко сну, а также при некоторых формах измененного сознания. Дельта-ритм представлен волнами с большой амплитудой и малой частотой, 0,3-0,5 Гц, он характерен для глубокого сна.

Будучи достаточно подготовленным, индивид менее зависит от сенсорной информации и может направлять свое движение от внутренних сигналов, что больше связано с активацией дополнительной моторной области. Как дополнительная моторная область, так и предмоторная кора являются частью более широких и различных нейронных цепей, которые также участвуют в приобретении и выполнении моторных задач. Таким образом, большая активность предмоторной коры, наблюдаемая на ранних стадиях моторного обучения, коррелирует с большей активностью задней теменной коры и мозжечка.

дящихся в поверхностных и глубоких слоях коры (рис. 4.34). Регистрируемые разности потенциалов примерно в сто раз слабее, чем в ЭКГ, а частотные характеристики сигналов легли в основу классификации ритмов ЭЭГ, где различают альфа-волны, следующие с частотой 8-12 Гц, бета- волны (13-26 Гц), тета-волны (4-7 Гц) и дельта-волны (0,3-0,5 Гц). Изменения ритмов ЭЭГ связаны с активностью таламуса и восходящих проекций некоторых ядер ствола. После перерезки ствола мозга между верхними и нижними буграми четверохолмия у кошки на электроэнцефалограмме постоянно регистрируются низкочастотные волны, обычно характерные для картины сна. Замедленная фоновая активность ЭЭГ имеет место у человека во время комы, характеризующейся утратой сознания вследствие поражения верхних отделов моста или диффузных поражений коры. Активация холинергических нейронов гигантоклеточной области покрышки моста и ростральных отделов ретикулярной формации среднего мозга приводит к десинхронизации ЭЭГ, т. е. переходу от низкочастотных волн к бета-ритму. Блокада альфа-ритма происходит в связи с привлечением внимания к новому раздражителю, а смена альфа-волн ЭЭГ в такой ситуации на бета-ритм обусловлена восходящим активирующим влиянием норадренергических нейронов голубого пятна. Функции сенсорных областей коры
Сенсорные области коры являются пунктом назначения передающейся в сенсорных системах информации. Все сенсорные системы организованы по единому иерархическому принципу. В их рецепторах энергия внешних стимулов преобразуется в электрохимическую энергию нервных импульсов, которые от чувствительных нейронов передаются нейронам второго порядка, находящимся в ЦНС. После преобразования сигналов на низшем переключательном уровне с помощью релейных нейронов информация сообщается следующему уровню переключения и переработки, пока не поступит в первичную проекционную кору. Почти все проводящие пути включают проекционные ядра таламуса, распределяющего информационные потоки к разным проекционным областям коры (табл. 4.2).
Топографическая упорядоченность нейронных переключений обеспечивает пространственное представительство или проекцию рецептивных полей в коре в виде нейронной карты. Например, каждый квадратный миллиметр поверхности кожи любого из пальцев имеет собственное представительство в строго определенной области постцентральной извилины противоположного полушария. Принцип строго упорядоченной топографической организации в соматосенсорной системе называется соматотопией, в зрительной системе - ретинотопией, в слуховой системе - тонотопией. Сенсорные системы создают ощущения и восприятие окружающего мира, контролируют правильность совершаемых человеком движений, используются в качестве обратной связи для регуляции физиологических процессов и поддерживают необходимую для бодрствования активность мозга.
В формировании восприятия участвуют первичная и вторичная сенсорная кора, а также ассоциативные области. Первичная сенсорная кора получает афферентную информацию преимущественно от мономодальных нейронов специфических ядер таламуса. Проекционный нейрон таламуса, получивший информацию от своего рецептивного поля, возбуждает входные звездчатые нейроны преимущественно одной кортикальной колонки: этот
Таблица 4.2. Уровни обработки информации в сенсорных системах

Эта взаимосвязь по-прежнему интуитивна, поскольку обучение в основном зависит от внешних понятий и, следовательно, от адекватной обработки сенсорной информации, которая осуществляется ассоциативной корой теменной доли и мозжечковых схем. С другой стороны, активность дополнительной моторной области коррелирует с корковыми областями височной доли и лимбических структур и с цепями основных ядер.

Таким образом, цепь, включающая заднюю теменную кору, предмоторную кору и мозжечок, имеет важное значение для разработки движений, управляемых извне, особенно с помощью космических сигналов. Эта схема, вероятно, доминирует в интеграции двигателей на ранних этапах обучения автомоделью. Другая схема, связанная с префронтальной корой, дополнительной моторной областью, базовыми ядрами, а также височной долей, становится доминирующей, когда уже изученная двигательная задача инициируется внутренним представлением действия, которое вы хотите выполнить.


Модаль
ность

Локализация рецепторов

Первое переключение

Повторные переключения

Проекционные области коры

Осяза-

Кожа

Продолгова-

Таламус

Постцентраль-

ние


тый мозг


ная извилина

Зрение

Палочки и кол-

Сетчатка гла-

Таламус, верхнее четве-

Затылочные до-


бочки сетчатки

за

рохолмие

ли, поле 17

Слух

Волосковые клет-

Улитка, спи-

Мост, оливы, нижнее

Поперечная ви-


ки улитки

ральный

четверохолмие, таламус

сочная извили-



ганглий


на, поле 41

Равнове-

Волосковые клет-

Вестибуляр-

Глазодвигательные ядра,

Постцентраль-

сие

ки вестибулярно-

ные ядра

ствол, спинной мозг,

ная извилина


го аппарата


мозжечок, таламус


Вкус

Вкусовые почки

Продолгова-

Таламус

Постцентраль-


языка

тый мозг


ная извилина

Обоня-

Биполярные клет-

Обонятель-

Пириформная кора

Лимбическая

ние

ки носовой пазухи

ная луковица


система

Боль

Ноцицепторы ко-

Задние рога

Таламус, ретикулярная

Постцентраль-


жи

СПИННОГО

формация

ная извилина,
/>

мозга


передняя поясная извилина

принцип соединений обеспечивает топографическое соответствие рецептивных полей определенным кортикальным колонкам. Большинство нейронов первичных областей коры имеют очень небольшую спонтанную активность и возбуждаются сильнее всего в ответ на действие элементарного и специфического именно для них сенсорного стимула.
Вторичная сенсорная кора отличается от первичной тем, что большую часть афферентной информации получает не напрямую из таламуса, а из первичной сенсорной коры, а также из других вторичных областей этой же сенсорной системы. Благодаря конвергенции входных сигналов из разных источников здесь происходит поэтапная интеграция информации, поступившей по параллельным путям ее переработки, каждый из которых активируется каким-то одним, элементарным признаком комплексного раздражителя. Во вторичной коре нейроны сильнее всего реагируют на определенный комплекс признаков, а не на один из них, что присуще нейронам первичной коры.
4.10.4.1. Функция соматосенсорной коры
Центральные отростки первичных сенсорных нейронов, передающих сигналы от тактильных рецепторов кожи и от проприоцепторов мышц, сухожилий и суставов, входят в спинной мозг через задние корешки и образуют коллатерали, которые в составе задних столбов спинного мозга достигают продолговатого мозга. Поступающие сигналы принимают нейроны ядер задних столбов, аксоны которых немедленно переходят на противоположную сторону продолговатого мозга в составе медиальной петли или медиального лемниска (благодаря этому термину весь путь получил название
лемнискового) и направляются к заднему вентролатеральному ядру таламуса. К этому же ядру таламуса поступает информация от кожи противоположной стороны лица, переданная по ветвям тройничного нерва. Нейроны вентролате- ральных ядер таламуса образуют проекцию на заднюю центральную извилину, представляющую собой проекционную соматосенсорную область S,. Часть информации поступает также во вторичную соматосенсорную область S„, которая расположена на верхней стенке боковой борозды, разделяющей теменную и височную доли, и имеет билатеральное представительство поверхности тела. Она участвует в координации одновременных движений обеих рук (ног).
Карта соматосенсорного представительства в коре - сенсорный гомункулус, т. е. человечек (рис. 4.35), не соответствует пропорциям человеческого тела, она отра-

Если мы рассмотрим эти две схемы вместе, не различая двигательное поведение относительно степени способности, с которой оно выполняется, мы можем выразить сущность роли коры в моторной интеграции довольно синтетическим способом. Передняя часть лобной доли считается наиболее непосредственно связанной с разработкой абстрактных мыслей, решений, которые должны быть сделаны, и ожиданием возможных последствий действия, которое должно быть выполнено. Эти префронтальные области наряду с задней теменной корой представляют собой наивысшие уровни в иерархии управления двигателем, где принимаются решения о том, какое действие следует выполнять, и соображения взвешиваются с их возможными последствиями.



Поперечный разрез постцентральной извилины
Формирование ощущений, а затем и восприятия происходит в несколько этапов. Четыре региона постцентральной извилины (За, 36, 1 и 2) получают афферентную информацию от разных видов рецепторов, расположенных в одной области тела: За - от интрафузальных рецепторов, 36 - от поверхностных рецепторов кожи, 1 - от быстро адаптирующихся рецепторов, 2 - от рецепторов, реагирующих на сильное давление. В полях За и 36 осуществляется первый элементарный этап переработки информации, в полях 1 и 2 - следующий этап с участием комплексных нейронов, реагирующих на несколько элементарных признаков. В полях 5 и 7 заднетеменной области осуществляется дальнейшая переработка информации, в результате которой возникает целостное восприятие действующего раздражителя.
жает относительную плотность чувствительной иннервации противоположной половины тела. Соматосенсорная кора разделяется на четыре области (рис. 4.36), занимающие поля За, 36, 1 и 2. В поле За поступает информация от рецепторов мышц и суставов, в поле 36 - от поверхностных рецепторов кожи: эта информация содержит самые элементарные характеристики стимула. В поле 1 происходит дальнейшая переработка информации, поступившей от рецепторов кожи, а в поле 2 она комбинируется с той, которая содержит сведения о мышцах и суставах. Таким образом, если в полях За и 36 формируются элементарные представления о стимуле, то в полях 1 и 2 - комплексные.
Большую часть входов во вторичную сенсорную кору образуют клетки

Как префронтальные области, так и задняя теменная кора протестуют в область 6, которая охватывает предмоторную кору и дополнительную моторную область. Эти области, которые также вносят вклад с аксонами, составляющими кортико-спинальный тракт, выступают в качестве промежуточных звеньев, которые позволяют кодировать сигналы, какие действия желательно преобразовать в сигналы, кодирующие, как будут выполняться действия. Однако в процессе проектирования и выполнения двигательной плоскости различные схемы коры головного мозга широко используются подкорковыми структурами, особенно мозжечком и ядрами основания, уже упомянутыми в настоящем тексте.

областей S, от обоих полушарий, а поэтому в областях Sn представлены обе половины тела. Выходы из первичной сенсорной коры, а также из вторичной - Su, направлены к прилежащим регионам теменной коры - это ассоциативные области, которые интегрируют сенсорную информацию. Кроме того, от поля 2 есть выход к первичной моторной коре, он имеет большое значение для осуществления точных движений.
Представительство различных частей тела в соматосенсорной коре основано на генетически предопределенном характере нейронных переключений на разных иерархических уровнях. Однако при изменении характера поступающей информации с периферии представительство разных частей тела в коре может измениться у взрослых животных и у людей. Замена коркового представительства руки после ее ампутации была обнаружена у людей, продолжавших ощущать отсутствующую конечность и даже чувствовать в ней боль: такие боли называют фантомными. В одних случаях место руки на пространственной карте соматосенсорной коры заняли отдельные участки лица. Вследствие этого прикосновение к таким участкам воспринималось, как прикосновение к отсутствующим пальцам. В других случаях представительство кисти руки занимали другие смежные области: предплечье, плечо, верхняя часть туловища. Подобные перестройки сома- тотопического представительства определяются как перекартирование.
Карту представительства руки в коре у людей можно с точностью до 1 мм исследовать с помощью магнитоэнцефалограммы. У людей этим методом обнаруживаются четкие границы полей всех пяти пальцев. При врожденном сращении пальцев (такой дефект обозначается термином синдактилия) их отдельное представительство в коре не обнаруживается. Но спустя несколько недель после хирургического разделения пальцев начинают выявляться промежутки между отдельными представительствами пальцев в коре. Функция зрительной коры
Информация от сетчатки глаз передается по волокнам зрительных нервов и поступает к нейронам латеральных коленчатых тел, относящихся к таламусу. Релейные нейроны латеральных коленчатых тел образуют ретинотопическую проекцию на кортикальные колонки 17-го поля (в литературе оно чаще обозначается как V[). Это поле занимает около четверти поверхности затылочной области преимущественно на внутренней стороне каждого полушария. 17-е поле является первичной зрительной корой, в которой каждый участок соответствует определенной точке сетчатки, причем область центральной ямки представлена с наибольшим разрешением и занимает около половины всей поверхности первичной зрительной коры.
В зрительной коре существует около 20 популяций простых нейронов, каждая из которых возбуждается линейным стимулом, отличающимся по своему наклону от остальных минимум на 10°. Комплексные нейроны отличаются от простых большей величиной рецептивного поля и обычно возбуждаются в момент движения стимула в строго определенном направлении, тогда как линейная ориентация имеет для них меньшее значение, чем для простых нейронов. Многие комплексные нейроны бинокулярны, т. е. способны реагировать на стимуляцию обоих глаз, в то же время им присуща глазодоминантность, т. е. большая реакция на стимуляцию одного из глаз.
Простые и комплексные нейроны, сходные по своей чувствительности к стимулу определенной линейной ориентации, образуют вертикальную
А Угол наклона линейного Б
зрительного стимула

Рис. 4.37. Схема формирования кортикальных колонок первичной зрительной коры.

Эти структуры, важные не только для их физиологического участия в двигательной организации, но и для их патофизиологических последствий, будут подробно изучены позже. Теперь мы можем добавить в нашей загадке фундаментальный элемент в организации двигателя, коры головного мозга. Но мы уже знаем заранее, что правильная корковая функция зависит, помимо мозгового ствола и спинного мозга, от ее взаимосвязи с другими подкорковыми структурами, о которых мы поговорим ниже. На данный момент наша диаграмма, а также ее корковые отношения, как показано ниже.

Ориентационные колонки имеют вид узких полосок шириной 25-30 мкм, в каждой колонке содержатся нейроны с одинаковой ориентацией рецептивных полей.
А. Группа ориентационных колонок, различающихся наибольшей чувствительностью к определенной ориентации линейных стимулов и поступлению информации от определенного глаза.
Б. Каждая группа ориентационных колонок содержит регулярно повторяющиеся скопления клеток в виде капель (blobs), которые отсутствуют в IV слое коры. Эти клетки осуществляют переработку информации о цвете наблюдаемых объектов.
ориентационную колонку. Соседние колонки различаются систематическим изменением оси линейной ориентации стимула, которая от одной колонки к другой смещается приблизительно на 10° (рис. 4.37). На площади примерно в 1 мм2 размещается комплект ориентационных колонок, рассчитанный на регистрацию наклона линейных стимулов в пределах 360°. Помимо этого в комплект входят две глазодоминантные колонки, одна из которых получает информацию только от левого, а другая - только от правого глаза. Еще одним обязательным компонентом такого набора колонок является несколько скоплений клеток, предназначенных для восприятия цвета и расположенных в виде вставок или капель (blobs) между ориентационными колонками. Полный комплект, включающий ориентационные, глазодоминантные колонки и воспринимающие цвет вставки-blobs, получил название гиперколонки, которая является элементарным модулем переработки зрительной информации.
Вторичная зрительная кора примыкает к первичной зрительной коре и занимает 18-е и 19-е поля затылочных долей. В них, однако, процесс переработки зрительной информации не завершается, и у человека в нем участвует свыше 30 регионов, связанных между собой приблизительно 300 соединительными путями, образующими сложную сеть нейронных переклю-

Рисунок 29 - Диаграмма, в которой подчеркивается участие коры головного мозга в организации двигателя. Мышечное сокращение Спинальный мозговой мозг. Корковые областиСенсорные ассоциативные корковые области. Важность моторной коры подтверждается тем фактом, что поражения в этой области обычно приводят к гемиплегии, потере добровольной моторики на стороне тела, контралатеральной к поражению. Хемиплегия является частым результатом кровоизлияний, особенно тех, которые возникают в средней мозговой артерии.

После периода аррефлексии, который может длиться несколько недель, рефлексы снова появляются, теперь усугубляются. Спастичность также развивается, более выраженная в антигравитационной мускулатуре. Гиперрефлексию и спастичность можно понять из иерархической концепции, которую мы принимаем в этом тексте. Мышечная активность, которая противодействует действию силы тяжести, происходит от более простых форм моторного контроля. Корка обеспечивает механизмы для подавления рефлекторных поправок, которые поддерживают положение антигравитации, что позволяет формировать более пластичное и эффективное поведение.

чений. Эти регионы различаются между собой по выполняемой функции, например, регион Vv, или МТ (медиотемпоральный) осуществляет переработку информации о движении объекта в зрительном поле, а регион Viv, расположенный на стыке теменной и височной областей, обеспечивает восприятие формы и цвета объекта.
Существуют два пути, начинающихся в первичной зрительной коре и предназначенных для раздельной переработки зрительной информации: вентральный и дорсальный (рис. 4.38). Вентральный путь проходит к нижней височной извилине, где обнаружены нейроны, имеющие очень большие рецептивные поля. В этой области отсутствует ретинотопическая организация, в ней происходит опознание зрительных стимулов, устанавливается их форма, величина и цвет. Здесь имеются лицеспецифические нейроны, избирательно реагирующие на появление в зрительном поле лица человека, причем одни нейроны активируются, если лицо повернуто в профиль, а другие реагируют на поворот в фас. При поражении этой области может возникнуть прозопагнозия, при которой человек перестает узнавать знакомые ему лица. В средней, а также в верхней височной извилинах находятся нейроны, необходимые для восприятия движущихся объектов и для фиксации внимания на неподвижных объектах.
Дорсальный путь из первичной зрительной коры ведет к заднетеменным областям. Его функциональное значение заключается в определении взаимного пространственного расположения всех одновременно действующих зрительных стимулов. Повреждение этой области коры приводит к дефекту пространственных ощущений и нарушению зрительно-моторной интеграции: человек видит предмет и может правильно описать его форму и цвет, но при попытке взять этот предмет рукой промахивается. Для удобства запоминания вентральный путь принято ассоциировать с вопросом, «что» представляет собой объект, а дорсальный путь - с вопросом, «где» этот объект находится. Функция слуховой коры
Первичная слуховая кора получает сенсорную информацию от релейных нейронов таламуса, она расположена в глубине латеральной борозды (поле 41), отделяющей височную долю от лобной и передних отделов теменной доли. Вторичная слуховая кора получает большую часть афферентных сигналов от первичной коры и располагается вокруг нее. К первичной слуховой коре поступает тонотопически организованная информация от слухо
вых рецепторов, предварительно переработанная в переключательных ядрах слухового тракта. В передних областях слуховой коры находятся колонки, предназначенные для получения и переработки высокочастотных акустических сигналов, позади них - колонки, получающие информацию о низкочастотных звуковых раздражителях. Параллельно с обработкой информации о высоте тона происходит оценка интенсивности звука и временных интервалов между отдельными звуками. Для некоторых нейронов слуховой коры наиболее сильными стимулами являются звуки определенной длительности, для других - повторяющиеся звуки, для третьих - шумы, имеющие широкий диапазон частот.
Нейроны такого рода относятся к категории простых, наряду с ними существуют комплексные нейроны, реагирующие на определенные частотные или амплитудные модуляции звуков. Наличие простых и комплексных нейронов свидетельствует о соблюдении общего принципа переработки информации в сенсорной коре, когда этап регистрации элементарных признаков раздражителя и определения различных составляющих звукового сигнала предшествует следующему этапу, на котором возникает комплексный образ.

Простым, но иллюстративным примером является следующее: представьте, что вы хотите сидеть в кресле, и поэтому разгибательные мышцы нижних конечностей должны проходить пассивное растяжение. Однако это растяжение разгибательных мышц должно вызвать рефлекторный миотетический ответ, приводя к сокращению этих же мышц и последующему расширению конечностей, не позволяя им выполнять действие. Коркальная ингибирующая модуляция, действующая на пути, которые способствуют высвобождению этого рефлекса, является важным фактором, поэтому мы можем выполнять не только моторную задачу, обсуждаемую в этом примере, но и другие, более сложные моторные задачи.

Все важнейшие поведенческие реакции человека осуществляются с помощью ЦНС. Основными функциями ЦНС являются:

  • объединение всех частей организма в единое целое и их регуляция;
  • управление состоянием и поведением организма в соответствии с условиями внешней среды и его потребностями.

У высших животных и человека ведущим отделом ЦНС является кора больших полушарий . Она управляет наиболее сложными функциями в жизнедеятельности человека — психическими процессами (сознание, мышление, речь, память и др.).

Таким образом, поражения коры головного мозга влияют на пирамидальные и экстрапирамидные пути. Потеря моторного контроля над отдельными суставами и дистальными конечностями объясняется поражениями кортико-спинного тракта. Спастичность и гиперрефлексия, в свою очередь, являются следствием потери кортикальной модуляции нисходящих путей, классически называемых вместе, экстрапирамидной системой. Когда эта модуляция теряется, эта система, филогенетически более примитивная, становится доминирующей, оказывая свою роль в поддержании фундаментальной осанки, тем самым освобождая схемы, которые организуют миотический рефлекс преимущественно экстензорной мускулатуры.

Основными методами изучения функций ЦНС являются методы удаления и раздражения (в клинике и на животных), регистрации электрических явлений, метод условных рефлексов.

Продолжают разрабатываться новые методы изучения ЦНС: с помощью так называемой компьютерной томографии можно увидеть морфофункциональные изменения мозга на различной его глубине; фотосъемки в инфракрасных лучах (тепловидение) позволяют обнаружить наиболее «горячие» точки мозга; новые данные о работе мозга дает изучение его магнитных колебаний.

Реабилитация гемиплегических пациентов очень ограничена. Несколько функций разделены в разных областях коры. Различают первичные двигательные области, первичные соматические области. Они связаны с зоной предварительного развития и дополнительной моторной областью, которые взаимодействуют с основной двигательной областью при планировании движения. Сенсорные области включают слуховые, обонятельные, вкусовые, первичные и вторичные контрольные области. Первичные области - это те, которые получают афферентности органов чувств, в то время как вторичные - обработка сигналов путем интеграции различных сигналов.

Основные функции и взаимодействия нейронов

Основными структурными элементами нервной системы являются нервные клетки или нейроны.

Основные функции нейронов

Через нейроны осуществляется передача информации от одного участка нервной системы к другому, обмен информацией между нервной системой и различными участками тела. В нейронах происходят сложнейшие процессы обработки информации. С их помощью формируются ответные реакции организма (рефлексы) на внешние и внутренние раздражения.

Ассоциативные области имеют иерархически превосходящие функции, которые получают информацию и сигналы от других сенсорных и моторных областей, а затем дают команды для двигатель. Кортикальная цитотоксичность Первые три слоя характеризуются кортикально-кортикальными соединениями. Молекулярный слой плох в клетках, но богат волокнами, которые могут иметь горизонтальные и вертикальные движения, в основном тангенциальные. Внешний гранулированный слой характеризуется небольшими пирамидальными клетками.

Пирамидальный слой также содержит его пирамидальные клетки малого и среднего размера. Четвертый слоем является входным участком афферентных волокон и состоит из интернейронов, которые получают сигналы от афферентного и передают их на верхние слои волокон.

Таким образом, основными функциями нейронов являются: восприятие внешних раздражений — рецепторная функция , их переработка — интегративная функция и передача нервных влияний на другие нейроны или различные рабочие органы — эффекторная функция. В теле нервной клетки, или соме, происходят основные процессы переработки информации. Многочисленные древовидно разветвленные отростки — дендриты (греч. дендрон — дерево) служат входами нейрона, через которые сигналы поступают в нервную клетку. Выходом нейрона является отходящий от тела клетки отросток — аксон (греч. аксис — ось), который передает нервные импульсы дальше — другой нервной клетке или рабочему органу (мышце, железе). Особенно высокой возбудимостью обладает начальная часть аксона и расширение в месте его выхода из тела клетки — аксонный холмик нейрона. Именно в этом сегменте клетки возникает нервный импульс.

Они представляют собой проекционные нейроны, которые посылают свои аксоны в белое вещество и используют возбуждающий глутамат в качестве нейротрансмиттера. Визуальные формирования из каждого глаза на уровне первичной зрительной области остаются разделены и каждый столбец обрабатывает визуальную информацию, поступающую из одного глаза. Соединения афферентные → таламокортикального. Связывание типа С имеет биполярное происхождение и конец во всех слоях. Кортикальная колонка формируется путем ассоциации через короткие горизонтальные соединения нескольких мини-колонок.

Типы нейронов

Нейроны подразделяются на три основных типа: афферентные, эфферентные и промежуточные. Афферентные нейроны (чувствительные, или центростремительные) передают информацию от рецепторов в 1ЦНС. Тела этих нейронов расположены вне ЦНС — в спинномозговых узлах и в узлах черепных нервов. Афферентные нейроны имеют длинный отросток — дендрит, который контактирует на периферии с воспринимающим образованием — рецептором или сам образует рецептор, а также второй отросток — аксон, входящий через задние рога в спинной мозг.

Соединения кортико-кортикальные они бывают три типов на основаниях слоя, в котором заканчивается аксона. Был пронизан полюсом, который разрушил префронтальную область. Участок префронтальной ассоциации участвует в оценке последствий действий, которые должны быть предприняты на основе индивидуального опыта и отвечает за личность человека. - Лимбическая ассоциативная область: председательствует на эмоциональном поведении и сохранении мнемических следов. Эта функция описывается случаем Финеаса Гейджа. визуальная системная информация, интегрированная с информацией о слуховой системе и т.д. они способны воспринимать движения или боль, связанные с ампутированной конечностью.

Эфферентные нейроны (центробежные) связаны с передачей нисходящих влияний от вышележащих этажей нервной системы к нижележащим или из ЦНС к рабочим органам. Для эфферентных нейронов характерны разветвленная сеть коротких отростков -дендритов и один длинный отросток -аксон.

Промежуточные нейроны (интернейроны, или вставочные) — это, как правило, более мелкие клетки, осуществляющие связь между различными (в частности, афферентными и эфферентными) нейронами. Они передают нервные влияния в горизонтальном направлении (например, в пределах одного сегмента спинного мозга) и в вертикальном (например, из одного сегмента спинного мозга в другие — выше или нижележащие сегменты). Благодаря многочисленным разветвлениям аксона промежуточные нейроны могут одновременно возбуждать большое число других нейронов.

Связанные кости. Они в значительной степени ответственны за психические процессы, возникающие между приходом информации о первичных сенсорных лаках и поведенческих реакциях. Каждая область имеет представление всего тела. Первый определяет команды двигателя напрямую. Соматочувствительные корковые представления не фиксированы. отделенных от механических и кожных и кожных термоядерных веществ. он обрабатывает информацию о различных сенсорных областях для восприятия и языка. Ассоциативные зоны занимают большую часть внешней поверхности мозг.

Возбуждающие и тормозящие синапсы

Взаимодействие нейронов между собой (и с эффекторными органами) происходит через специальные образования — синапсы (греч. — контакт). Они образуются концевыми разветвлениями нейрона на теле или отростках другого нейрона. Чем больше синапсов на нервной клетке, тем больше она воспринимает различных раздражений и, следовательно, шире сфера влияний на ее деятельность и возможность участия в разнообразных реакциях организма. Особенно много синапсов в высших отделах нервной системы и именно у нейронов с наиболее сложными функциями.

В структуре синапса различают три элемента (рис. 1):

  1. пресинаптическую мембрану , образованную утолщением мембраны конечной веточки аксона;
  2. синаптическую щель между нейронами;
  3. постсинаптическую мембрану — утолщение прилегающей поверхности следующего нейрона.

Рис. 1. Схема синапса
Пре. — пресинаптическая мембрана,
Пост. — постсинаптическая мембрана,
С — синоптические пузырьки,
Щ — синоптической щель,
М — митохондрий,
Ах — ацетилхолин
Р — рецепторы и поры (Поры)
дендрита (Д) следующего
нейрона.
Стрелка — одностороннее проведение возбуждения.

В большинстве случаев передача влияния одного нейрона на другой осуществляется химическим путем. В пресинаптической части контакта имеются синаптические пузырьки , которые содержат специальные вещества — медиаторы или посредники. Ими могут быть ацетилхолин (в некоторых клетках спинного мозга, в вегетативных узлах), норадреналин (в окончаниях симпатических нервных волокон, в гипоталамусе), некоторые аминокислоты и др. Приходящие в окончания аксона нервные импульсы вызывают опорожнение синаптических пузырьков и выведение медиатора в синаптическую щель.

По характеру воздействия на последующую нервную клетку различают возбуждающие и тормозящие синапсы.

В возбуждающих синапсах медиаторы (например, ацетилхолин) связываются со специфическими макромолекулами по-стсинаптической мембраны и вызывают ее деполяризацию. При этом регистрируется небольшое и кратковременное (около 1 мс) колебание мембранного потенциала в сторону деполяризации или возбуждающий постсинаптический потенциал (ВПСП). Для возбуждения нейрона необходимо, чтобы ВПСП достиг порогового уровня. Для этого величинадеполяризационного сдвига мембранного потенциала должна составлять не менее 10 мВ. Действие медиатора очень кратковременно (1 -2 мс), после чего он расщепляется на неэффективные компоненты (например, ацетилхолин расщепляется ферментом холинэстеразой на холин и уксусную кислоту ) ил и поглощается обратно пресинаптическими окончаниями (например, норадреналин).

В тормозящих синапсах содержатся тормозные медиаторы (например, гамма-аминомасляная кислота ). Их действие на постсинаптическую мембрану вызывает усиление выхода ионов калия из клетки и увеличение поляризации мембраны. При этом регистрируется кратковременное колебание мембранного потенциала в сторону гиперполяризации — тормозящий постсинаптический потенциал (ТПСП). В результате нервная клетка оказывается заторможенной. Возбудить ее труднее, чем в исходном состоянии. Для этого понадобится более сильное раздражение, чтобы достичь критического уровня деполяризации.

Возникновение импульсного ответа нейрона

На мембране тела и дендритов нервной клетки находятся как возбуждающие, так и тормозящие синапсы . В отдельные моменты времени часть их может быть неактивной, а другая часть оказывает активное влияние на прилегающие к ним участки мембраны. Общее изменение мембранного потенциала нейрона является результатом сложного взаимодействия (интеграции) местных ВПСП и ТПСП всех многочисленных активированных синапсов. При одновременном влиянии как возбуждающих, так и тормозящих синапсов происходит алгебраическое суммирование (т.е. взаимное вычитание) их эффектов. При этом возбуждение нейрона возникнет лишь в том случае, если сумма возбуждающих постсинаптических потенциалов окажется больше суммы тормозящих . Это превышение должно составлять определенную пороговую величину (около 10 мВ). Только в этом случае появляется потенциал действия клетки. Следует отметить, что в целом возбудимость нейрона зависит от его размеров: чем меньше клетка, тем выше ее возбудимость .

С появлением потенциала действия начинается процесс проведения нервного импульса по аксону и передача его на следующий нейрон или рабочий орган, т.е. осуществляется эффекторная функция нейрона. Нервный импульс является основным средством связи между нейронами.

Таким образом, передача информации в нервной систем происходит с помощью двух механизмов — электрического (ВПСП; ТПСП; потенциал действия) и химического (медиаторы).

Особенности деятельности нервных центров

Свойства нервных центров в значительной мере связаны с особенностями проведения нервных импульсов через синапсы, связывающие различные нервные клетки.

Особенности проведения возбуждения через нервные центры

Нервным центром называют совокупность нервных клеток, необходимых для осуществления какой-либо функции. Эти центры отвечают соответствующими рефлекторными реакциями на внешнее раздражение, поступившее от связанных с ними рецепторов. Клетки нервных центров реагируют и на непосредственное их раздражение веществами, находящимися в протекающей через них крови (гуморальные влияния). В целостном организме имеется строгое согласование — координация их деятельности .

Проведение волны возбуждения от одного нейрона к другому через синапс происходит в большинстве нервных клеток химическим путем — с помощью медиатора, а медиатор содержится лишь в пресинаптической части синапса и отсутствует в постсинаптической мембране. Поэтому важной особенностью проведения возбуждения через синоптические контакты является одностороннее проведение нервных влияний, которое возможно лишь от пресинаптической мембраны к постсинаптической и невозможно в обратном направлении. В связи с этим поток нервных импульсов в рефлекторной дуге имеет определенное направление от афферентных нейронов к вставочным и затем к эфферентным — мотонейронам или вегетативным нейронам.

Большое значение в деятельности нервной системы имеет другая особенность проведения возбуждения через синапсы — замедленное проведение. Затрата времени на процессы, происходящие от момента подхода нервного импульса к пресинаптической мембране до появления в постсинаптической мембране потенциалов, называется синаптической задержкой . В большинстве центральных нейронов она составляет около 0.3 мс. После этого требуется еще время на развитие возбуждающего постсинаптического потенциала (ВПСП) и потенциала действия. Весь процесс передачи нервного импульса (от потенциала действия одной клетки до потенциала действия следующей клетки) через один синапс занимает примерно 1.5 мс. При утомлении, охлаждении и ряде других воздействий длительность синаптической задержки возрастает. Если же для осуществления какой-либо реакции требуется участие большого числа нейронов (многих сотен и даже тысяч), то суммарная величина задержки проведения по нервным центрам может составить десятые доли секунды и даже целые секунды.

При рефлекторной деятельности общее время от момента нанесения внешнего раздражения до появления ответной реакции организма — так называемое скрытое или латентное время рефлекса определяется в основном длительностью проведения через синапсы. Величина латентного времени рефлекса служит важным показателем функционального состояния нервных центров . Измерение латентного времени простой двигательной реакции человека на внешний сигнал широко используется в практике для оценки функционального состояния ЦНС (рис. 2).


Рис. 2. Схема измерения времени двигательной реакции
А — афферентные
Э — эфферентные и Ц — центральные пути; С- отметка светового сигнала,
О — отметка нажима кнопки,
t 150мс — время реакции.

Суммация возбуждения

В ответ на одиночную афферентную волну, идущую от рецепторов к нейронам, в пресинаптической части синапса освобождается небольшое количество медиатора. При этом в постсинаптической мембране нейрона обычно возникает ВПСП — небольшая местная деполяризация. Для того, чтобы общая по всей мембране нейрона величина ВПСП достигала порога возникновения потенциала действия, требуется суммация на мембране клетки многих подпороговых ВПСП. Лишь в результате такой суммации возбуждения возникает ответ нейрона. Различают пространственную и временную суммацию.

Пространственная суммация наблюдается в случае одновременного поступления нескольких импульсов в один и тот же нейрон по разным пресинаптическим волокнам. Одномоментное возбуждение синапсов в различных участках мембраны нейрона повышает амплитуду суммарного ВПСП до пороговой величины. В результате возникает ответный импульс нейрона и осуществляется рефлекторная реакция. Например, для получения ответа двигательной клетки спинного мозга обычно требуется одновременная активация 50-100 афферентных волокон от соответствующих периферических рецепторов.

Временная суммация происходит при активации одного и того же афферентного пути серией последовательных раздражений. Если интервалы между поступающими импульсами достаточно короткий ВПСП нейрона от предыдущих раздражений не успевают затухать, то последующие ВПСП накладываются друг на друга, пока деполяризация мембраны нейрона не достигнет критического уровня для возникновения потенциала действия. Таким способом даже слабые раздражения через некоторое время могут вызывать ответные реакции организма (например, чихание и кашель в ответ на слабые раздражения слизистой оболочки дыхательных путей).

Трансформация и усвоение ритма

Характер ответного разряда нейрона зависит не только от свойств раздражителя, но и от функционального состояния самого нейрона (его мембранного заряда, возбудимости, лабильности). Нервные клетки обладают свойством изменять частоту передающихся импульсов, т.е. свойством трансформации ритма .

При высокой возбудимости нейрона (например, после приема кофеина) может возникать учащение импульсации (мультипликация ритма) , а при низкой возбудимости (например, при утомлении) происходит урежение ритма , так как несколько приходящих импульсов должны суммироваться, чтобы наконец достичь порога возникновения потенциала действия. Эти изменения частоты импульсации могут усиливать или ослаблять ответные реакции организма на внешние раздражения.

При ритмических раздражениях активность нейрона может настроиться на ритм приходящих импульсов, т. е. наблюдается явление усвоения ритма (Ухтомский А. А., 1928). Развитие усвоения ритма обеспечивает сонастройку активностимногих нервных центров при управлении сложными двигательными актами, особенно это важно для поддержания темпа циклических упражнений.

Следовые процессы

После окончания действия раздражителя активное состояние нервной клетки или нервного центра обычно продолжается еще некоторое время. Длительность следовых процессов различна: небольшая в спинном мозге (несколько секунд или минут), значительно больше в центрах головного мозга (десятки минут, часы или даже дни) и очень большая в коре больших полушарий (до нескольких десятков лет).

Поддерживать явное и кратковременное состояние возбуждения в нервном центре могут импульсы, циркулирующие по замкнутым цепям нейронов. Значительно сложнее по природе длительно сохраняющиеся скрытые следы. Предполагают, что длительное сохранение в нервной клетке следов со всеми характерными свойствами раздражителя основано на изменении структуры составляющих клетку белков и на перестройке синаптических контактов.

Непродолжительные импульсные последействия (длительностью до 1 часа) лежат в основе так называемой кратковременной памяти , а длительные следы, связанные со структурными и биохимическими перестройками в клетках, — в основе формирования долговременной памяти .

Координация деятельности ЦНС

Процессы координации деятельности ЦНС основаны на согласовании двух нервных процессов — возбуждения и торможения. Торможение является активным нервным процессом , который предупреждает или угнетает возбуждение.

Значение процесса торможения в ЦНС

Явление торможения в нервных центрах было впервые открыто И. М. Сеченовым в 1862 г. Значение этого процесса было рассмотрено им в книге «Рефлексы головного мозга» (1863).

Опуская лапку лягушки в кислоту и одновременно раздражая некоторые участки головного мозга (например, накладывая кристаллик поваренной соли на область промежуточного мозга), И. М. Сеченов наблюдал резкую задержку и даже полное отсутствие «кислотного» рефлекса спинного мозга (отдергивания лапки). Отсюда он сделал заключение, что одни нервные центры могут существенно изменять рефлекторную деятельность в других центрах, в частности вышележащие нервные центры могут тормозить деятельность нижележащих. Описанный опыт вошел в историю физиологии под названием Сеченовское торможение .

Тормозные процессы — необходимый компоненте координации нервной деятельности. Во-первых, процесс торможения ограничивает распространение возбуждения на соседние нервные центры, чем способствует его концентрации в необходимых участках нервной системы. Во-вторых, возникая в одних нервных центрах параллельно с возбуждением других нервных центров, процесс торможения тем самым выключает деятельность ненужных в данный момент органов . В -третьих, развитие торможения в нервных центрах предохраняет их от чрезмерного перенапряжения при работе, т. е. играет охранительную роль.

Постсинаптическое и пресинаптическое торможение

Процесс торможения , в отличие от возбуждения, не может распространяться по нервному волокну — это всегда местный процесс в области синаптических контактов. По месту возникновения различают пресинаптическое и постсинаптическое торможение.

Постсинаптическое торможение — это тормозные эффекты, возникающие в постсинаптической мембране. Чаще всего этот вид торможения связан с наличием в ЦНС специальных тормозных нейронов . Они представляют собой особый тип вставочных нейронов, у которых окончания аксонов выделяют тормозной медиатор. Одним из таких медиаторов является гамма-аминомасляная кислота (ГАМ К).

Нервные импульсы, подходя к тормозным нейронам, вызывают в них такой же процесс возбуждения, как и в других нервных клетках. В ответ по аксону тормозной клетки распространяется обычный потенциал действия. Однако, в отличие от других нейронов, окончания аксона при этом выделяют не возбуждающий, а тормозной медиатор. В результате тормозные клетки тормозят те нейроны, на которых оканчиваются их аксоны.

К специальным тормозным нейронам относятся клетки Рэншоу в спинном мозге, клетки Пуркинье мозжечка, корзинчатые клетки в промежуточном мозге и др. Большое значение, например, тормозные клетки имеют при регуляции деятельности мышц-антагонистов: приводя к расслаблению мышц антагонистов, они облегчают тем самым одновременное сокращение мышц-агонистов (рис.3).

Клетки Рэншоу участвуютв регуляции уровня активности отдельных мотонейронов спинного мозга. При возбуждении мотонейрона импульсы поступают по его аксону к мышечным волокнам и одновременно по коллатералям аксона — к тормозной клетке Рэншоу. Аксоны последней «возвращаются» к этому же нейрону, вызывая его торможение. Чем больше возбуждающих импульсов посылает мотонейрон на периферию (а значит, и к тормозной клетке), тем сильнее это возвратное торможение (разновидность постсинаптического торможения). Такая замкнутая система дейвствует как механизм саморегуляции нейрона, предохраняя его от чрезмерной активности.

Клетки Пуркинье мозжечка своими тормозными влияниями на клетки подкорковых ядер и стволовых структур участвуют в регуляции тонуса мышц.

Корзинчатые клетки в промежуточном мозге являются как бы воротами, которые пропускают или не пропускают импульсы, идущие в кору больших полушарий от различных областей тела.

Пресинаптическое торможение возникает перед синаптическим контактом — в пресинадтической области. Окончание аксона тормозной нервной клетки образует синапс на конце аксона возбуждающей нервной клетки, вызывают чрезмерно сильную деполяризацию мембраны этого аксона, которая угнетает проходящие здесь потенциалы действия и тем самым блокирует передачу возбуждения. Этот вид торможения ограничивает поток афферентных импульсов к нервным центрам, выключая посторонние для основной деятельности влияния.


Рис. 3. Участие тормозной клетки в регуляции мышц-антагонистов
В и Т- возбуждающий и тормозный нейроны. Возбуждение (+) мотонейрона мышцы-сгибателя (МС) и торможение (-) мотонейрона мышцы-разгибателя (МР). Р — кожный рецептор.

Явление иррадиации и концентрации

При раздражении одного рецептора возбуждение может в принципе распространяться в ЦНС в любом направлении и на любую нервную клетку. Это происходит благодаря многочисленным взаимосвязям нейронов одной рефлекторной дуги с нейронами других рефлекторных дуг. Распространение процесса возбуждения на другие нервные центры называют явлением иррадиации.

Чем сильнее афферентное раздражение и чем выше возбудимость окружающих нейронов, тем больше нейронов охватывает процесс иррадиации. Процессы торможения ограничивают иррадиацию и способствуют концентрации возбуждения в исходном пункте ЦНС.

Процесс иррадиации играет важную положительную роль при формировании новых реакций организма (ориентировочных реакций, условных рефлексов). Чем больше активируется различных нервных центров, тем легче отобрать из их числа наиболее нужные для последующей деятельности центры. Благодаря иррадиации возбуждения между различными нервными центрами возникают новые функциональные взаимосвязи — условные рефлексы . На этой основе возможно, например, формирование новых двигательных навыков.

Вместе с тем, иррадиация возбуждения может оказать и отрицательное воздействие на состояние и поведение организма, нарушая тонкие взаимоотношения между возбужденными и заторможенными нервными центрами и вызывая нарушения координации движений .

Доминанта

Исследуя особенности межцентральных отношений, А. А. Ухтомский обнаружил, что если в организме животного осуществляется сложная рефлекторная реакция, например, повторяющиеся акты глотания, то электрическое раздражение моторных центров не только перестает вызывать в этот момент движение конечностей, но и усиливает протекание начавшейся цепной реакции, глотания, которая оказалась главенствующей.

Такой господствующий очаг возбуждения в ЦНС, определяющий текущую деятельность организма, А. А. Ухтомский (1,923) обозначил термином доминанта.

Доминирующий очаг может возникнуть при повышенном уровне возбудимости нервных клеток, который создается различными гуморальными и нервными влияниями. Он подавляет деятельность других центров, оказывая сопряженное торможение.

Объединение большого числа нейронов в одну доминантную систему происходит путем взаимного сонастраивания на общий темп активности, т. е. путем усвоения ритма. Одни нервные клетки снижают свой более высокий темп деятельности, а другие — повышают низкий темп до некоторого среднего, оптимального ритма. Доминанта может надолго сохраняться в скрытом, следовом состоянии {потенциальная доминанта). При возобновлении прежнего состояния или прежней внешней ситуации доминанта может снова возникнуть {актуализация доминанты). Например, в предстартовом состоянии активизируются все те нервные центры, которые входили в рабочую систему во время предыдущих тренировок, и, соответственно, усиливаются функции, связанные с работой. Мысленное выполнение физических упражнений или представление движений также воспроизводит рабочую доминанту, что обеспечивает тренирующий эффект представления движений и является основой так называемой идеомоторной тренировки. При полном расслаблении (напр. при аутогенной тренировке) спортсмены добиваются устранения рабочих доминант, что ускоряет процессы восстановления.

Как фактор поведения, доминанта связана с высшей нервной деятельностью и психологией человека. Доминанта является физиологической основой акта внимания. При наличии доминанты многие влияния внешней среды остаются вне нашего внимания, но зато более интенсивно улавливаются и анализируются те, которые нас особенно интересуют. Таким образом, доминанта является мощным фактором отбора биологически и социально наиболее значимых раздражений.

Функции спинного мозга и подкорковых отделов головного мозга

В ЦНС различают более древние сегментарные и эволюционно более молодые надсегментарные отделы нервной системы. К сегментарным отделам относят спинной, продолговатый и средний мозг, участки которых регулируют функции отдельных частей тела, лежащих на том же уровне. Надсегментарные отделы — промежуточный мозг, мозжечок и кора больших полушарий не имеют непосредственных связей с органами тела, а управляют их деятельностью через нижележащие сегментарные отделы.

Спинной мозг

Спинной мозг является низшим и наиболее древним отделом ЦНС . В составе серого вещества спинного мозга человека насчитывают около 13.5 млн. нервных клеток. Из них основную массу (97%) представляют промежуточные клетки (вставочные или интернейроны) , которые обеспечивают сложные процессы координации внутри спинного мозга. Среди мотонейронов спинного мозга выделяют крупные альфа-мотонейроны и мелкие — гамма-мотонейроны . От альфа-мотонейронов отходят наиболее толстые и быстропроводящие волокна двигательных нервов, вызывающие сокращения скелетных мышечных волокон. Тонкие волокна гамма-мотонейронов не вызывают сокращения мышц. Они подходят к про-приорецепторам — мышечным веретенам и регулируют их чувствительность.

Рефлексы спинного мозга можно подразделить на двигательные , осуществляемые альфа-мотонейронами передних рогов, и вегетативные , осуществляемые афферентными клетками боковых рогов.

Мотонейроны спинного мозга иннервируют все скелетные мышцы (за исключением мышц лица) . Спинной мозг осуществляет элементарные двигательные рефлексы — сгибательные и разгибательные, ритмические, шагательные, возникающие при раздражении кожи или проприорецепторов мышц и сухожилий, а также посылает постоянную импульсацию к мышцам, поддерживая мышечный тонус . Специальные мотонейроны иннервируют дыхательную мускулатуру-межреберные мышцы и диафрагму, и обеспечивают дыхательные движения. Вегетативные нейроны иннервируют все внутренние органы (сердце, сосуды, потовые железы, железы внутренней секреции, пищеварительный тракт, мочеполовую систему).

Проводниковая функция спинного мозга связана с передачей в вышележащие отделы нервной системы получаемого с периферии потока информации и с проведением импульсов, идущих из головного мозга в спинной.

За последние годы разработаны специальные методики для изучения деятельности спинного мозга у здорового человека. Так например, функциональное состояние альфа-мотонейронов оценивают по изменению ответных потенциалов мышц при периферических раздражениях — так называемому Н-рефлексу (рефлексу Гофмана) икроножной мышцы при раздражении большеберцового нерва и по Т-рефлексу (от тендон — сухожилие) камбаловидной мышцы при раздражении ахиллова сухожилия. Разработаны методики регистрации (с неповрежденных покровов тела) потенциалов, проходящих по спинному мозгу в головной.

Продолговатый мозг и Варолиев мост

Продолговатый мозг и варолиев мост (в целом — задний мозг) являются частью ствола мозга. Здесь находится большая группа черепномозговых нервов (от V до ХII пары), иннервируюших кожу, слизистые оболочки, мускулатуру головы и ряд внутренних органов (сердце, легкие, печень). Тут же находятся центры многих пищеварительных рефлексов — жевания, глотания, движений желудка и части кишечника, выделения пищеварительных соков, а также центры некоторых защитных рефлексов (чихания, кашля, мигания, слезоотделения, рвоты) и центры водно-солевого и сахарного обмена . На дне IV желудочка в продолговатом мозге находится жизненно важный дыхательный центр, состоящий из центров вдоха и выдоха. Его составляют мелкие клетки, посылающие импульсы к дыхательным мышцам через мотонейроны спинного мозга.

В непосредственной близости расположен сердечно-сосудистый центр . Его крупные клетки регулируют деятельность сердца и просвет сосудов. Переплетение клеток дыхательного и сердечно-сосудистого центров обеспечивает их тесное взаимодействие.

Продолговатый мозг играет важную роль в осуществлении двигательных актов и в регуляции тонуса скелетных мышц, повышая тонус мышц-разгибателей . Он принимает участие, в частности, в осуществлении установочных рефлексов позы (шейных, лабиринтных). Через продолговатый мозг проходят восходящие пути слуховой, вестибулярной, проприоцептивной и тактильной чувствительности .

Средний мозг

В состав среднего мозга всходят четверохолмия, черная субстанция и красные ядра. В передних буграх четверохолмия находятся зрительные подкорковые центры , а в задних — слуховые . Средний мозг участвует в регуляции движений глаз , осуществляет зрачковый рефлекс (расширение зрачков в темноте и сужение их на свету).

Четверохолмия выполняют ряд реакций, являющихся компонентами ориентировочного рефлекса . В ответ на внезапное раздражение происходит поворот головы и глаз в сторону раздражителя, а у животных — настораживание ушей. Этот рефлекс (по И. П. Павлову, рефлекс «Что такое?») необходим для подготовки организма к своевременной реакции на любое новое воздействие.

Черная субстанция среднего мозга имеет отношение к рефлексам жевания и глотания, участвует в регуляции тонуса мышц (особенно при выполнении мелких движений пальцами рук) и в организации содружественных двигательных реакций.

Красное ядро среднего мозга выполняет моторные функции — регулирует тонус скелетных мышц , вызывая усиление тонуса мышц-сгибателей. Оказывая значительное влияние на тонус скелетных мышц, средний мозг принимает участие в ряде установочных рефлексов поддержания позы (выпрямительных — установке тела теменем вверх и др.).

Промежуточный мозг

В состав промежуточного мозга входят таламус (зрительные бугры) и гипоталамус (подбугорье).

Через таламус проходят все афферентные пути (за исключением обонятельных), которые направляются в соответствующие воспринимающие области коры (слуховые, зрительные и пр.). Ядра таламуса подразделяются на специфические и неспецифические . К специфическим относят переключательные (релейные)ядра и ассоциативные . Через переключательные ядра таламуса передаются афферентные влияния от всех рецепторов тела. Ассоциативные ядра получают импульсы от переключательных ядер и обеспечивают их взаимодействие. Помимо этих ядер в таламусе имеются неспецифические ядра, которые оказывают как активирующие, так и тормозящие влияния на небольшие области коры.

Благодаря обширным связям таламус играет важнейшую роль в жизнедеятельности организма. Импульсы, идущие от таламуса в кору, изменяют состояние корковых нейронов и регулируют ритм корковой активности . С непосредственным участием таламуса происходит образование условных рефлексов и выработка двигательных навыков, формирование эмоций человека, его мимики. Таламусу принадлежит большая роль в возникновении ощущений, в частности ощущения боли . С его деятельностью связывают регуляцию биоритмов в жизни человека (суточных, сезонных И др.).

Гипоталамус является высшим подкорковым центром регуляции вегетативных функций , состояний бодрствования и сна . Здесь расположены вегетативные центры, регулирующие обмен веществ и организме, обеспечивающие поддержание постоянства температуры тела (у теплокровных) и нормального уровня кровяного давления , поддерживающие водный баланс, регулирующие чувство голода и насыщения . Раздражения задних ядер гипоталамуса вызывает усиление симпатических влияний, а передних — парасимпатические эффекты.

Благодаря связи гипоталамуса с гипофизом (гипоталамо-гипофизарная система ) осуществляется контроль деятельности желез внутренней секреции. Вегетативные и гормональные реакции, регулируемые гипоталамусом, являются компонентами эмоциональных и двигательных реакций человека.

Неспецифическая система мозга

Неспецифическая система занимает срединную часть ствола мозга. Она не связана с анализом какой-либо специфической чувствительности или с выполнением определенных рефлекторных реакций. Импульсы в эту систему поступают через боковые ответвления от всех специфических путей, в результате чего обеспечивается их обширное взаимодействие. Для неспецифической системы характерно расположение нейронов в виде диффузной сети, обилие и разнообразие их отростков. В связи с этим она и получила название сетевидного образования или ретикулярной формации .

Различают два типа влияния неспецифической системы на работу других нервных центров — активирующее и тормозящее . Оба типа этих влияний могут быть восходящими (к вышележащим центрам) и нисходящими (к нижележащим центрам). Они служат для регулирования функционального состояния мозга, уровня бодрствования и регуляции позно-тонических и фазных реакций скелетных мышц.

Мозжечок

Мозжечок — это надсегментарное образование, не имеющее непосредственных связей с исполнительными аппаратами. Мозжечок состоит из непарного образования — червя и парных полушарий.

Основными нейронами коры мозжечка являются многочисленные клетки Пуркинье . Благодаря обширным связям (на каждой клетке оканчивается до 200 000 синапсов) в них происходит интеграция самых различных сенсорных влияний , в первую очередь проприоцептивных, тактильных и вестибулярных. Представительство разных периферических рецепторов в коре мозжечка имеет соматотопическую организацию (греч. соматос — тело, топос — место), т. е. отражает порядок их расположения в теле человека. Кроме того, этот порядок расположения соответствует такому же порядку расположения представительства участков тела в коре больших полушарий, что облегчает обмен информацией между корой и мозжечком и обеспечивает их совместную деятельность в управлении поведением человека. Правильная геометрическая организация нейронов мозжечка обусловливает его значение в отсчете времени и четком поддержании темпа циклических движений .

Основной функцией мозжечка является регуляция познотонических реакций и координация двигательной деятельности (Орбели Л. А., 1926).

По анатомическим особенностям (связям коры мозжечка с его ядрами) и функциональному значению мозжечок подразделяют на три продольные зоны :

  • внутреннюю или медиальную — кору червя , функцией которой является регуляция тонуса скелетных мышц, поддержание позы и равновесия тела;
  • промежуточную — среднюю часть коры полушарий мозжечка, функция которой состоит в согласовании позных реакций с движениями и коррекции ошибок;
  • боковую или латеральную кору полушарий мозжечка, которая совместно с промежуточным мозгом и корой больших полушарий участвует в программировании быстрых баллистических движений (бросков, ударов, прыжков и пр.).

Базальные ядра

К базальным ядрам относят полосатое тело, состоящее из хвостатого ядра и скорлупы, и бледное ядро, а в настоящее время причисляют также миндалевидное тело (относящееся к вегетативным центрам лимбической системы) и черную субстанцию среднего мозга.

Афферентные влияния приходят к базальным ядрам от рецепторов тела через таламус и от всех областей коры больших полушарий. Они почти исключительно поступают в полосатое тело. Эфферентные влияния от него направляются к бледному ядру и далее к стволовым центрам экстрапирамидной системы, а также через таламус обратно к коре.

Базальные ядра участвуют в образовании условных рефлексов и осуществлении сложных безусловных рефлексов (оборонительных, пищедобывательных и др.). Они обеспечивают необходимое положение тела во время физической работы, а также протекание автоматических ритмических движений (древних автоматизмов).

Бледное ядро выполняет основную моторную функцию, а полосатое тело регулирует его активность. В настоящее время выявлено значение хвостатого ядра в контроле сложных психических процессов- внимания, памяти, обнаружении ошибок.

Все функции организма условно можно разделить на соматические , или анимальные (животные), связанные с восприятием внешней информации и деятельностью мышц, и вегетативные (растительные), связанные с деятельностью внутренних органов, — процессы дыхания, кровообращения, пищеварения, выделения, обмена веществ, роста и размножения.

Функциональная организация вегетативной нервной системы

Вегетативной нервной системой называют совокупность эфферентных нервных клеток спинного и головного мозга, а также клеток особых узлов (ганглиев), иннервирующих внутренние органы. Раздражения различных рецепторов тела могут вызвать изменения как соматических, так и вегетативных функций, так как афферентные и центральные отделы этих рефлекторных дуг общие. Они различаются лишь своими эфферентными отделами. Характерной особенностью эфферентных путей, входящих в рефлекторные дуги вегетативных рефлексов, является их двухнейронное строение (один нейрон находится в ЦНС, другой — в ганглиях или в ин-нервируемом органе).

Вегетативная нервная система подразделяется на два отдела — симпатический и парасимпатический (рис. 4).

Эфферентные пути симпатической нервной системы начинаются в грудном и поясничном отделах спинного мозга от нейронов его боковых рогов. Передача возбуждения с предузловых симпатических волокон на послеузловые происходит с участием медиатора ацетилхолина , а с послеузловых волокон на иннервируемые органы — с участием медиатора норадреналина . Исключением являются волокна, иннервирующие потовые железы и расширяющие сосуды скелетных мышц, где возбуждение передается с помощью ацетилхолина.

Эфферентные пути парасимпатической нервной системы начинаются в головном мозге — от некоторых ядер среднего и продолговатого мозга, и в спинном мозге — от нейронов крестцового отдела. Проведение возбуждения в синапсах парасимпатического пути происходит с участием медиатора ацетилхолина . Второй эфферентный нейрон находится в иннервируемом органе или вблизи от него.

Высшим регулятором вегетативных функций является гипоталамус , который действует совместно с ретикулярной формацией и лимбической системой под контролем коры больших полушарий. Кроме того, нейроны, расположенные в самих органах или в симпатических узлах, могут осуществлять собственные рефлекторные реакции без участия ЦНС — «периферические рефлексы» .

Рис. 4. Вегетативная нервная система
Слева — область выхода волокон: парасимпатической (черный цвет)
и симпатической (заштриховано) систем.
Справа — строение эфферентной части рефлекторной дуги вегетативных рефлексов. Слева — схема среднего, продолговатого и спинного мозга.
Арабские цифры — номера грудных сегментов, римские — номера поясничных сегментов.

Функции симпатической нервной системы

С участием симпатической нервной системы протекают многие важные рефлексы в организме, направленные на обеспечение его деятельного состояния, в том числе — его двигательной активности. К ним относятся рефлексы расширения бронхов, учащения и усиления сердечных сокращений , расширения сосудов сердца и легких при одновременном сужении сосудов кожи и органов брюшной полости (обеспечение перераспределения крови ), выброс депонированной крови из печени и селезенки, расщепление гликогена до глюкозы в печени (мобилизация углеводных источников энергии ), усиление деятельности желез внутренней секреции и потовых желез. Симпатическая нервная система снижает деятельность ряда внутренних органов: в результате сужения сосудов в почках уменьшаются процессы мочеобразования, угнетается секреторная и моторная деятельность органов желудочно-кишечного тракта; предотвращается акт мочеиспускания — расслабляется мышца стенки мочевого пузыря и сокращается его сфинктер.

Повышенная активность организма сопровождается симпатическим рефлексом расширения зрачка . Огромное значение для двигательной деятельности организма имеет трофическое влияние симпатических нервов на скелетные мышцы , улучшающее их обмен веществ и функциональное состояние, снимающее утомление.

Симпатический отдел нервной системы не только повышает уровень функционирования организма, но и мобилизует его скрытые функциональные резервы , активирует деятельность мозга, повышает защитные реакции (иммунные реакции, барьерные механизмы и др.), запускает гормональные реакции. Особенное значение имеет симпатическая нервная система при развитии стрессовых состояний , в наиболее сложных условиях жизнедеятельности. Л. А. Орбели подчеркивал важнейшее значение симпатических влияний для приспособления (адаптации) организма к напряженной работе, к различным условиям внешней среды. Эта функция была им названа адаптационно-трофической .

Функции парасимпатической нервной системы

Парасимпатическая нервная система осуществляет сужение бронхов, замедление и ослабление сердечных сокращений: сужение сосудов сердца; пополнение энергоресурсов (синтез гликогена в печени и усиление процессов пищеварения); усиление процессов мочеобразования в почках и обеспечение акта мочеиспускания (сокращение мышц мочевого пузыря и расслабление его сфинктера) и др. Парасимпатическая нервная система преимущественно оказывает пусковые влияния : сужение зрачка, бронхов, включение деятельности пищеварительных желез и т. п.

Деятельность парасимпатического отдела вегетативной нервной системы направлена на текущую регуляцию функционального состояния, на поддержание постоянства внутренней среды — гомеостаза . Парасимпатический отдел обеспечивает восстановление различных физиологических показателей , резко измененных после напряженной мышечной работы, пополнение израсходованных энергоресурсов. Медиатор парасимпатической системы — ацетилхолин, снижая чувствительность адренорецепторов к действию адреналина и норадреналина, оказывает определенное антистрессорное влияние .

Рис. 5. Вегетативные рефлексы
Влияние положения тела на частоту сердечных сокращении (уд./мин). (По: Могендович М.Р., 1972)

Через вегетативные симпатические и парасимпатические пути ЦНС осуществляет некоторые вегетативные рефлексы, начинающиеся с различных рецепторов внешней и внутренней среды: висцеро-висцеральные (с внутренних органов на внутренние органы — например, дыхательно-сердечный рефлекс); дермо-висцеральные (с кожных покровов- изменение деятельности внутренних органов при раздражении активных точек кожи, например, иглоукалыванием, точечным массажем); с рецепторов глазного яблока — глазо-сердечный рефлекс Ашнера (уреже-ние сердцебиений при надавливании на глазные яблоки — парасимпатический эффект); моторно-висцеральные-например, ортостатическая проба (учащение сердцебиения при переходе из положения лежа в положение стоя — симпатический эффект) и др. (рис. 5). Они используются для оценки функционального состояния организма и особенно состояния вегетативной нервной системы (оценки влияния симпатического или парасимпатического ее отдела).

Лимбическая система

Под лимбической системой понимают ряд корковых и подкорковых структур, функции которых связаны с организацией мотивационио-эмоциональных реакций, процессами памяти и обучения .

Корковые отделы лимбической системы, представляющие ее высший отдел, находятся на нижних и внутренних поверхностях больших полушарий (участки лобной коры, поясная извилина или лимбическая кора, гиппокамп и др.). К подкорковым структурам лимбической системы относят гипоталамус, некоторые ядра таламуса, среднего мозга и ретикулярной формации. Между всеми этими отделами имеются тесные прямые и обратные связи, образующие так называемое «лимбическое кольцо».

Лимбическая система участвует в самых разнообразных проявлениях деятельности организма — в регуляции пищевого и питьевого поведения, цикла сон-бодрствование, в процессах формирования памятного следа (отложения и извлечения из памяти), в развитии агрессивно-оборонительных реакций , обеспечивая избирательный характер поведения. Она формирует положительные и отрицательные эмоции со всеми двигательными, вегетативными и гормональными их компонентами. Электрические раздражения различных участков лимбической системы через вживленные электроды (в экспериментах на животных, в клинике при лечении больных) выявили наличие центров удовольствия , формирующих положительные эмоции, и неудовольствия , формирующих отрицательные эмоции. Изолированное раздражение таких точек в глубоких структурах мозга человека вызывало появление чувства «беспричинной радости», «беспредметной тоски», «безотчетного страха».

Функции коры больших полушарий

У высших млекопитающих животных и человека ведущим отделом ЦНС является кора больших полушарий.

Корковые нейроны

Кора представляет собой слой серого вещества толщиной 2-3 мм, содержащий в среднем около 14 млрд. нервных клеток. Характерным в ней является обилие межнейронных связей, рост которых продолжается до 18 лет, а в ряде случаев и далее.

Основными типами корковых клеток являются пирамидные и звездчатые нейроны. Звездчатые нейроны связаны с процессами восприятия раздражений и объединением деятельности различных пирамидных нейронов.

Пирамидные нейроны осуществляют эфферентную функцию коры (преимущественно через пирамидный тракт) и виутрикорковые процессы взаимодействия между удаленными друг от Друга нейронами. Наиболее крупные пирамидные клетки — гигантские пирамиды Беца находятся в передней центральной извилине (моторной зоне коры).

Функциональной единицей коры является вертикальная колонка взаимосвязанных нейронов. Вытянутые по вертикали крупные пирамидные клетки с расположенными над ними и под ними нейронами образуют функциональные объединения нейронов. Вес Нейроны вертикальной колонки отвечают на одно и то же афферентное раздражение (от одного и того же рецептора) одинаковой реакцией и совместно формируют эфферентные ответы пирамидных нейронов. По мере надобности вертикальные колонки могут объединяться в более крупные образования, обеспечивая сложные реакции.

Функциональное значение различных корковых полей

По особенностям строения и функциональному значению отдельных корковых участков вся кора подразделяется на три основные группы полей — первичные, вторичные и третичные (рис.6).

Первичные поля связаны с органами чувств и органами движения на периферии. Они обеспечивают возникновение ощущений . К ним относятся, например, поле болевой и мышечно-суставной чувствительности в задней центральной извилине коры, зритель ное поле в затылочной области, слуховое поле в височной области и моторное поле в передней центральной извилине. В первичных полях находятся высокоспециализированные клетки-определители или детекторы , избирательно реагирующие только на определенные раздражения. Например, в зрительной коре имеются нейроны-детекторы, возбуждающиеся только при включении или при выключении света, чувствительные лишь к определенной его интенсивности, к конкретным интервалам светового воздействия, к определенной длине волны и т.д. При разрушении первичных полей коры возникают так называемые корковая слепота, корковая глухота и т.п.

Рис. 6. Первичные, вторичные и третичные поля коры больших полушарий
На А: крупные точки — первичные поля, средние — вторичные поля, мелкие — третичные поля (по Г. И. Поляков 1964, А. Р. Лурия, 1971)
На Б: первичные (проекционные) поля коры больших полушарий (по В.Пенфильд, Л. Роберте, 1964)

Вторичные поля расположены рядом с первичными. В них происходит осмысливание и узнавание звуковых, световых и других сигналов, возникают сложные формы обобщенного восприятия . При поражении вторичных полей сохраняется способность видеть предметы, слышать звуки, но человек их не узнает, не помнит значения.

Третичные поля развиты практически только у человека. Это ассоциативные области коры, обеспечивающие высшие формы анализа и синтеза и формирующие целенаправленную поведенческую деятельность человека. Третичные поля находятся в задней половине коры — междутеменными, затылочными и височными областями, и в передней половине — в передних частях лобных областей. Их роль особенно велика в организации согласованной работы обоих полушарий . Третичные поля созревают у человека позже других корковых полей и раньше других деградируют при старении.

Функцией задних третичных полей (главным образом, нижнетеменных областей коры) является прием, переработка и хранение информации. Они формируют представление о схеме тела и схеме пространства , обеспечивая пространственную ориентацию движений. Передние третичные поля (передне-лобные области) выполняют общую регуляцию сложных форм поведения человека, формируя намерения и планы, программы произвольных движений и контроль за их выполнением . Развитие третичных полей у человека связывают с функцией речи. Мышление (внутренняя речь) возможно только при совместной деятельности различных сенсорных систем, объединение информации от которых происходит в третичных полях. При врожденном недоразвитии третичных полей человек не в состоянии овладеть речью (произносит лишь бессмысленные звуки) и даже простейшими двигательными навыками (не может одеваться, пользоваться орудиями труда и т. п.).

Парная деятельность и доминирование полушарий

Обработка информации осуществляется в результате парной деятельности обоих полушарий головного мозга. Однако, как правило, одно из полушарий является ведущим — доминантным . У большинства людей с ведущей правой рукой (правшей) доминантным является левое полушарие, а соподчиненным (субдоминантным) — правое полушарие.

Левое полушарие по сравнению с правым имеет более тонкое нейронное строение, большее богатство взаимосвязей нейронов, более концентрированное представительство функций и лучшие условия кровоснабжения. В левом доминантном полушарии находится моторный центр речи (центр Брока), обеспечивающий речевую деятельность, и сенсорный центр речи, осуществляющий понимание слов. Левое полушарие специализировано на тонком сенсомоторном контроле за движениями рук.

У человека различают три формы функциональной асимметрии : моторную, сенсорную и психическую . Как правило, у человека имеются ведущая рука, нога, глаз и ухо. Однако проблема функциональной асимметрии довольно сложна. Например, у человека-правши может быть ведущим левый глаз или левое ухо, сигналы от которых являются главенствующими. При этом в каждом полушарии могут быть представлены функции не только противоположной, но и одноименной стороны тела. В результате этого обеспечивается возможность замещения одного полушария другим в случае его повреждения, а также создается структурная основа для переменного доминирования полушарий при управлении движениями.

Психическая асимметрия проявляется в виде определенной специализации полушарий . Для левого полушария характерны аналитические процессы, последовательная обработка информации, в том числе с помощью речи, абстрактное мышление, оценка временных отношений, предвосхищение будущих событий, успешное решение вербально-логических задач. В правом полушарии информация обрабатывается целостно, синтетически (без расчленения на детали), с учетом прошлого опыта и без участия речи, преобладает предметное мышление. Эти особенности позволяют связывать с правым полушарием восприятие пространственных признаков и решение зрительно-пространственных задач. Функции правого полушария связаны с прошедшим временем, а левого — с будущим.

Электрическая активность коры больших полушарий

Изменения функционального состояния коры отражаются в записи ее электрической активности — электроэнцефалограммы (ЭЭГ) . Современные электроэнцефалографы усиливают потенциалы мозга в 2-3 млн. раз и дают возможность исследовать ЭЭГ от многих точек коры одновременно, т. е. изучать системные процессы. Регистрация ЭЭГ производится в виде чернильной записи на бумаге, а также в виде целостной картины на схеме поверхности мозга, т. е. карты мозга (метод картирования) на экране мониторов современных компьютерных систем (рис. 7).

Различают определенные диапазоны частот , называемые ритмами ЭЭГ (рис. 8): в состоянии относительного покоя чаще всего регистрируется альфа-ритм (8-13 колебаний в 1с); в состоянии активного внимания-бета-ритм (14 колебаний в 1с и выше); при засыпании, некоторых эмоциональных состояниях — бета-ритм (4-7 колебаний в 1с); при глубоком сне, потере сознания, наркозе-дельта-ритм (1 -3 колебания в 1 с).

В ЭЭГ отражаются особенности взаимодействия корковых нейронов при умственной и физической работе (Ливанов М. Н., 1972). Отсутствие налаженной координации при выполнении непривычной или тяжелой работы приводит к так называемой десинхронизации ЭЭГ — быстрой асинхронной активности. По мере формирования двигательного навыка в ЭЭГ возникают явления синхронизации ЭЭГ — усиления взаимосвязанности (синхронности и синфазности) электрической активности различных областей коры, участвующих в управлении движениями. При циклической работе появляются медленные потенциалы в темпе выполняемого, воображаемого или предстоящего движения — «меченые ритмы» (Сологуб Е. Б., 1973).

Помимо фоновой активности в ЭЭГ выделяют отдельные потенциалы, связанные с какими-либо событиями: вызванные потенциалы , возникающие в ответ на внешние раздражения (слуховые, зрительные и др.); потенциалы, отражающие мозговые процессы при подготовке, осуществлении и окончании отдельных двигательных актов — это «волна ожидания» или условная негативная волна (Уолтер Г., 1966), премоторные, моторные и финальные потенциалы и др. Кроме того, регистрируют различные сверхмедленные колебания длительностью от нескольких секунд до десятков минут (в частности, так называемые «омега-потенциалы» и др.), которые отражают биохимические процессы регуляции функций и психической деятельности.


Рис. 7. Картирование мозга
Многоканальная регистрация электроэнцефалограммы (ЭЭГ) человека на экране монитора и отражение возбужденных (светные зоны) и заторможенных (темные зоны) участков коры.

Рис. 8. ЭЭГ затылочной (а-д) и моторной (е-з) областей коры больших полушарий человека при различных состояниях и во время мышечной работы
а — активное состояние,
глаза открыты (бета-ритм); б- покой, глаза закрыты (альфа-ритм);
в — дремота (теша-ритм);
г — засыпание; д — глубокий сон «Ч
(дельта-ритм); е — непривычная или
тяжелая работа — асинхронная частая
активность (явление десинхронтации);
ж — циклическая работа — медленные потенциалы в темпе движений (»меченые ритмы«ЭЭГ); з — выполнение освоенного движения — появление альфа-ритма.

Загрузка...